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A B S T R A C T   

Total suspended solids (TSS) concentration is an important biogeochemical parameter for water quality man-
agement and sediment-transport studies. In this study, we propose a novel semi-analytical method for estimating 
TSS in clear to extremely turbid waters from remote-sensing reflectance (Rrs). The proposed method includes 
three sub-algorithms used sequentially. First, the remotely sensed waters are classified into clear (Type I), 
moderately turbid (Type II), highly turbid (Type III), and extremely turbid (Type IV) water types by comparing 
the values of Rrs at 490, 560, 620, and 754 nm. Second, semi-analytical models specific to each water type are 
used to determine the particulate backscattering coefficients (bbp) at a corresponding single wavelength (i.e., 560 
nm for Type I, 665 nm for Type II, 754 nm for Type III, and 865 nm for Type IV). Third, a specific relationship 
between TSS and bbp at the corresponding wavelength is used in each water type. Unlike other existing ap-
proaches, this method is strictly semi-analytical and its sub-algorithms were developed using synthetic datasets 
only. The performance of the proposed method was compared to that of three other state-of-the-art methods 
using simulated (N = 1000, TSS ranging from 0.01 to 1100 g/m3) and in situ measured (N = 3421, TSS ranging 
from 0.09 to 2627 g/m3) pairs of Rrs and TSS. Results showed a significant improvement with a Median Absolute 
Percentage Error (MAPE) of 16.0% versus 30.2–90.3% for simulated data and 39.7% versus 45.9–58.1% for in situ 
data, respectively. The new method was subsequently applied to 175 MEdium Resolution Imaging Spectrometer 
(MERIS) and 498 Ocean and Land Colour Instrument (OLCI) images acquired in the 2003–2020 timeframe to 
produce long-term TSS time-series for Lake Suwa and Lake Kasumigaura, Japan. Performance assessments using 
MERIS and OLCI matchups showed good agreements with in situ TSS measurements.  
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1. Introduction 

The concentration of total suspended solids (TSS) influences water 
transparency, its aesthetic value, the transport and release of heavy 
metals and nutrients, light availability and its impact on the growth of 
aquatic organisms, aquatic ecosystem status, and fishery resources, and 
through increased absorption can affect water temperature. TSS is 
therefore an important biogeochemical parameter for water quality 
monitoring and water resource management (Bilotta and Brazier, 2008; 
Syvitski et al., 2005; Williamson and Crawford, 2011; Kroon et al., 
2012). Since satellite remote sensing is a valuable and efficient tool for 
monitoring water quality at high temporal and spatial resolutions, many 
efforts have been made to accurately estimate TSS concentration from 
optical remote sensing data (e.g. Dekker et al., 2001; Miller and McKee, 
2004; Kutser et al., 2007; Zhang et al., 2010; Mao et al., 2012; Ondrusek 
et al., 2012; Shi et al., 2015; Novoa et al., 2017; Yu et al., 2019; Bala-
subramanian et al., 2020). 

Generally, there are two types of methods for estimating TSS from 
remote-sensing reflectance (Rrs) or water-leaving reflectance (ρw): (1) 
directly estimating TSS from one (or a combination of) Rrs or ρw band(s) 
(e.g., Doxaran et al., 2002; Nechad et al., 2010; Chen et al., 2015; Knaeps 
et al., 2015; Han et al., 2016; Hou et al., 2017; Novoa et al., 2017; Yu 
et al., 2019); (2) estimating a proxy parameter, e.g. the particulate 
backscattering coefficients (bbp) or water turbidity first and then the TSS 
concentration (e.g., Binding et al., 2010; Neukermans et al., 2012; 
Alcântara et al., 2016; Balasubramanian et al., 2020; Xue et al., 2020; 
Dogliotti et al., 2015; Fichot et al., 2016). The use of bbp as the proxy 
parameter for TSS has two advantages. First, bbp is strongly correlated 
with TSS because interferences from colored dissolved organic matter 
(CDOM, a non-particulate optically-significant substance) and algal 
pigments on bbp are limited (Schalles, 2006). Second, bbp can be accu-
rately estimated from Rrs using semi-analytical models for various wa-
ters (Lee et al., 2002; Yang et al., 2013; Jiang et al., 2019). Therefore, a 
bbp-based TSS estimation method was promoted in a recent study 
(Balasubramanian et al., 2020). However, the empirical parameteriza-
tions of the algorithm for estimating bbp in extremely turbid waters and 
relationship between bbp and TSS will likely limit the applicability of this 
approach to a broad range of water types. 

