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A series of wind tunnel tests are being performed at the Unitary Plan Wind Tunnel (UPWT)
at NASA Langley Research Center to assess the validity of using computational fluid dynamics
(CFD) as a surrogate for wind tunnel testing. In order to make proper comparisons, uncertainties
in CFD results and experimental data must be well understood. The material presented
highlights the methods, assumptions, and inputs used to achieve experimental uncertainty
estimates. Results for a small subset of tunnel conditions and variables of interest from the first
test in the series, the Flow Survey Test, are highlighted and sample CFD comparisons are shown.
The bulk of the results from this work are used for comparisons in other AIAA conference
papers related to this test series.

I. Nomenclature

d> = Range statistic correction factor

MC = Local Mach number

PTC = Flow survey rake pitot pressure (psia)
ocC = Local dynamic pressure (psfa)

R = Prefix signifying range normalized by d»
R = Median range

UL = Upper Limit

UPWT = Unitary Plan Wind Tunnel

XRAKE,X = Axial location of rake probe tip (inches)
YRAKE,Y = Lateral location of rake probe tip (inches)
ZRAKE,Z = \Vertical location of rake probe tip (inches)

II. Introduction

In any experiment, understanding the magnitude of uncertainty in values of interest is critical to drawing meaningful
conclusions or confirming the efficacy of the study. When the study itself revolves around comparison of computationally
driven vs. experimental results, the understanding of uncertainty in the quantities being compared becomes even more
vital. This paper focuses on the experimental uncertainty quantification aspect of a wind tunnel test performed in the
UPWT. The first in a series of several experiments using different model types and configurations, this Flow Survey Test
is reminiscent of a tunnel characterization and calibration test that gathers test-section characteristics such as boundary
layer profile/thickness and free-stream flow variables (i.e. pressure, temperature, Reynolds number, velocity, flow
uniformity, and flow angularity) at various stations and tunnel conditions. Not only does this data serve as an initial
comparator to “empty tunnel” CFD, it also provides data that can be used as boundary conditions in subsequent CFD
simulations. The distinct approaches to determining random and systematic uncertainty estimates are presented, both of
which are relevant aspects of uncertainty when comparing experimental results to CFD. Results for a small subset of

*Data Engineer, AITAA Member.
Senior Research Engineer, 30 Research Dr., AIAA Senior Member.



tunnel conditions and variables of interest are highlighted as examples of what this analysis provides.

II1. Description of Flow Survey Experiment

The Langley UPWT is a closed-circuit continuous flow supersonic pressure tunnel. The flow survey test acquired
data throughout the UPWT’s 4-foot by 4-foot by 7-foot long test section measuring pressures, temperatures, dew point,
and boundary layer profiles at 48 distinct tunnel conditions. A detailed description of this facility is presented in
Reference [[]]. Tunnel conditions are defined by different combinations of set points for Mach number (from Mach 2.3
to 4.6), Reynolds number (from 1 to 5 million/ft), total temperature (125 to 150°F) and total pressure (700 to 11000
psfa). A flow survey rake and boundary layer rakes were used to gather flow field data. The flow survey rake spanning
the height of the test section was mounted to an articulating sting, and boundary layer rakes were mounted to the test
section side walls. Facility pressure and temperature are measured in the settling chamber and serve as a reference for
many test section conditions. Several other measurements such as wall pressures, rake body pressures, and angles were
used to identify facility status and model attitude. Facility and model measurements were used to calculate local free
stream conditions such as Mach number, Reynolds number, dynamic pressure, and flow angularity.

