

Modeling Electrolytic Conversion of Metabolic CO₂ and Optimizing a Microfluidic Electrochemical Reactor for Advanced Closed Loop Life Support Systems

> Jesus A. Dominguez (Jacobs JSEG), Brittany Brown (NASA Marshall) Brian Dennis (UTA), Wilaiwan Chanmanee (UTA) Lorlyn Reidy (Jacobs JSEG), Peter Curreri (NASA Marshall), Ellen M. Rabenberg (NASA Marshall), Kenneth A. Burke (NASA Glenn),

O_2 recovery from metabolic CO_2 at ISS

BASELINE EXPLORATION OXYGEN RECOVERY ARCHITECTURE

Current architecture via Sabatier approach coupled with water electrolysis

Alternative architecture via electrolytic reduction of CO_2 to O_2 and C_2H_4

ICES-2021: Paper 74

Slide 1

O_2 recovery from metabolic CO_2 via selective electrolysis

 $2CO_2 + 8H_2O \to C_2H_4 + 6H_2 + 6O_2$

- The model has the foundation and rigor to simulate the Engineering Design Unit (EDU) electrochemical (EC) process and optimize the design and operation of the EDU allowing efficient metabolic CO_2 reduction to C_2H_4 generating H_2 and O_2 as byproduct at ambient conditions.
- The EDU is installed in a test stand at NASA Marshall Space Flight Center (MSFC) equipped with all the instrumentation and sensors that will allow fully validation of the model including determination of the kinetics parameters for the key EC reactions.

EDU's test stand

EDU's model domains

EDU's material and flow domains

EDU's model fundamentals Multi-physics approach

- Electronic charge balance (Ohm's law)
- Ionic charge balance (Ohm's law)
- Concentration-dependent Butler-Volmer and Tafel charge transfer kinetics
- Flow distribution in gas and liquid channels (Navier-Stokes)
- Flow in the porous GDEs (Brinkman equations)
- Mass balances in gas phase in both gas channels and porous electrodes (Maxwell-Stefan diffusion and convection)
- Evaporation and condensation of water on the GDLs and gas channels
- Temperature (energy balance equation) via three types of heat transfer mechanisms,
 - 1) conductive within EDU's components,
 - 2) convective within the channel flows,
 - 3) radiative between EDU surface and ambient
- Heat generation/source via Joule heating effect.

EDU's model fundamentals

<u>E</u>⁰(V)

-0.35 0.00

-1.23

-1.58

-1.18 -0.40

-0.83

-2.41

Acid Electrolyte Cathode $2CO_2 + 12H^+ + 12e^- = C_2H_4 + 4H_2O$ $12H^+ + 12e^- = 6H_2$ Anode $12H_2O = 24H^+ + 24e^- + 6O_2$ Total $2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$
Alkaline Electrolyte Cathode $2CO_2 + 8H_2O + 12e^- = C_2H_4 + 12OH^-$ $12H_2O + 12e^- = 6H_2 + 12OH^-$ Anode $12OH^- = 6H_2O + 12e^- + 3O_2$ Total $2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$

Acid Electrolyte	<u>E</u> º (V)
$4H^+ + 4e^- = 2H_2$	0.00
Anode 2H ₂ O = 4H ⁺ + 4e ⁻ + O ₂	-1.23
Total $2H_2O = 2H_2 + O_2$	-1.23
Alkaline Electrolyte Cathode $4H_2O + 4e^- = 2H_2 + 4OH^-$ Anode $4OH^- = 2H_2O + 4e^- + O_2$ Total $2H_2O = 2H_2 + O_2$	-0.40 -0.83 -1.23
	Acid Electrolyte Cathode $4H^+ + 4e^- = 2H_2$ Anode $2H_2O = 4H^+ + 4e^- + O_2$ Total $2H_2O = 2H_2 + O_2$ Alkaline Electrolyte Cathode $4H_2O + 4e^- = 2H_2 + 4OH^-$ Anode $4OH^- = 2H_2O + 4e^- + O_2$ Total $2H_2O = 2H_2 + O_2$