To develop a TSS estimation method applicable to a wide range of 

waters, previous studies suggested using Rrs at multiple wavelengths 
(bands). For example, Novoa et al. (2017) developed a three-band- 
switching method to estimate the TSS concentrations from ρw. To 
avoid ρw saturation effects in waters with high TSS concentration, they 
selected a TSS-sensitive band from those centered at 551, 671 and 862 
nm according to threshold values of ρw(671). Yu et al. (2019) proposed 
an empirical Globally Applicable Algorithm (GAA) for estimating TSS 
concentration from Rrs at four wavelengths (551, 671, 745, and 862 
nm). The GAA method used the ratios [Rrs(671), Rrs(745), Rrs(862)]/ 
Rrs(551) with progressively adjusted weights to ensure a seamless 
retrieval of TSS. Moreover, Balasubramanian et al. (2020) suggested 
using bbp at 665 and 740 nm to estimate TSS following a water type 
classification. 

Most multi-wavelength methods require a water type classification 
algorithm to initially determine the most appropriate wavelength(s) and 
the corresponding algorithm for accurately estimating water quality 
parameters (Fichot et al., 2008; Vantrepotte et al., 2012; Moore et al., 
2014; Matsushita et al., 2015; Novoa et al., 2017; Neil et al., 2019; 
Balasubramanian et al., 2020). However, these water type classification 
algorithms were developed using different in situ-measured datasets and 
with different research purposes, and thus their water type classification 
results may not be suitable for estimating TSS concentration in a broad 
range of water types. 

Consequently, the objectives of the present study are to: (1) propose 
a widely applicable multi-wavelength-based semi-analytical method for 
estimating TSS concentrations in clear to extremely turbid waters by 
using two large synthetic datasets; (2) validate the proposed method 
using simulated (N = 1000), in situ-measured (N = 3421), and satellite- 
derived (N = 170) Rrs spectra and corresponding TSS data; (3) apply the 
proposed method to MEdium Resolution Imaging Spectrometer (MERIS, 
2003–2012) and Ocean and Land Colour Instrument (OLCI, 2016–2020) 
satellite images to obtain long-term TSS time-series for Lake Suwa and 
Lake Kasumigaura, Japan; and (4) demonstrate the performance of the 
proposed method in three large river estuaries (Nile River, Amazon 
River, and Yangtze River) and four lakes (Lake Victoria, Lake Qinghai, 
Lake Turkana, and Lake Kasumigaura). 

Fig. 1. Locations of water sampling. Green circles represent sampling points, red stars represent matchups with satellite images, red rectangles represent the water 
bodies for TSS estimation showcases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Data acquisition 

2.1. In situ data collection and post-processing 

In total, we compiled 3421 in situ-measured hyperspectral Rrs 
(wavelength dependence, λ, is omitted for brevity) and TSS data pairs 
from inland and coastal waters around the world (Fig. 1, hereafter as In 
Situ Dataset). The TSS concentrations were measured gravimetrically 
based on standard protocols (filtering of a water sample onto a pre- 
weighted glass-fiber filter, drying, and subsequent weighing; APHA 
2540, 2005; Strickland and Parsons, 1972). The TSS data ranged from 
0.09 g/m3 to 2627 g/m3 with a median value of ~10 g/m3, which 
covered clear to extremely turbid waters (Fig. 2). About 80% of the 
compiled data are the same as the validation data used in Balasu-
bramanian et al. (2020) with chlorophyll-a concentrations ranging from 
0.02 mg/m3 to 490 mg/m3 (mean and median values are 19.9 mg/m3 

and 6.52 mg/m3, respectively). For the remaining data, chlorophyll-a 
concentrations ranged from 0.55 mg/m3 to 943 mg/m3 with a mean 
value of 41 mg/m3. 

