
GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/,

Supporting Information for ”The 2019-2020 Australian1

drought and bushfires altered the partitioning of2

hydrological fluxes”3

Sujay V. Kumar

Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, MD4

Thomas Holmes

Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, MD5

Niels Andela

School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK6

Imtiaz Dharssi

Bureau of Meteorology, Melbourne, Australia,7

Bushfire and Natural Hazard Cooperative Research Centre, Melbourne,8

Australia9

Vinodkumar

Bureau of Meteorology, Melbourne, Australia,10

Bushfire and Natural Hazard Cooperative Research Centre, Melbourne,11

Australia12

Christopher Hain

Short-term Prediction Research and Transition Center, NASA MSFC,13

Huntsville, AL14

D R A F T November 29, 2020, 9:13am D R A F T



X - 2 KUMAR ET AL.: AUSTRALIA FIRE AND DROUGHT IMPACTS

Christa Peters-Lidard

Earth Science Division, NASA GSFC, Greenbelt, MD15

Sarith P. Mahanama

Science Systems and Applications Inc, Lanham, MD16

Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, MD17

Kristi R. Arsenault

Science Applications International Corporation, McLean, VA18

Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, MD19

Wanshu Nie

Department of Earth and Planetary Sciences, Johns Hopkins University,20

Baltimore, MD21

NASA Goddard Earth Sciences Technology and Research (GESTAR),22

Greenbelt, MD23

Augusto Getirana

Science Applications International Corporation, McLean, VA24

Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, MD25

D R A F T November 29, 2020, 9:13am D R A F T



KUMAR ET AL.: AUSTRALIA FIRE AND DROUGHT IMPACTS X - 3

Contents of this file26

1. Text S1: Details of the modeling and data assimilation configurations27

2. Text S2: Description of the SMAP VOD dataset28

3. Text S3: Description of the MODIS LAI dataset29

4. Text S4: Description of evaluation datasets30

5. Text S5: Description of evaluation metrics31

6. Figure S1: Map of the modeling domain32

7. Figure S2: Impact of DA on soil moisture estimates33

Introduction34

Text S1: Details of the modeling and data assimilation configurations35

The model configuration employs the modified International Geosphere Biosphere36

Programme (IGBP) MODIS 20 category landcover data (Friedl et al. [2002]), soil pa-37

rameters derived from the International Soil Reference and Information Centre (ISRIC;38

Hengl et al. [2014]), and the Shuttle Radar Topography Mission (SRTM; Rodriguez et al.39

[2005]) based elevation, slope, and aspect data. Statistical downscaling approaches40

are used to transform the coarse resolution MERRA2 meteorological inputs to 1km.41

The input meteorological fields of air temperature, humidity, surface pressure, wind,42

Sujay V. Kumar, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,

Greenbelt, MD 20771. email: Sujay.V.Kumar@nasa.gov
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downward shortwave radiation, and downward longwave radiation are downscaled43

to 1km by adjusting for terrain differences in elevation, slope, and aspect (Kumar et al.44

[2013]). The high resolution monthly precipitation climatology from WorldClim (Fick45

and Hijmans [2017]) is used to spatially disaggregate input MERRA2 precipitation to46

1km. The initial conditions for the model simulations are generated from a long spinup47

of NoahMP starting from year 2000. All model integrations and evaluations are con-48

ducted using the NASA Land Information System (LIS; Kumar et al. [2006]) and the49

Land surface Verification Toolkit (LVT; Kumar et al. [2012]).50

The data assimilation integrations employ a 1-dimensional Ensemble Kalman Fil-51

ter (EnKF), which allows the update and propagation of a selected set of model states52

based on the observational information. The assimilation update at time k is repre-53

sented as:54

xi+
k = xi−

k + Kk

[
yi

k − Hkxi−
k

]
, (1)

where xi−
k and xi+

k represents the model state for the ith ensemble member before and55

after the update, respectively. The observation operator Hk connects the model states56

to the observation space. The Kalman gain term (Kk), computed based on the model57

and observation error covariances, provides the weighting factor between the model58

states and the observations.59

In the assimilation configurations for VOD and LAI, ensemble spread is created by60

applying small perturbations to a number of meteorological forcing inputs (downward61