A. Model Descriptions

The flow survey rake shown in Figure [T consisted of a vertical array of nineteen 20° half-angle cone-tipped five-hole
probes spaced two inches apart. Probe number 1 was located at the top of the rake, and probe 19 was at the bottom of the
rake. The top and bottom rake probes were 18 inches above and below the tunnel centerline, respectively. This resulted
in the top and bottom probe being positioned six inches from the test section ceiling and floor. Static pressure probes
offset on the survey rake were collocated with probes 1, 5, 11, 15, and 19. Five-hole probes in the array were replaced by
double-shielded thermocouple probes to perform the temperature survey. The rake was mounted to an articulating sting
capable of traversing the rake axially from the front to the rear of the test section and laterally across the test section
width. This provided cross-sectional measurements of the flow at different stations along the length of the test section.
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Fig. 1 Flow survey rake (probes numbered 1-19, from top to bottom).
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B. Critical Model/Facility Measurements and Instrumentation

Facility and model pressure measurements were primarily obtained using an electronically scanned pressure system
(ESP) with digital temperature compensation. ESP modules were tied to a common reference of a hard vacuum (pump
maintained vacuum to 5-10 millitorr) so the ESP readings were in absolute pressure units. Different ESP module ranges
(5-, 15-, 30-, and 100-psid) were used for different model and facility locations to minimize necessary range (and thus,
uncertainty). In-situ ESP calibrations were performed regularly using the system’s pressure calibration units to mitigate
the effects of thermal drift.

Plenum pressure was measured with a 150-psia range Ruska Series 6000 quartz manometer and plenum total
temperature was measured with an Instrulab Platinum RTD, model 4202C. Survey rake temperatures were measured
with standard type-K thermocouples referenced to a Kaye Universal Temperature Reference (UTR) RTD.

C. Test Description

A comprehensive description of the UPWT flow survey test is presented in Reference [2]]. Testing was conducted
with the flow survey rake positioned at different lateral locations within the test section, with YRAKE set points varying
out to 12 inches to the left or right of centerline. Data were acquired with the survey rake at a variety of Mach and
Reynolds number combinations. Test section Mach numbers ranged from 2.3 to 4.6, and Reynolds numbers ranged from
1 million per foot to 4.5 million per foot.

A run was defined as an axial sweep of the survey rake traversing through a series of XRAKE set points, conducted at
a constant Mach and Reynolds number. Data were acquired with the rake probe axial locations varying from XRAKE=0
to 60 inches along the test section. The test section entrance is at XRAKE=0. The measurement center of the test
section is located axially at XRAKE=30. This is where most wind tunnel models are positioned for data acquisition. At
each flow condition prescribed in the test matrix a block of runs were acquired, consisting of axial sweeps performed
with the survey rake at different lateral stations in the test section.

A repeat run was typically acquired at the end of a block setting for a particular flow condition. The vast majority of
repeat runs were acquired with the survey rake positioned in the center of the test section at YRAKE=0. There was also
a smaller subset of long term repeat data acquired throughout the test. Long term repeats were separated by at least a
week or more of testing. This paper will primarily focus on the short term repeatability results.

D. Subset of conditions and variables

With so many variables of interest and conditions involved in this test, it is impossible to display thorough results. To
give a sample of results that were produced with the methods that will be described, three of the 48 distinct conditions
tested throughout the flow survey are used as a subset of representative results. Set point parameters for each selected
condition are listed in Tablem Similarly, a subset of variables of interest were selected and are described in Table@

Condition ID | PT (psfa) TT (°F) Mach Re (10° /ft)
6 2280.5 125 2.4 3
24 5418.6 125 35 4
36 7420.7 150 4.6 3

Table 1 Condition numbers and associated set point parameters.

Variable of Interest | Units Description

PTC psia Flow survey rake pitot pressure
MC - Local Mach number

ocC psfa Local dynamic pressure

Table 2 Description of variables of interest.



IV. Flow Survey Experimental Uncertainty Quantification

An uncertainty estimate in a measurement or calculated quantity identifies an interval about the quantity within
which the true value is likely to fall with a defined probability (typically 95%). An uncertainty interval is a critical
component of any stated result since the true value of a quantity is never an absolute known. Experimentalists and CFD
modelers must do their best to understand and estimate the potential sources of uncertainty that can creep into their
measurement- and computationally-derived results.