The in situ-measured Rrs were obtained through three approaches: (1) 
above-water approach (N = 1110, Mobley, 1999); (2) in-water approach 
(N = 2212, Gurlin et al., 2011; Fritz et al., 2017); and (3) skylight- 
blocked approach (N = 99, Lee et al., 2013) (Table 1). The first 
approach directly measures the total upwelling radiance (Lt), the 
downwelling irradiance (Ed

0+) and the radiance of skylight (Lsky) just 
above the water surface, with Rrs then calculated using the ratio (Lt- 
ρLsky)/ Ed

0+, (where ρ is the water surface reflectance factor). The second 
approach directly measures the upwelling radiance below the water 
surface (Lu

0− ) and Ed
0+. The water leaving radiance (Lw) is obtained by 

correcting for the air-water interface effects (i.e., Lw = Lu
0− × t/n2, where 

t = 0.98 is the water-to-air transmittance, and n = 1.33 is the refractive 

index of water relative to air; Mobley, 1994; Gitelson et al., 2009). The 
Rrs is calculated as the ratio Lw/ Ed

0+. The third approach directly mea-
sures the Lw by using a tube in front of the radiance sensor to block the 
skylight and Ed

0+. The Rrs is then calculated as the ratio Lw/ Ed
0+, and 

corrected to remove the influence of instrument shadow using the 
method proposed by Shang et al. (2017). In addition, 20 Rrs spectra were 
obtained from airborne imagery with the Portable Remote Imaging 
SpectroMeter (PRISM), for which atmospheric correction was performed 
using a modified ATmosphere REMoval Program (ATREM, Thompson 
et al., 2015; Fichot et al., 2016). Although the imagery was acquired at 
low altitude (~6100 m) during very clear atmospheric conditions, these 
Rrs spectra contain some uncertainty resulting from atmospheric 
correction. 

Previous studies have reported that Rrs observations collected using 
the above-water approach usually suffer from the effects of residual 
reflected skylight (Lee et al., 2010; Jiang et al., 2020). Therefore, Rrs 
spectra obtained with the above-water approach were further corrected 
using a method proposed by Jiang et al. (2020, N=943). Spectra ac-
quired from the SeaSWIR database (N = 137) were already corrected by 
the data provider (Knaeps et al., 2018). A further 30 spectra (with TSS 
ranging from 1.8 g/m3 to 57.8 g/m3 with a mean value of 12.1 g/m3) 
were corrected following Ruddick et al. (2005), as these Rrs spectra don’t 
have the 810 and 840 nm wavelengths which are required in the method 
of Jiang et al. (2020). 

This large dataset was used to evaluate the performance of the pro-
posed TSS estimation method. 

We additionally acquired two long-term in situ-measured TSS data-
sets from Lake Kasumigaura and Lake Suwa in Japan to further evaluate 
the estimated TSS concentration from MERIS and OLCI images. For Lake 
Kasumigaura, monthly in situ-measured TSS data collected between 
January 2003 and March 2020 from seven sites (Fig. 1) were obtained 
from the National Institute for Environmental Studies, Japan database 
(N = 1449, NIES, 2020). For Lake Suwa, the almost weekly in situ- 
measured TSS data from April 2003 to July 2020 at the center of the lake 
were provided by Shinshu University, Japan (N = 715, Fig. 1). 

2.2. Synthetic data generation 

In this study, we generated three synthetic datasets: (1) Synthetic 
Dataset I was used to build relationships between TSS and bbp, (2) 
Synthetic Dataset II was used to develop an algorithm for water type 
classification, and (3) Synthetic Dataset III was used to validate the new 
TSS estimation method. 

Synthetic Dataset I contains pairs of TSS concentration and corre-
sponding bbp values. The bbp can be expressed as (Kutser et al., 2001; 
Vahtmäe et al., 2006; Yang et al., 2011): 

bbp(λ) = Cchl∙b*
bph(λ)+Ctr∙b*

btr(λ), (1)  

where Cchl and Ctr are the concentrations of chlorophyll-a (Chl-a) and 
tripton (or non-algal particles, NAP), respectively. Here, b*bph and b*btr 
are the mass-specific backscattering coefficients of phytoplankton and 
tripton, respectively, and can be modeled using a power-law function (e. 

Table 1 
Summary of the spectral data collected in this study.  

