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O2 recovery from metabolic CO2 at ISS

Current architecture 

via Sabatier approach 

coupled with water 

electrolysis 

Alternative architecture via 

electrolytic reduction of 

CO2 to O2 and C2H4

ICES-2021: Paper 74
Slide 1



O2 recovery from metabolic CO2 via selective electrolysis 
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• The model has the foundation and rigor to simulate the

Engineering Design Unit (EDU) electrochemical (EC) process and

optimize the design and operation of the EDU allowing efficient

metabolic CO2 reduction to C2H4 generating H2 and O2 as

byproduct at ambient conditions.

• The EDU is installed in a test stand at NASA Marshall Space

Flight Center (MSFC) equipped with all the instrumentation and

sensors that will allow fully validation of the model including

determination of the kinetics parameters for the key EC reactions.

EDU’s model scope
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Original EDU Design

Assembled EDU’s 

elements 

EDU’s test stand

EDU installed in test stand Test stand
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Original EDU Design

3D model at EDU’s scale Assembled EDU’s elements 
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EDU’s elements 

EDU’s model domains
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top and bottom endplates cathode channel and CO2 flow cathode GDE

electrolyte channel and 

KOH solution flow 
anode GDE anode channel and O2 flow

EDU’s material and flow domains
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Electronic charge balance (Ohm’s law)

 Ionic charge balance (Ohm’s law)

Concentration-dependent Butler-Volmer and Tafel charge transfer kinetics

Flow distribution in gas and liquid channels (Navier-Stokes)

Flow in the porous GDEs (Brinkman equations)

Mass balances in gas phase in both gas channels and porous electrodes

(Maxwell-Stefan diffusion and convection)

Evaporation and condensation of water on the GDLs and gas channels

Temperature (energy balance equation) via three types of heat transfer

mechanisms,

1) conductive within EDU’s components,

2) convective within the channel flows,

3) radiative between EDU surface and ambient

Heat generation/source via Joule heating effect.

EDU’s model fundamentals
Multi-physics approach
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EDU’s model fundamentals
Electrochemical reactions
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EDU’s model fundamentals
Electrochemical reactions
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EDU’s model fundamentals
Electrochemical reaction domains

ICES-2021: Paper 74
Slide 10



CO2

KOH solution

Cu-based catalysis deposition (CL)

C2H4 + H2

EDU’s model fundamentals
Cathode GDL

CL
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O2/N2

KOH solution

Cu-based catalysis deposition

O2 + H2O

EDU’s model fundamentals
Anode GDL

CL
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EDU’s model fundamentals
Electrochemical CO2 reduction approach

• The exact microstructure of the CL is not

well known.

• Many have argued that the high current

densities achievable with GDEs is due to a

high concentration of CO2 at the gas/solid

interface overcoming the low solubility of

CO2 in water.

• Recent experimental and theoretical work

have demonstrated the importance of

water and hydrated cations on the

elementary processes involved in CO2R

superseding the role of CO2 gas phase

within the GDLs.

• Therefore, researchers have proposed that

it is necessary for the catalyst to be

covered with electrolyte in order to be

active. This means that although CO2 is

supplied to the GDE from the gas phase,

the reactant at the catalyst site is still

dissolved CO2.

• The performance of a GDL greatly depends on the local environment within the CL

and the balance between transport phenomena and reaction kinetics.

• Based on the capillary pressure, CL pore-size distribution and their wettability, the

pores can be a) flooded, b) wetted or c) dry.
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EDU’s model fundamentals
Water phase change and transportation on GDLs

8 moles of water consumed on the cathode

6 moles of water generated on the anode

How much water is condensed within the GDL?
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Electrical Potential

EDU’s model outcome
Electrical potential

Worst case scenario for potential application to the cell: Metallic screw 

holders no insulated  
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Component mass concentration 

EDU’s model outcome
Mass concentration
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Flow velocity 

EDU’s model outcome
Flow velocity
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Temperature

Joule Heating

EDU’s model outcome
Temperature and Joule heating
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EDU’s model outcome
Water (liquid/vapor) transport

Water vapor on channels and GDLs Water liquid on GDLs
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Next: Model Validation

Experiment test matrix

Correlation evaluation via Independent Component analysis (ICA)

Estimation of natural convection coefficient via 

least-square temperature error minimization 

(Levenberg–Marquardt algorithm) 
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