The experimental uncertainty was separated into two categories: random and systematic. Random uncertainty was
quantified using direct analysis of repeats, a statistical approach using derived values of interest from repeat data acquired.
This direct analysis was preferred over random uncertainty propagation techniques to eliminate the risk of improper
handling of measurement correlations in the propagation simulation, which can lead to drastic over- or under-estimation
of random effects.[3]] The term "repeatability” is used interchangeably with random uncertainty. Systematic uncertainty
was determined via a first-order Monte Carlo propagation, in which uncertainty was propagated from elemental source
estimates and assumed distributions to the derived variables of interest. Systematic and random uncertainty estimates
were combined according to their probability distributions to obtain a total uncertainty estimate for variables of interest.

In addition to the purely probabilistic approach described above, a partially probabilistic method was performed
via second-order Monte Carlo propagation. Systematic uncertainties formerly treated probabilistically were treated as
epistemic uncertainties (with unknown probability distributions).[4] This approach resulted in the development of a
family of cumulative distribution functions (CDFs), one CDF for each set of epistemic inputs, reduced to a “probability
box” or “p-box” where upper and lower bounding CDF curves define the uncertainty of the variable of interest.

A. Experimental Repeatability

Results were determined from analyzing the repeat data on values of interest. Repeat runs were acquired at virtually
every test condition throughout the duration of this test. For each group of repeat runs, the ranges and averages were
computed for every set of repeat data points. Repeat runs were typically acquired near the end of a block of runs
conducted at the same Mach and Reynolds number.

After the first week of testing, it was discovered that small pieces of tape approximately 0.008 inches in thickness,
which had been placed on the rake body and the west test section door as targets for optical measurements, were creating
small disturbances and asymmetries in the lateral flow. The targets were subsequently removed for the remainder of
the test, and it was therefore decided that the runs influenced by tape targets would be excluded from the repeatability
analysis. Within each group of repeat runs, the range (maximum value minus the minimum value) of each measured
variable of interest was computed for the repeat data points at every XRAKE set point in the sweep. The ranges were
then normalized by the bias correction factor d,, which is used to convert range into an estimate of the standard deviation.
The value of d; is based on the group size, and for group sizes of two dy = 1.128.

Once all of the repeat run sets were extracted from the test data, normalized ranges were computed for every
measured parameter in each group of repeat data points acquired at each XRAKE set point in the run. The ranges were
inspected to determine their sensitivity to test section Mach and Reynolds number. There was no significant effect of
Reynolds number on the repeatability of any measured variable of interest. Therefore, ranges computed at the same
nominal Mach number were pooled together, and the overall estimates of repeatability were computed as a function of
Mach. In order to visualize the variation in repeat data in the test section, the average range was computed for each rake
probe measurement at each XRAKE set point. This produced a grid of average ranges that cover the vertical test section
space from -18 to +18 inches (ZRAKE) and the axial space in the test section (XRAKE) from 0 to 60 inches. Figure E]
shows the averaged normalized ranges of local Mach (MC) measured with the survey rake probes, for the three nominal
test Mach numbers listed in Table[I} The x-axis represents the axial position along the length of the test section, the
y-axis represents vertical position in the test section, and the contours represent magnitudes of the average normalized
range in this plane, based on the 19 local Mach probe measurements acquired at axial test section locations between 0
and 60 inches. The dashed line at XRAKE=30 indicates the axial center of the test section, where the measurement
center for most wind tunnel models are located for testing. Note that the color scale is the same for all three plots in
Figure 2]

In the core flow region (approximately ten inches above and below the tunnel centerline), the magnitude of the
averaged MC ranges increased slightly as nominal Mach number increased. Thus, the random uncertainty of local Mach
measurements for nominal test section Mach numbers of 2.4 was slightly less than at nominal Mach numbers of 4.6 (see
Table[3] In general, the ranges computed from repeat MC data acquired with probes 5 through 15 (ZRAKE=+10 to -10
inches) were small values. Contour levels equivalent to an average normalized range of 0.001 were highlighted with



white text labels in Figure2)in order to more easily visualize the slightly different levels of variation in the MC repeat
data seen in Figure[2c] Comparing the contour plots for Mach 2.4 (Figure [2a) and Mach 4.6 (Figure[2¢), it is evident
that the maximum ranges were higher at nominal Mach numbers of 4.6.