Approach Number of 
data 

Min. TSS 
(g/m3) 

Mean TSS 
(g/m3) 

Max. TSS 
(g/m3) 

Equipment used Residual reflected 
skylight correction 

Reference 

Above- 
water 

1110 0.36 57.68 1400.54 ASD FieldSpec HandHeld, TriOS 
RAMSES, JPL/NASA PRISM 

Yes Matsushita et al., 2015; Shi et al., 2015; Fichot 
et al., 2016; Knaeps et al., 2018; Alikas et al., 
2020; Jiang et al., 2020 

In-water 2212 0.09 29.23 2626.82 TriOS RAMSES, Satlantic 
HyperPRO, Ocean Optics 
USB2000 and USB 2000+

No Gurlin et al., 2011; Fritz et al., 2017; Binding 
et al., 2019 

Skylight- 
blocked 

99 0.10 4.20 83.20 Satlantic HyperOCR No Personal communication  
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Fig. 2. Distribution of TSS concentrations in the In Situ Dataset used in this 
study. The red dashed line represents the median TSS concentration. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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g., Lee et al., 2002; IOCCG, 2006; Vaillancourt et al., 2004 for b*bph; and 
Giardino et al., 2007; Yang et al., 2011; Salem et al., 2017 for b*btr). 
Therefore, b*bph and b*btr are expressed as: 

b*
bph(λ) = b*

bph(550)∙
( λ

550

)− S1
(2)  

b*
btr(λ) = b*

btr(550)∙
( λ

550

)− S2
(3)  

where b*bph(550) is the mass-specific backscattering coefficient of 
phytoplankton at 550 nm, and b*btr(550) is the mass-specific backscat-
tering coefficient of tripton at 550 nm. S1 and S2 are the slopes of specific 
backscattering coefficient spectra for phytoplankton and tripton, 
respectively. 

TSS concentration can be simulated based on tripton and Chl-a 
concentrations (Oyama et al., 2009; Xue et al., 2019): 

TSS = α∙Cchl +Ctr (4)  

where α is the fraction of phytoplanktonic suspended solids to Chl-a with 
a unit of g/mg (or mg/μg). Note, the “g/mg” was only used for unit 
conversion of α Cchl. 

Table 2 shows the variation ranges, intervals, and references for all 
input parameters used to generate Synthetic Dataset I. In total, we 
generated 1,171,875 TSS-bbp pairs. 

Synthetic Datasets II and III include Rrs spectra and their corre-
sponding TSS concentrations. The Rrs spectra were generated using a 
bio-optical model proposed by Gordon et al. (1988) and Lee et al. (2002) 
with assumptions of a nadir viewing angle and optically deep waters. 
The bio-optical model uses Chl-a concentration (Cchl), tripton concen-
tration (Ctr), and the CDOM absorption coefficient at 440 nm 

(aCDOM(440)), as well as the corresponding specific inherent optical 
properties (SIOPs) as input to first simulate the total absorption coeffi-
cient (a) and the total backscattering coefficient (bb), which are then 
used to generate Rrs spectra from the simulated a and bb values. The 
corresponding TSS concentrations were generated using Eq. (4) with an 
α value of 0.12 g/mg (Oyama et al., 2009). The SIOPs were sampled 
from Lake Kasumigaura, Japan on May 11, 2018. The absorption co-
efficients of phytoplankton and tripton, were obtained using the quan-
titative filter technique (Mitchell, 1990). The absorption coefficient of 
CDOM was measured using a spectrophotometer (UV-3100, Shimazu, 
Kyoto, Japan) with a 10 cm quartz cuvette to the filtered samples 
(filtered out by Whatman GF/F filter with a pore size of 0.7 μm). The 
backscattering coefficients of phytoplankton and tripton were obtained 
according to the method reported by Yang et al. (2011), in which a 
power-law function assumption for b*btr was used. More details on the 
simulation can be found in Jiang et al. (2020). 

Table 3 shows the variation ranges and intervals of Cchl, Ctr, and 
aCDOM(440), which were used to generate Synthetic Dataset II. In all, we 
generated 91,287 synthetic data records, which include a, bb, Rrs and the 
corresponding TSS values. 

For Synthetic Dataset III, we first set five ranges for Cchl, Ctr, and 
aCDOM(440)), respectively (Table 4). We then randomly selected 200 sets 
of Cchl, Ctr, and aCDOM(440) values to generate 200 Rrs and corre-
sponding TSS pairs for each range. In all, we obtained 1000 Rrs and 
corresponding TSS pairs with Cchl values in the range of 0.01–1000 mg/ 

Table 2 
The ranges, intervals, numbers, and references for all input parameters used to 
generate Synthetic Dataset I.  