shortwave radiation, downward shortwave radiation, and precipitation) and the mod-62
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eled LAI states, at each grid point. Multiplicative perturbations with a mean of 1 and63

standard deviations of 0.3 and 0.5, respectively, are applied to the precipitation (P) and64

downward shortwave (SW) fields. The longwave radiation field (LW) is perturbed65

with zero-mean, normally distributed additive perturbations with a standard devi-66

ation of 50 W/m2. Time series correlations are imposed via a first-order regressive67

model (AR(1)) with a timescale of 24 hours. These perturbations also include cross cor-68

relations (ρ) between the forcing fields (ρ(SW, P) = -0.8, ρ(SW, LW) = -0.5, ρ(LW, P) =69

0.5). These perturbations are developed based on prior studies Kumar et al. [2019, 2020]70

and are applied at an hourly frequency. The model state vector in both VOD and LAI71

assimilation configurations consists of the prognostic LAI variable in NoahMP. Ad-72

ditive perturbations with a standard deviation of 0.01 are applied to the model state73

vector. The assimilation configurations also directly update the leaf biomass within74

NoahMP by dividing the LAI with the specific leaf area, consistent with the Noah-MP75

physics formulation Liu et al. [2016]. A uniform input observation error standard devi-76

ation of 0.05 for the scaled VOD retrievals and MODIS LAI is employed here, based on77

the settings established in previous studies Kumar et al. [2019, 2020].78

In the VOD DA configuration, the SMAP retrievals are rescaled into the LAI space79

using a seasonally varying CDF-matching approach (Kumar et al. [2015]) using the80

MODIS LAI observations from the Global Land Cover Facility (GLCF) LAnd Surface81

Satellites (GLASS; Xiao et al. [2016]) project at the University of Maryland. This rescal-82

ing is performed as prior studies (Konings et al. [2017]; Albergel et al. [2018]) have es-83

tablished the strong correlation between VOD and vegetation indices such as LAI. The84
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SMAP VOD CDFs are computed using a time period of 2015 to 2020, whereas the85

MODIS LAI CDFs are computed across 2000-2018, which is the available time period86

of the GLASS LAI data. Since SMAP data is only available for a period of approxi-87

mately 5 years, we use a spatial sampling window of 2 pixels to increase the sampling88

density of seasonal CDF calculations. The assimilation integrations are conducted in a89

sequential manner, based on the local overpass time of the SMAP measurements.90

Text S2: Description of the SMAP VOD dataset91

SMAP (Entekhabi et al. [2010]) is a mission that employs an L-band radiometer to92

measure soil moisture. The soil moisture and VOD products from SMAP are de-93

rived through the retrieval approach that employs the first-order τ-ω radiative transfer94

model (Mo et al. [1982]). The τ-ω model estimates the top of the atmosphere bright-95

ness temperatures in the L-band as a function of the surface soil temperature, canopy96

temperature, and surface reflectivity. In this study, we use the level 2 SMAP dataset97

(SPL2SMP−E), which provides soil moisture and VOD retrievals at 9km spatial reso-98

lution through Backus-Gilbert interpolation applied to oversampled antenna measure-99

ments. This particular SMAP retrieval is obtained from the Modified Dual Channel100

Algorithm (MDCA; Chaubell et al. [2016]), which employs both the vertically and hor-101

izontally polarized brightness temperature observations to derive vegetation optical102

depth.103

Text S3: Description of the MODIS LAI dataset104

The MCD15A2H collection 6 LAI data (R. Myneni [2015]), which provides LAI esti-105

mates at 500m spatial resolution at 8-day intervals from the MODIS sensors located on106
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NASA’s Terra and Aqua satellites, is used for LAI DA integrations. The relationship107

between MODIS reflectance observations and canopy structure is exploited for devel-108

oping these LAI estimates. The 500m resolution data is aggregated to the 1km model109

resolution within the DA integrations. In addition, only data values that are designated110

as ’good quality’, which considers factors such as cloud contamination, detector signal111

quality, algorithm saturation issues (Myneni et al. [2002]), are used in the assimilation112

integrations.113

Text S4: Description of evaluation datasets114

The Atmosphere-Land Exchange Inverse (ALEXI; Anderson et al. [2007])) data em-115