EDU's model fundamentals

<u>E</u>[♀](V)

-0.35 0.00

-1.23

-1.58

-1.18

-0.40

-0.83

-2.41

⁴ with H ₂ as byproduct	Acid Electrolyte Cathode $2CO_2 + 12H^+ + 12e^- = C_2H_4 + 4H_2O$ $12H^+ + 12e^- = 6H_2$ Anode $12H_2O = 24H^+ + 24e^- + 6O_2$ Total $2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$
CO ₂ Conversion to C ₂ H	Alkaline Electrolyte Cathode $2CO_2 + 8H_2O + 12e^- = C_2H_4 + 12OH^-$ $12H_2O + 12e^- = 6H_2 + 12OH^-$ Anode $12OH^- = 6H_2O + 12e^- + 3O_2$ Total $2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$

Acid Electrolyte	<u>E</u> ⁰ (V)
$4H^+ + 4e^- = 2H_2$	0.00
Anode 2H ₂ O = 4H ⁺ + 4e ⁻ + O ₂	-1.23
Total $2H_2O = 2H_2 + O_2$	-1.23
Alkaline Electrolyte Cathode $4H_2O + 4e^- = 2H_2 + 4OH^-$ Anode $4OH^- = 2H_2O + 4e^- + O_2$ Total $2H_2O = 2H_2 + O_2$	-0.40 -0.83 -1.23
	Acid Electrolyte Cathode $4H^+ + 4e^- = 2H_2$ Anode $2H_2O = 4H^+ + 4e^- + O_2$ Total $2H_2O = 2H_2 + O_2$ Alkaline Electrolyte Cathode $4H_2O + 4e^- = 2H_2 + 4OH^-$ Anode $4OH^- = 2H_2O + 4e^- + O_2$ Total $2H_2O = 2H_2 + O_2$

Slide 9

EDU's model fundamentals Electrochemical reaction domains

EDU's model fundamentals Cathode GDL

EDU's model fundamentals Anode GDL

EDU's model fundamentals Electrochemical CO₂ reduction approach

- The exact microstructure of the CL is not well known.
- Many have argued that the high current densities achievable with GDEs is due to a high concentration of CO₂ at the gas/solid interface overcoming the low solubility of CO₂ in water.
- Recent experimental and theoretical work have demonstrated the importance of water and hydrated cations on the elementary processes involved in CO₂R superseding the role of CO₂ gas phase within the GDLs.
- Therefore, researchers have proposed that it is necessary for the catalyst to be covered with electrolyte in order to be active. This means that although CO_2 is supplied to the GDE from the gas phase, the reactant at the catalyst site is still dissolved CO_2 .

- The performance of a GDL greatly depends on the local environment within the CL and the balance between transport phenomena and reaction kinetics.
- Based on the capillary pressure, CL pore-size distribution and their wettability, the pores can be a) flooded, b) wetted or c) dry.

EDU's model fundamentals Water phase change and transportation on GDLs

Alkaline Electrolyte			
$2CO_2 + 8H_2O + 12e^- = C_2H_4 + 12OH^1.18$ $12H_2O + 12e^- = 6H_3 + 12OH^0.40$			
Anode 12OH ⁻ = $6H_2O + 12e^- + 3O_2$	-0.83		
Total $2CO_2 + 8H_2O = C_2H_4 + 6H_2 + 6O_2$	-2.41		

8 moles of water consumed on the cathode 6 moles of water generated on the anode

- A capillary pressure formulation of Darcy's law is used to model the transport of liquid water in the cathode:
 - Saturation level, *s*, is dependent variable
- The liquid water flux, j_s , is defined as

$$j_s = -\frac{\kappa}{\mu V_w} \frac{\partial p_c}{\partial s} \nabla s$$

 μ = viscosity and V_{w} = molar volume of liquid water

 κ = permeability and $\ p_c$ = capillary pressure, both depend on s

 An evaporation-condensation rate expression is added as source term to account for the liquid water-vapor phase transfer

How much water is condensed within the GDL?