Parameter Range Interval Number Reference 

Cchl 0.02–0.1 mg/m3 0.02 
mg/m3 

25  

0.2–1 mg/m3 0.2 mg/ 
m3 

2–10 mg/m3 2 mg/m3 

20–100 mg/m3 20 mg/ 
m3 

200–1000 mg/ 
m3 

200 mg/ 
m3 

Ctr 0.02–0.1 g/m3 0.02 g/ 
m3 

25  

0.2–1 g/m3 0.2 g/m3 

2–10 g/m3 2 g/m3 

20–100 g/m3 20 g/m3 

200–1000 g/m3: 200 g/ 
m3 

b*bph(550) 0.0005–0.0025 
m2/mg 

0.0005 
m2/mg 

5 Ahn et al., 1992;  
Reinart et al., 2004;  
Bricaud et al., 1983;  
Yang et al., 2011; Kirk, 
2011; Jiang et al., 2020 

b*btr(550) 0.005 - 0.025 
m2/g 

0.005 
m2/g 

5 Salem et al., 2017; Yang 
et al., 2011; Jiang et al., 
2020 

S1 0.5–2.5 0.5 5 IOCCG, 2006; Reinart 
et al., 2004; Strömbeck 
and Pierson, 2001;  
Yang et al., 2011 

S2 0.5–2.5 0.5 5 IOCCG, 2006; Reinart 
et al., 2004; Strömbeck 
and Pierson, 2001;  
Yang et al., 2011 

α 0.1–0.3 g/mg 0.1 g/ 
mg 

3 Östlund et al., 2001;  
Strömbeck and Pierson, 
2001; Oyama et al., 
2009; Xue et al., 2019  

Table 3 
The ranges and intervals of chlorophyll-a concentration, tripton concentration, 
and CDOM absorption coefficients at 440 nm used to generate Synthetic Dataset 
II.  

Parameter Range Interval Number 

Cchl 0.01–0.1 mg/m3 0.01 mg/m3 63 
0.2–1 mg/m3 0.1 mg/m3 

2–10 mg/m3 1 mg/m3 

12–20 mg/m3 2 mg/m3 

25–50 mg/m3 5 mg/m3 

60–100 mg/m3 10 mg/m3 

120–300 mg/m3 20 mg/m3 

350–500 mg/m3 50 mg/m3 

600–1000 mg/m3 100 mg/m3 

Ctr 0.01–0.1 g/m3 0.01 g/m3 63 
0.2–1 g/m3 0.1 g/m3 

2–10 g/m3 1 g/m3 

12–20 g/m3 2 g/m3 

25–50 g/m3 5 g/m3 

60–100 g/m3 10 g/m3 

120–300 g/m3 20 g/m3 

350–500 g/m3 50 g/m3 

600–1000 g/m3 100 g/m3 

aCDOM(440) 0.01–0.1 m− 1 0.01 m− 1 23 
0.2–1 m− 1 0.1 m− 1 

2–5 m− 1 1 m− 1  

Table 4 
The ranges and numbers of chlorophyll-a concentration, tripton concentration, 
and CDOM absorption coefficients at 440 nm to generate Synthetic Dataset III.   

Cchl (mg/ 
m3) 

Ctr (g/m3) aCDOM(440) 
(m− 1) 

Number of Rrs – TSS 
pairs 

Range 
1 

0.01–0.1 0.01–0.1 0.01–0.05 200 

Range 
2 

0.1–1 0.1–1 0.01–0.05 200 

Range 
3 

1–10 1–10 0.05–0.1 200 

Range 
4 

10–100 10–100 0.1–1 200 

Range 
5 

100–1000 100–1000 1–5 200 

Total 0.01–1000 0.01–1000 0.01–5 1000  
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m3, Ctr values in the range of 0.01–1000 g/m3, and aCDOM(440) values in 
the range of 0.01–5 m− 1. 

2.3. Satellite data collection and processing 

MERIS and OLCI Level-1 data were used in this study because of their 
better spatial (300 × 300 m) and spectral (15 bands for MERIS and 21 
bands for OLCI) characteristics than other ocean-colour sensors like 
MODIS. MERIS and OLCI images over three Japanese lakes (Lakes 
Kasumigaura, Suwa, and Akan), one Chinese lake (Lake Taihu), and five 
North American lakes (Lac Vieux Desert, Lakes Winnebago, Poygan, and 
Winneconne and Green Bay of Lake Michigan) were obtained from the 
European Space Agency (ESA, https://merisfrs-merci-ds.eo.esa.int). 
Atmospheric correction was done using the Case-2 Regional Processor in 
BEAM 5.0 for MERIS images, and using the C2RCC Processor in SNAP 
7.0 for OLCI images. Clouds and cloud shadows were identified for both 
MERIS and OLCI images using the IdePix module in SNAP. Finally, the 
pixels with clouds, cloud shadows, cloud buffers, and failed atmospheric 
correction were masked out for all MERIS and OLCI images using the 
mask bands from IdePix. 