While there were not significant axial variations in the random uncertainty for local Mach number probe measurements,
there were vertical variations in the uncertainties, particularly at higher nominal Mach numbers. This was observed in
the increased magnitude of the averaged ranges of the outer probe data, at the top and bottom of the survey rake, as the
outer probes began to be impacted by the boundary layer at the top and bottom of the test section. This effect became
more pronounced as the boundary layer thickness increased with the nominal test section Mach number. For Mach 2.4
(Figure [2a] there was a narrow region approximately 16 to 18 inches above the tunnel centerline (6 to 8 inches away
from the ceiling) with average range values approaching 0.002. As the nominal Mach increased to 3.5 in Figure [2b]
this region of higher values became slightly more prominent across the upper test section. At Mach 4.6 (Figure [2c))
there were significantly higher levels of variation in repeat measurements along the length of the ceiling and floor, with
average range values as high as 0.003, extending several inches into the test section and impacting these outer rake
probe measurements.

Similar axial and vertical test section trends were seen, to varying degrees, in the repeatability of other measured
parameters, as illustrated in Figures [3|and 4] for PTC and QC measurements respectively. These results indicate that the
there are different levels of random uncertainty in the test section. The uncertainty due to repeatability is highest near
the test section ceiling and floor, where the boundary layer affects the measurement quality (rake probes 1-4 and 16-19).
Meanwhile the repeatability uncertainty is lowest in the center of the test section (probes 5-15, ZRAKE=+10 to -10
inches) where wind tunnel testing is conducted and model data are measured.

For this particular test, the group size of the applicable short term repeat runs was nearly always two (n=2).
Consequently, histograms of the theoretical range distribution could be computed and compared with histograms of the
actual normalized ranges. If the actual histogram compares favorably to the theoretical histogram, then one can assume
the ranges are normally distributed. The theoretical range distribution is converted to a histogram by integrating the
theoretical distribution over the same range intervals in the actual distribution [5]. An example is presented in Figure 3]
for local Mach probe data at a nominal Mach number of 3.5. The gray bars in Figure [5| represent the normalized ranges
for MC measurements for probes 5 through 15. These data compare favorably to the theoretical range distribution
represented by the solid red line. The vertical magenta line represents the upper control limit for ranges computed as
shown in equation [I] and it covers over 99% of the ranges. These two observations suggest it is reasonable to assume a
normal distribution for these pooled ranges. A range histogram plot for MC measurements at probe 10 (RMC10) is also
shown in Figure[6] The MC range histogram for a single probe is somewhat coarser, but the trends are similar and the
upper limit covers all of the ranges. The overall standard deviation for each measured parameter was computed using
the median absolute deviation of the pooled ranges (probes 5-15) for each nominal Mach number, as shown in equations
[Zland[3] The two-sigma random uncertainties for the selected parameters of interest are presented in Table[d] Separate
standard deviations were also computed for individual probes by applying these equations to the ranges for each probe
and nominal Mach number, resulting in an estimate of the random uncertainty for each individual probe variable.

UL = 3.864 xR (1)
MAD = median(|R — R|) 2
o =MAD = 1.4826 3)
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Fig. 2 Contours of averaged ranges of measured probe MC values at YRAKE=0.
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B. Systematic Uncertainty Propagation via Monte Carlo Method

A purely probabilistic approach was used to estimate and propagate systematic uncertainties with assumed error
distributions on multiple uncertainty sources using a first-order Monte Carlo uncertainty propagation. Uncertainty
sources considered in this analysis were limited to instrumentation system components. Table [3]lists the elemental
systematic uncertainty estimates and the error population parameters applied in the Monte Carlo simulation.