1	variable	Flux	Continuity equation
	$s j_s =$	$-(\kappa/\mu V_{\rm w})(\partial p_{\rm c}/\partial s) abla s$	$\nabla \cdot j_s = S_s$
	eva	poration/condensation sourc	e
	$S_{\rm ec} = \begin{cases} \gamma_{\rm e} C(x_{\rm Hz}) \\ \gamma_{\rm e} C(x_{\rm Hz}) \end{cases}$	$_{\rm O} - x_{\rm sat}$) if $x_{\rm H_2O} < x_{\rm H_2O}$	$_{\rm sat}$ (evap.)
	$\gamma_{\rm c} C(x_{\rm H_2})$	$(O - x_{sat})$ if $x_{H_2O} > x$	$_{\rm sat}$ (cond.)
	$\gamma_{\rm e} = k_{\rm e} a_{\rm lg} s_{\rm red}$	Water $x_{\rm sat}$	$_{\rm t} = P_{\rm sat}/P_{\rm sat}$
	$\gamma_{\rm c} = k_{\rm c} a_{\rm lg} (1 - s)$	condensation/evapora	ation
		$\ln \left \frac{T_{\text{sat}}}{1 \text{ Pa}} \right =$	$= 23.1963 - \frac{3810.44 \mathrm{K}}{T - 46.13 \mathrm{K}}$
	$\left. k_{\rm e} \right\} = \sqrt{\frac{RT}{X}} \times$	5×10^{-4} (water evaporation	on/condensation
	$k_{\rm c} \int \sqrt{2\pi M_{\rm w}}$	(6×10^{-3}) transfer coefficie	ent)
	$a_{ m lg} \approx 2 { m m}^2 / { m cm}^3$	(liquid, goo interfacial area d	
		(ilquid–gas interracial area d	lensity prefactor)
	$s_{\rm red} = \frac{s - s_{\rm im}}{1 - s_{\rm im}} \ ($	reduced liquid water saturati	ion)
	$s_{\rm im} = s_{\rm C} = 0.12$	(saturation at ano (immobile liquid water satu	de GDL/channel interface)

EDU's model outcome Electrical potential

holders no insulated

EDU's model outcome Mass concentration

Component mass concentration

EDU's model outcome Flow velocity

EDU's model outcome Temperature and Joule heating

EDU's model outcome Water (liquid/vapor) transport

Water vapor on channels and GDLs

Water liquid on GDLs

Slide 19

Next: Model Validation

Estimation of natural convection coefficient via least-square temperature error minimization (Levenberg–Marquardt algorithm) For a given:

- EDU dimensions and components
- Electrolyte type
- GDLs (cathode and anode) type

	Operating Condition	Tests	Comments
1	Cathode/anode inlet flow	3	Range extrapolated small-cell operating conditions. Maximum range corresponds to 1CM
2	Cathode/anode inlet backpressure	2	Upper range might be increased.
	Electrolyte inlet flow	2	Range extrapolated small-cell operating conditions.
3	Electrolyte Molarity	2	Range based on experimental conditions used in small cell.
4	Electrolyte temperature	2	Lower range limited to electrolyte freezing point.
5	Cell voltage	3	Range based on experimental conditions used in small cell.
		144	

Experiment test matrix Correlation evaluation via Independent Component analysis (ICA)

Acknowledge

- Special thanks to Dr. Enrique Jackson for his support and assistance on the use of a high-performance computational system (512 MB of RAM) that has allowed the authors to run the model in hours rather than days.
- We would like to thank Mr. Max McCall for his valuable contribution on the MFECR's mechanical design and generation of the 3D model domains.
- We are also thankful to Matthew Russell, Allison Burns, Samantha Hall, and Christian Coris for their contribution on the development and implementation of the model during their internship at MSFC.

NASA Marshall Space Flight Center (MSFC)

50th International Conference on Environmental Systems 12-14 July 2021 ICES-2021: Paper 74

THANKS!! Questions?