The average of TSS values derived within a 3 by 3-pixel area was 
calculated and compared with the corresponding in situ-measured TSS 
values obtained on the same day (i.e. matchups). In total, we compiled 
170 matchups from Lakes Kasumigaura, Suwa, Akan, Taihu, Vieux 
Desert, Winnebago, Poygan, Winneconne and Green Bay of Lake Mich-
igan for validating the TSS estimation method (Table 5). In addition, 175 
and 174 MERIS images from 2003 to 2012, 498 and 358 OLCI images 

from 2016 to 2020 were used for long-term TSS estimation in Lake 
Kasumigaura and Lake Suwa, respectively. 

3. Model development 

3.1. Building a widely applicable relationship between TSS and bbp 

In addition to Eq. (1), the bbp can also be written as follows (Nechad 
et al., 2010): 

bbp(λ) = TSS∙b*
bp(λ), (5)  

where b*bp is the TSS-specific particulate backscattering coefficient and 
TSS is the concentration of total suspended solids. Thus, TSS can be 
calculated as: 

TSS =
1

b*
bp(λ)
∙bbp(λ) (6) 

Due to the difficulty of obtaining a large number of b*bp spectral 
values from various water types through field surveys, we used Synthetic 
Dataset I to determine a representative range of values of b*bp for a 
variety of water types. Fig. 3 illustrates the basic statistics associated 
with the Synthetic Dataset I. The black asterisks and the red lines with 
solid circles represent the mean and median values of b*bp at the central 
wavelengths of major MERIS bands, respectively. To avoid the influence 
from extreme cases in the simulation, we used the median value of b*bp 
to build a relationship between bbp and TSS for each wavelength. Table 6 
lists the median values of 1/b*bp obtained from Synthetic Dataset I, 
which were subsequently used in our TSS estimation method. 

3.2. Estimating bbp from Rrs based on semi-analytical models 

According to Lee et al. (2002), bbp can be semi-analytically estimated 
from the following equations: 

0.00

0.01

0.02

0.03

0.04

0.05

413 443 490 510 560 620 665 681 709 754 761 779 865
Wavelength (nm)

b
bp*

�(m
2 �/g

)

Fig. 3. Statistics of the b*bp values from Synthetic Dataset I; the red solid circles represent the median value and the black asterisks represent the mean value. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Satellite matchups used for validation in this study.  

Lake Number of 
matchups 

Image date Sensor 

Kasumigaura 81 2004/07/07–2020/03/11 
(16 scenes) 

MERIS, 
OLCI 

Suwa 65 2006/04/03–2020/06/17 
(65 scenes) 

MERIS, 
OLCI 

Akan 2 2019/08/27 OLCI 
Taihu 1 2007/01/07 MERIS 
Vieux Desert, WI 3 2016/06/28 OLCI 
Winnebago, WI 5 2016/09/02 OLCI 
Poygan, WI 5 2018/07/23, 2018/08/23, 

2018/09/11 
OLCI 

Winneconne, WI 4 2018/07/23, 2018/08/23, 
2018/09/11, 2018/10/24 

OLCI 

Green Bay of Lake 
Michigan, WI 

4 2019/06/06, 2019/07/24 OLCI 

Total 170    

Table 6 
The median values of 1/b*bp obtained from Synthetic Dataset I.  

Wavelength (nm) 1/b*bp (g/m2) Wavelength (nm) 1/b*bp (g/m2) 

413 56.306 681 118.147 
443 61.843 709 126.342 
490 74.906 754 137.665 
510 81.633 761 139.451 
560 94.607 779 142.816 
620 106.180 865 166.168 
665 114.012    
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rrs(λ) = Rrs(λ)/(0.52+ 1.7Rrs(λ) ), (7)  

u(λ) =
− 0.089 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.0892 + 4 × 0.125rrs(λ)

√

2 × 0.125
, (8)  

bbp(λ) =
u(λ) × a(λ)

1 − u(λ)
− bbw(λ), (9)  

where a is the total absorption coefficient, bbw is the backscattering 
coefficient of pure water (Zhang et al., 2009), Rrs is the remote-sensing 
reflectance just above the water surface, and rrs is the remote-sensing 
reflectance just below the water surface. 