Measurement device Critical measurements Units | Distribu- Distribution parameters
tion

Ruska Series 6000 Quartz | Plenum total pressure psia Gaussian u=0,0: see Figure

Manometer

Platinum RTD Instrulab 4202C | Plenum total temperature °R Gaussian u=0,0=0.135

Edgetech Dew Master Facility dew point °F Gaussian u=0,0=0.18

Type K thermocouple Probe temperature °F Gaussian pu=0,0=1.98

Kaye UTR RTD TC temperature reference °F Gaussian pu=0,0=0.09

Druck 15-psia Tunnel wall pressures psia Gaussian u=0,0 =0.006

ESP, 5-psi Tunnel wall, rake body, static probe | psia Gaussian p=0,0=0.0025
and 5-hole cone probe surface pres-
sures

ESP, 5-psi PCU Pressure calibration unit, 5-psi mod- | psi Gaussian u=0,0 =0.0005
ules

ESP, 15-psi 5-hole cone probe and boundary layer | psia Gaussian p=0,0=0.0075
probe total pressures

ESP, 15-psi PCU Pressure calibration unit, 15-psimod- | psi Gaussian p=0,0=0.0015
ules

ESP, 30-psi Tunnel wall pressures psia Gaussian pu=0,0=0.015

ESP, 30-psi PCU Pressure calibration unit, 30-psi mod- | psi Gaussian u=0,0=0.003
ules

ESP, 100-psi Tunnel wall pressures psia Gaussian u=0,0=0.05

ESP, 100-psi PCU Pressure calibration unit, 100-psi | psi Gaussian u=0,0=0.01
modules

Table 3 Elemental systematic uncertainty estimate parameters.

150psia Ruska 6000 Uncertainty

a, psi

@ = 0.0015%FS + 0.005%Rdg

0 30 60 90 120 150

Pressure, psia
Fig.7 150-psia Ruska 6000 uncertainty.
Excitation voltages, signal conditioners and analog-to-digital converters used in the measurement systems had

negligible uncertainty contributions relative to the instruments listed in Table 3| Each ESP pressure calibration unit
(PCU) uncertainty was considered fully correlated among all common-range modules and measurement channels since
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simultaneous calibrations were applied. The Kaye UTR thermocouple reference was also considered fully correlated
among all thermocouple readings obtained simultaneously at a given test point.

A set of seed data, representing a group of nominal measurement values at wind tunnel conditions of interest,
was used in conjunction with the elemental uncertainty estimates to initialize the Monte Carlo simulation. For each
measurement in the seed data set, random draws from appropriate random number populations (described by the
distributions and parameters in Table[3)) were performed for all sources impacting the measurement. This procedure
simulated measurement errors, perturbing the set of seed data. The perturbed data were used in the standard facility
data reduction scheme to calculate results of interest. This procedure was performed several thousand times until
convergence was achieved to produce a large population of results of interest, for which Gaussian distributions resulted
and 2-sigma, 95% coverage intervals were defined as the systematic uncertainties of the outcomes. Results from this
first-order MC simulation for selected conditions and variables of interest are shown in Table [4l

C. Total Experimental Uncertainty
Figure [§]depicts the two routes of uncertainty estimation for random and systematic components, and the combining
of those results to achieve total experimental uncertainty estimates.

Monte Carlo simulation loop

estimates of variables

Systematic uncertainty |
estimates — distribution | . = = 3
| based sampling ) : Systematic uncertainty

of interest

1 Data reduction |
(- simulation i
i " \ g

Histogram

T
1
1
1
1
1
1
1
1
1
1
1

Repeat data

" ) Data reduced [ statistical i DII’E.Ct randc.am
Data E : b uncertainty estimates
: to variables analysis of | ) 5
acquired 3 ! of variables of interest
\ J | ofinterest | | repeats 5 | /

1 Uncertainty 1
* (95%)

Fig. 8 Purely probabilistic total uncertainty estimation flow chart.

