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Abstract. The water cycle strongly influences life on Earth. In particular, the precipitation 

modifies the atmospheric column thermodynamics through the process of evaporation and serves 

as a proxy for latent heat modulation. For this reason, a correct precipitation parameterization 

(especially low-intensity precipitation) at global scale, bedsides improving our understanding of 

the hydrological cycle, it is crucial to reduce the associated uncertainty of the global climate 

models to correctly forecast future scenarios, i.e. to apply fast mitigation strategies. In this study 

we developed an algorithm to automatically detect precipitation from lidar measurements 

obtained by the National and Aeronautics Space Administration (NASA) Micropulse lidar 

network (MPLNET) permanent observational site in Goddard. The algorithm, once full 

operational, will deliver in Near Real Time (latency 1.5h) a new rain mask product that will be 

publicly available on MPLNET website as part of the new Version 3 Level 1.5 data. The 

methodology, based on an image processing technique, can detect only light precipitation events 

(defined by intensity and duration) as the morphological filters used through the detection 

process are applied on the lidar volume depolarization ratio range corrected composite images, 

i.e. heavy rain events are unusable as the lidar signal is completely extinguished after few meters 

in the precipitation or no signal detected because of the water accumulated on the receiver optics.  

Keyword: idar; aerosol; aerosol-cloud interactions; MPLNET; image processing; precipitation; 

network; infrastructure; virga. 

Introduction  

Human life is strongly dependent on the water cycle. In particular, precipitation is a key-player in  

paring the Earth-atmosphere water and energy cycle by modulating  the  atmospheric column latent heat 

and affecting cloudiness and cloud lifetime. For this reason, long-term precipitation data observations 

are needed to analyze precipitation trend and variability, especially at global scale [1]. In the last two 

decades, thanks to the internet, ground-based network of instruments started to develop and measure 

important climate-related variables [2], as the columnar and atmospheric profile of aerosol optical and 

micro-physical properties through passive and active optical sensors, i.e.  sun-photometers and lidars. 

The latter are active optical remote sensing instruments that uses a laser source [3] to sound the 

atmosphere. Elastic [4], multi-wavelength [5] and Doppler [6] lidar observations are mainly used to 

study and assess aerosol [7,8,9] and clouds [10,11,12] geometrical and optical properties. On the 

contrary, lidar measurements containing raining events are usually unjustifiably disregarded, even if 

light rain events are clearly detectable on lidar data, as shown in Figure 1  
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Figure 1: May 2019 thumbnails showing the daily MPLNET V3 NRB variable (L15 MPLNET 

NRB product). Red circles highlight precipitation events 

 

where several precipitation events are highlighted in red during May 2019 at NASA Goddard Flight 

Space Center (GSFC). Figure 2 shows the composite plot of the Normalized Relative Backscatter 

(NRB)(Fig. 2a) and the Volume Depolarization Ratio (VDR) (Fig. 2b) range corrected signals on 22 

April 2016 at NASA GSFC site.  

 

 
(a) NRB variable composite image on 22 April 2016 observed at NASA Goddard Space Flight 

Center permanent MPLNET observational site. 
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(b) VDR variable composite image on 22 April 2016 observed at NASA Goddard Space Flight 

Center permanent MPLNET observational site. The horizontal white arrows show the beginning 
and the end of the precipitation event, while clouds are represented in red 

 

Figure 2: Precipitation event detected on 22 April 2016. With respect to (a) NRB, precipitation on 

(b) VDR has more defined and sharp contours (contrast is enhanced). For this reason, the detection is 

easier on (b) 

 

A precipitation event is displayed as a vertical structure right after 1800UTC. Some recent studies 

put in evidence that a correct precipitation parameterization[13] will drastically improve global climate 

models to forecast future scenarios on climate. Further, precipitation studies are crucial to assess aerosol 

indirect and semi-direct effects because aerosols aspect both cloud formation and precipitation, that in 

turn removes aerosols from the atmosphere by scavenging effect. Isolated case studies using lidar data 

(together with ancillary instrumentation) to quantitatively assess the atmospheric profile of precipitation 

microphysical and optical characteristics are shown in [14,15,16,17]. Nevertheless, the previous cited 

methods, due to their intrinsic complexity, are not suitable to be operationally implemented in a network. 

For this reason, we developed and tested an operational automatic algorithm to be implemented in the 

NASA MPLNET [18] Version 3 (V3) network with the main scope of providing a rain mask product 

that will be an additional feature of the Level 1.5 (L15) already available cloud algorithm product. The 

publicly available L15 rain mask might be used as a starting point to further investigate scientifically 

interesting cases to assess precipitation optical and microphysical properties, or simply to better 

characterize precipitation patterns and its variability at global scale from the MPLNET (or other 

networks) database. The developed algorithm, based on image processing techniques, is based on the 

application of morphological filters to the MPLNET Level 1.5 (L15) cross-polar channel Normalized 

Range 

 

Methodology  

The proposed algorithm, as shown in the flowchart below (Figure 3), is based on the image processing 

techniques. As first step, the algorithm acquires the Volume Depolarization Ratio (VDR) composite 

image (L15 MPLNET product). Then, the acquired image is paired with the L15 MPLNET cloud mask 

product, because the precipitation detection is uniquely carried out under a cloud base, given by the 

cloud mask [19] (natural rain doesn’t exist on clear sky conditions). For this reason, the algorithm will 

label a bin as "rain" only if it is topped by a cloud. As shown in in the flowchart in Figure 3, the a-priori 

probability rain detection is provided just exploiting the different threshold of the rain backscattered 
energy with respect to the aerosols and molecules. Assuming Laplace distributed data the a-priori 

probability rain detection is maximized for each singular bin to produce a preliminary rain mask. During 
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post-processing phase, the morphological filters are applied to cancel the image noise due to the signal 

extinction above the clouds and to remove any not-rectangular shaped detection to produce the final rain 

mask. The algorithm is currently set-up to detect rain events for cloud bases above 400m from and for 

precipitations that lasts 5 minutes or more. 