There are two unknowns in Eq. (9) (i.e., a(λ) and bbp(λ)). To solve the 
problem, Lee et al. (2002) suggested the use of a reference wavelength 
(λ0), at which the absorption coefficient of pure water dominates the 
total absorption coefficient. Therefore, at the reference wavelength, an 

unknown value of a(λ0) can be assumed to be equal to aw(λ0) (i.e. a(λ0) 
≈ aw(λ0)), and the corresponding unknown value of bbp(λ0) can then be 
calculated using Eq. (9). In this study, we chose Rrs at different reference 
wavelength to estimate corresponding values of bbp and then TSS for 
different water types. The reference wavelength selection is based on the 
following two conditions: (1) the assumption of a(λ0) ≈ aw(λ0) is valid; 
and (2) the Rrs at the reference wavelength (Rrs(λ0)) is sensitive to the 
variation of TSS values. Based on the absorption characteristics of pure 
water, the longer the wavelength, the easier it is to satisfy the first 
condition. However, if the wavelength is too long, the second condition 
may not be satisfied due to the very low Rrs. 

Based on the above two conditions, we defined four water types (i.e., 
clear waters, moderately turbid waters, highly turbid waters, and 
extremely turbid waters) and chose a reference wavelength for each 
water type. For clear waters (e.g., open ocean, hereafter Type I), we 
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Fig. 4. Statistics of the Rrs spectral shapes for each water type obtained from Synthetic Dataset II. The red line with the solid circles represents the mean value of Rrs 
at each wavelength. (a) Type I waters, (b) Type II waters, (c) Type III waters, and (d) Type IV waters. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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chose 560 nm as the reference wavelength. An empirical equation was 
also used to further improve the estimation accuracy of a(560) (Lee 
et al., 2002): 

a(560) = aw(560)+ 10− 1.146− 1.366x− 0.469x2
, (10)  

x = log

⎛

⎜
⎜
⎝

rrs(443) + rrs(490)
rrs(560) + 5 rrs(665)

rrs(490)rrs(665)

⎞

⎟
⎟
⎠ (11) 

However, for moderately turbid waters (e.g., coastal waters, 

hereafter Type II), the a(560) ≈ aw(560) assumption is no longer valid. 
In these waters, we used 665 nm as the reference wavelength. The a 
(665) can be estimated using the following semi-analytical equation 
(IOCCG, 2014): 

a(665) = aw(665)+ 0.39∙
(

Rrs(665)
Rrs(443) + Rrs(490)

)1.14

(12) 

Note, empirical components in Eqs. (10− 12) contribute relatively 
small errors in estimations of a(560) and a(665) based on the first 
condition (Lee et al., 2002; IOCCG, 2014). 

For highly turbid waters (hereafter Type III), we chose 754 nm as the 
reference wavelength instead of 560 nm and 665 nm (Yang et al., 2013) 
for two reasons. First, as turbidity increases the particulate absorption 
coefficients increase dramatically at shorter wavelengths. In such cases, 
the assumption of a ≈ aw is no longer valid at 560 and 665 nm, where the 
pure-water absorption coefficients are less than 0.43 m− 1 (Pope and Fry, 
1997). In contrast, the pure-water absorption coefficient at 754 nm 
reaches 2.87 m− 1 (Kou et al., 1993), which is several times higher than 
those at 560 and 665 nm, and the assumption of a(754) ≈ aw(754) 
therefore becomes valid. Second, Rrs(754) is sensitive to TSS due to the 
increased particulate backscattering coefficient. 

Similar to Type III waters, for extremely turbid waters (hereafter 
Type IV), the reference wavelength should be further shifted to longer 
wavelengths, for example, 865 nm, because aw(865) can reach 4.6 m− 1 

(Kou et al., 1993), and thus the assumption of a(865) ≈ aw(865) is likely 
valid even in extremely turbid waters. 

Following the estimation of a(λ0), bbp(λ0) can be calculated from 
Rrs(λ0) using the semi-analytical relationships in Eqs. (7)–(9). As the 
assumption for a(λ0) ≈ aw(λ0) is of central importance for accurate 
retrieval of bbp(λ0), it is necessary to determine water types before the 
bbp calculations. 