ploys MODIS thermal infrared (TIR) measurements as the main diagnostic (Hain116

and Anderson [2017]) to develop daily gridded estimates of ET. In this article, we117

also use the in-situ eddy-covariance ET measurements from the OzFlux network118

(http://www.ozflux.org.au) over 9 locations in Eastern Australia (Figure S1). These119

locations are chosen based on the availability of data during the 2015 -2020 time pe-120

riod.121

Streamflow data from 194 locations in southeast Australia from the Australian Bu-122

reau of Meteorology’s Hydrologic Reference Stations (HRS) network is used for runoff123

evaluations. Using the quality control information provided in the data, only mea-124

surements that are characterized as ’good quality’ are employed in the evaluations. As125

noted in the HRS documentation, these sites represent locations largely unaffected by126

water management impacts such as reservoir operations.127
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The Australian Bureau of Meteorology’s high resolution soil moisture analysis called128

JASMIN (Joint UK Land Environment Simulator (JULES)-based Soil Moisture Informa-129

tion; Vinodkumar and Dharssi [2019]) is a 5km resolution, land surface model-based soil130

moisture analysis driven by observed meteorology. Though JASMIN estimates are also131

model-derived, we use it as a reference data as prior studies have established reason-132

able skill in comparisons against ground measurements. 18 locations over NSW from133

the ISMN network with soil moisture profile measurements, are used in the ISMN134

evaluations (Figure S1).135

Text S5: Description of evaluation metrics136

The spatial similarity of the vegetation anomalies from SMAP and the burn scar fea-137

tures from MCD64A1 is estimated using the categorical measures of Accuracy and138

kappa-coefficient. Accuracy is estimated as:139

Accuracy =
TP+TN

TP+FP+FN+TN
(2)

where TP is the total number of true positives, TN the total number of true negatives,140

FP the number of false positives, and FN the number of false negatives. A true positive141

detection is assumed when a negative SMAP VOD anomaly below a value of -0.2 is142

coincident with a burn scar detection in the MCD64A1 data. Similarly, a true nega-143

tive occurrence results when a positive VOD anomaly and no burn scar classification144

from MCD64A1 at a location is obtained. The false positive cases are obtained when145

a negative SMAP VOD anomaly is coincident with burn scar free classification from146
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MCD64A1. Conversely, when a positive SMAP VOD anomaly matches with a burn147

scar classification, a false negative case is assumed.148

The kappa coefficient (K) is computed as the ratio of the observed agreement between149

two datasets relative to the expected level of agreement. K is expressed as:150

K =
(po − pe)

(1 − pe)
(3)

where po is the same as Accuracy and pe is calculated as:151

pe =
(TP+FN)*(TP+FP)+(FP+TN)*(FN+TN)

(TP+FP+FN+TN)2 (4)

The impact of DA on runoff was evaluated using the Normalized Information Con-152

tribution (NIC) metric, which is defined for correlation (R) and Nash Sutcliffe Efficiency153

(NSE) as follows:154

NICR =
(Ra − Ro)

(1 − Ro)
(5)

NSER =
(NSEa − NSEo)

(1 − NSEo)
(6)

(7)

where the subscripts a and o represent the DA and OL integrations, respectively. The155

NIC metric provides a measure of the skill improvement as a fraction of the maximum156

possible skill improvement. Positive NIC values indicate beneficial impacts from as-157

similation and negative values suggest degradations from DA relative to OL.158
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Figure S1: Map of the modeling domain159
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Figure S2: Impact of DA on soil moisture estimates160
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Figure 1. Map of the modeling domain with the MODIS landcover map as the back-

ground. The circles represent the locations of the OzFlux stations (1 -Cumberland

Plain, 2-Riggs Creek, 3-Tumbarumba, 4-Whroo, 5- Wombat Forest, 6-Yanco). The stars

represent the location of the ISMN stations.
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Figure 2. Differences in anomaly R values (during 2015-2020) for surface soil mois-

ture and root zone soil moisture from VOD (top row) and LAI assimilation (bottom

row) relative to the OL integration, using the JASMIN soil moisture data as the refer-

ence. The warm and cool colors indicate improvements and degradations from DA,

respectively.
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