 

 

 
Figure 3: Flowchart of V3 MPLNET rain detection algorithm. A detailed description of all the 

steps can be found in the corp of the text 

Results and discussions  

Rain events detected by the developed algorithm are intercompared by rain intensity measurements 

obtained from a co-located ground based disdrometer at NASA GSFC, which is an in-situ measurement 

device designed to measure the drop size distribution (DSD;[20]), represented as the number of drops 

per unit of volume and per unit of raindrop diameter. Disdrometers can be based on different 

measurement principles (high-speed cameras, Doppler effect, laser-optical, impact, etc.). The second 

generation Parsivel (Parsivel2) laser-optical disdrometer manufactured by OTT[21] is used in this work 

. Parsivel systems were originally developed by PM Tech Inc., Germany. The instrument has a laser 

diode (emitting wavelength of 780 nm) generating a horizontal at beam with a measurement area of 54 

cm2. Disdrometer functioning principle is also based on laser technology. When a hydro-meteor passes 

through the laser beam, it produces attenuation proportional to its size. A relationship between the laser 

beam occlusion by the falling particle is applied to estimate the particle size. Parsivel instruments can 

measure particle diameters up to about 25 mm classifying them in 32 size classes of different width. The 

instrument also estimates the hydro-meter fall velocity by measuring the time necessary for the particle 

to pass through the laser beam, and thus it stores particles in 32x32 matrices. The disdrometers high 

temporal resolution (60s here) permits study in great detail of physical precipitation variability.  

 

As previously described, the rain detection algorithm at first pairs the Volume Depolarization Ratio 

(VDR) composite image with the L15 cloud masking variable. Then, a first guess of rain probability is 

produced only for the VDR signal above a certain threshold and below a cloud base, i.e. on deep blue 

regions topped by cyan cloud regions of upper middle plots of Figure 4. The cloud base is never below 

400m and the precipitation intensity is very low, i.e. 0.25 mm hr-1 on daily average. Those intensities 

cannot attenuate completely the lidar signal. Two virga streaks are detected by the algorithm in the 

second half of the day. The retrieved disdrometer rain rate (Fig. 4; bottom), shows very low values, with 



ASAAQ15

IOP Conf. Series: Earth and Environmental Science 489 (2020) 012028

IOP Publishing

doi:10.1088/1755-1315/489/1/012028

5

 

 

 

 

 

 

a maximum of 0.76 mm hr-1 at 1701 UTC. The agreement is excellent, however the rain intensity drops 

so much after 1815UTC that the disdrometer is unable to detect precipitation, but it is clearly visible in 

the rain mask. Precipitation events from lidar data are then necessary to fill a gap in detecting very low 

precipitation intensity events (less than 0.05 mm hr-1) that are crucial to study the aerosol effects and 

interactions on clouds and precipitations. 

 

Figure 4: Rain mask variable from rain detection algorithm on 22 April 2016 from MPLNET 

observation at NASA GSFC (Lat:38.99N, Lon:76.38W, Alt:50m a.s.l.). The different steps to obtain the 
rain mask are shown in the flowchart in Fig. 3 :Upper: Volume depolarization ratio variable obtained 

from MPLNET NRB L15 signal product. Middle 1: Cloud mask variable from MPLNET L15 CLD 

product. The algorithm retrieves precipitation only on blue regions topped by clouds (cyan bins). Middle 

2: New rain mask product (rain plotted in yellow) Lower:Co-located precipitation intensity measured 

by disdrometer. The green rectangular shapes help in visualizing the detected rain events 

 

The rain detection algorithm has been validated vs. observations obtained from the ground based co-

located disdrometer over 7 days (not shown in here). The intercomparison results show a 100% success 

detection rate of the algorithm. A detection is considered successful if the precipitation detected by the 

algorithm and by the disdrometer are superimposing at least for 1 minute (or more). Lidar data are not 

suitable to detect strong precipitation events, while can detect virga streaks (a precipitation type that 

doesn’t reach the ground because of evaporation) and very low intensity rain (less than 0.05 mm hr-1). 
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Conclusions  

The developed algorithm is proven to be effective in detecting rain episodes from lidar observations. 

Nevertheless, due to the nature of lidar instrument, the technique is limited in case of strong precipitation 

events. The implementation of the algorithm operationally in the NASA MPLNET lidar netowrk will 

fill a gap left by TRMM and GPM missions in detecting low intensity precipitations, crucial to improve 

global climate model forecasts and for aerosol-cloud and in turn precipitation interactions. Being the 

methodology used in developing the algorithm based on image-processing techniques, in future the 

algorithm will be tested on ceilometer data, where also the precipitation produces a higher-contrasted 

feature in the range corrected backscattered signal. 
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