By nature, random uncertainty exhibits a Gaussian distribution. The systematic uncertainty propagation resulted in
Gaussian distributions for all variables of interest as well, so combining the two uncertainty components was a very
straightforward root-sum-square. An example summary of random, systematic and total uncertainty results for the
subset of conditions and variables of interest are shown in Table 4l

Condition | Variable Nominal 2-0 Systematic | 2-c Random | 2-00 Total
ID of Interest | Value Uncertainty Uncertainty Uncertainty
6 MC 2.40 0.0023 0.00079 0.0025

24 MC 3.50 0.0023 0.00079 0.0024

36 McC 4.60 0.0045 0.00156 0.0048

6 PTC 8.53 psia 0.015 psi 0.0083 psi 0.017 psi

24 PTC 7.88 psia 0.015 psi 0.0049 psi 0.016 psi

36 PTC 4.29 psia 0.015 psi 0.0053 psi 0.016 psi

6 ocC 627.3 psfa 1.05 psf 0.589 psf 1.206 psf

24 ocC 600.0 psfa 1.15 psf 0.369 psf 1.203 psf

36 ocC 330.5 psfa 1.19 pst 0.395 psf 1.251 psf

Table 4 Total uncertainty results for variables of interest in UPWT test section.
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1. Second-order Monte Carlo Analysis

A purely probabilistic approach such as the first-order Monte Carlo can be useful for making simple uncertainty
assessments, but there is risk in doing so. Many uncertainty estimates that are not well-defined require assumptions about
the error distributions they represent in order to perform the first-order uncertainty propagation method. Instrument
manufacturers provide specifications that include accuracy levels, but there is a general lack of standards in how those
uncertainty levels are defined and quoted. Some manufacturers provide a single accuracy value while some provide
detailed source breakdowns. Rarely are error distributions or interpretations of accuracy stated in a specification
document, making assumptions inevitable. Assumptions of distributions can produce misleading results in a fully
probabilistic approach, as described in Walker, et.al.[4]]

Alternatively, a mixed uncertainty model can be created in which uncertainties formerly treated as systematic are
treated as epistemic, or uncertainty arising from lack of knowledge (such as unknown distributions of uncertainty
sources).[6] Instead of making assumptions about the distributions and treating the uncertainties purely probabilistically,
an interval bounding each uncertainty source can be defined. A nested-loop Monte Carlo propagation can be used which
samples these epistemic uncertainty sources via Latin hypercube sampling (LHS) in the outer loop before performing a
high-iteration inner loop where the random uncertainty is applied. The result of each outer loop iteration is a CDF
representing the set of outcomes of variables of interest from the inner loop propagation. Performing the outer loop
many times over produces a family of CDFs, the upper and lower bounds of which can be used to form a p-box, a useful
tool in uncertainty quantification and risk assessment. A flow chart of this method is depicted in Figure[9]

Outer loop

i i Empirical CDF
uncertainty sources — Latin mpirica

( Epistemic treatment of systematic
hypercube sampling

Inner loop
Random uncertainty

sources — Gaussian

'
'
'
1
'
'
|
1
! distribution sampling

»

i
i

|

1 Data reduction

| simulation

i

i

Uncertainty

(95%)

Fig. 9 Partially probabilistic total uncertainty estimation flow chart[4]

This second-order Monte Carlo propagation was used on the UPWT Flow Survey data to supplement the information
provided by the first-order analysis. With both types of results available, those performing CFD comparisons can select
which treatment of the systematic uncertainty sources best fit the scope of the comparison being made. Computation
time was not a limitation for this straightforward data reduction scheme, so 500 outer loop iterations were run nested
with several thousand inner-loop iterations. P-box results for Conditions 6, 24 and 36 for PTC, MC, and QC are shown

in Figure[I0]
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As it pertains to this CFD comparison study, ideally both the experimentally derived value’s uncertainty bounds and
CFD outcome’s uncertainty overlap one another and mutually contain the true value of interest. To date, computational
flow predictions have been run using the CFD codes FUN3D, Overflow, and USM3D. Predictions were also obtained
using FUN3D with an adaptive grid.[7] The uncertainty quantification for the CFD results was not yet finalized at the
writing of this paper. However, comparison plots of CFD and wind tunnel data with corresponding 2-sigma estimated
experimental uncertainty bars are presented in Figures [[T]and[T2]for flow conditions 24 and 36, respectively. In these
plots, the black circles represent wind tunnel data, and the various colored solid lines represent CFD results obtained
with different flow solvers. All data are presented at the test section center (X=30 in., Y=0 in.). The horizontal error
bars accompanying the wind tunnel data points represent the total 2-sigma uncertainties computed as described in this

paper and summarized in Table[d At condition 24 (Mach 3.5) shown in Figure[TT), the FUN3D with adaptive grid and

(c) Condition 36

Fig. 10 Probability boxes for selected conditions and variables of interest.

V. Comparison of CFD and Flow Survey Experimental Results
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USM3D predictions for pitot pressures (PTC) at test section heights from -10 to +10 inches tended to compare most
favorably to the wind tunnel data. All four CFD results for Mach (MC) were very similar to one another in this same
region. Towards the top and bottom of the survey rake, there are greater differences between CFD predictions where
the flow around the rake begins to be impacted by the test section boundary layer. The wind tunnel data for probes 7
and 8 appeared to diverge from the trends in the rest of the survey rake measurements at this Mach number. This was
likely due to some non-uniformity, of unknown origin, in the flow in the Y=0 plane. The non-uniformity disappears as
one moves away laterally from the Y=0 plane. The Mach and pressure profiles for condition 36 (Mach 4.6), shown in
Figure[T2] were quite different from those at Mach 3.5. There appears to be slightly more scatter between the various
CFD predictions, which also coincides with the larger experimental uncertainties computed for this Mach number. This
might suggest that this flow condition is more complex or challenging to model. Note that three Overflow solutions
were run at this condition, each with different grid fineness and turbulence model settings. At this flow condition, the
solver Overflow (‘OVERFLOW 015°) appeared to compare the closest to experiment.

Test Condition 24 Mach =3.503 Re/ft =4.00e+06 TT =585 °R
X=30in Y=0in

HS4 Run 850 HS4 Run 850

FUN3D FUN3D
FUN3D_ADPT FUN3D_ADPT
OVERFLOW_011 OVERFLOW_011
USM3D USM3D

Pitot Pressure Mach Number
T T T T

20 T T

16

12

-12

-16

-20 I I I I I I I I I I I I I I
7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40 8.50 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56

PTC, psia MC

Fig. 11 Comparison of experimental and CFD local pressure and Mach profiles for condition 24 at X=30 and
Y=0.
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Fig. 12 Comparison of experimental and CFD local pressure and Mach profiles for condition 36 at X=30 and

Y=0.

Test Condition 36 Mach = 4.631 Re/ft =3.00e+06 TT =610 °R
X=30in Y=0in

-4 Run 920

FUN3D
FUN3D_ADPT
OVERFLOW_010
OVERFLOW_011
OVERFLOW_015
USM3D

HS4 Run 920

FUN3D
FUN3D_ADPT
OVERFLOW_010
OVERFLOW_011
OVERFLOW_015
USM3D

Pitot Pressure
20 T T

O

16

12

-12

-16

e

Mach Number
T T

220 I I I I I I I

4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40

PTC, psia

15

4.58 4.60 4.62
MC

4.64

4.66

4.68



VI. Conclusion

The primary purpose of this paper was to provide documentation of the experimental uncertainty quantification
approach for the UPWT Flow Survey test. Random and systematic uncertainty quantification methods were described and
results were shown for a subset of the test conditions and variables of interest. Random uncertainty was evaluated directly
from repeat data acquired for several variables of interest. Systematic uncertainty was determined via propagation using
two distinct treatments of instrumentation-based measurement uncertainty for future flexibility in experiment-to-CFD
comparisons. Several other conference papers from the “Evaluation of CFD as a Surrogate for Wind-Tunnel Testing’
series used the results from this analysis for experimental data comparisons to UPWT empty tunnel CFD. It is expected
that the remaining tests in this series will use a similar approach to experimental uncertainty quantification, though
additional sources of uncertainty such as tunnel calibration, flow angle corrections, and force-balance corrections will
be applied along with instrumentation-based measurement uncertainty.
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