3.3. Classifying water types 

We used Synthetic Dataset II to determine the characteristic spectral 
shapes of Rrs for each of the four water types described above. To fulfill 

Rrs

Type I

Type II

Type IV

Type III

Rrs(490)>Rrs(560)

Rrs(490)>Rrs(620)

Rrs(754)>Rrs(490) & 

Rrs(754)>0.01 sr-1

YES

YES

YES

NO

NO

NO

Fig. 5. Flowchart of water type classification algorithm proposed in this study.  

Fig. 6. Flowchart of the new method for TSS estimation proposed in this study. Water type classification is based on Fig. 5, and the coefficients for estimating TSS 
from bbp are from Table 6. 
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the assumption of a(λ0) ≈ aw(λ0), we set a threshold condition of aw(λ0)/ 
a(λ0) > 0.8 (i.e. the absorption coefficient of pure water accounts for 
more than 80% of the total absorption coefficient) for each water type. 
In addition, to exclude the influence of Rrs spectra from less turbid 
waters on the analyses of Rrs spectral shapes in more turbid waters, we 
selected Rrs spectra with TSS > 1 g/m3 and aw(665)/a(665) > 0.8 for 
analyzing the Rrs spectral shape of Type II waters, with TSS > 10 g/m3 

and aw(754)/a(754) > 0.8 for analyzing the Rrs spectral shape of Type III 
waters, and with TSS > 100 g/m3 and aw(865)/a(865) > 0.8 for 
analyzing the Rrs spectral shape of Type IV waters. By applying the 
above criteria, we obtained the statistical Rrs spectral shape for each 
water type (Fig. 4). 

From Fig. 4(a), it can be seen that the highest Rrs value is observed in 
the blue spectral region for Type I waters, and then shifts gradually from 
the blue to the red wavelengths. Therefore, a condition of Rrs(490) >
Rrs(560) can be used to identify Type I waters. For Type II waters, the Rrs 
value at a green wavelength becomes the highest one, but the Rrs value 
at the longer blue wavelength (490 nm) is still higher than that at the 
shorter red wavelength (620 nm) (Fig. 4(b)). Therefore, a condition of 
Rrs(490) > Rrs(620) can be used sequentially to identify Type II waters. 
From Fig. 4(d), it can be seen that the highest Rrs value of Type IV waters 
is located at a NIR wavelength due to the stronger absorption at shorter 
wavelengths and stronger backscattering at longer wavelengths result-
ing from the high concentrations of particles (or algal materials) in the 
water bodies. In addition, to accommodate the extreme turbidity in Type 
IV waters, a condition of Rrs(754) > Rrs(490) with Rrs(754) > 0.01 sr− 1 is 
suggested to identify Type IV waters in this study. After identifying Type 
I, Type II, and Type IV waters, the remaining waters are classified as 

Type III. The flowchart of water type classification is shown in Fig. 5. In 
comparison to previous studies (e.g.Novoa et al., 2017; Balasubramanian 
et al., 2020), the new water type classification method has fulfilled the 
assumption of a(λ0) ≈ aw(λ0), which can lead to a more accurate bbp(λ0) 
estimation (see Section 3.2). 

Fig. 6 summarizes the proposed method for estimating TSS from a 
Rrs(λ) spectrum. It includes three main steps: (1) water type classifica-
tion (Fig. 5); (2) bbp calculation at the appropriate reference wavelength 
(λ0) according to the determined water type; and (3) TSS estimation 
using the corresponding relationship between TSS and bbp (Table 6). 

3.4. Accuracy assessment 

We used the root mean square error (RMSE) in a log10 unit, the 
median absolute percentage error (MAPE), and bias to evaluate the 
performance of the proposed method. The equations are as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

[
log10

(
Xestimated,i

)
− log10

(
Xmeasured,i

) ]2

N

√
√
√
√
√

(13)  

MAPE = median
(⃒
⃒
⃒
⃒
Xestimated,i − Xmeasured,i

Xmeasured,i

⃒
⃒
⃒
⃒∙100%

)

, i = 1,…,N (14)  

Bias = 10Y , Y =

∑N

i=1

[
log10

(
Xestimated,i

)
− log10

(
Xmeasured,i

) ]

N
(15) 

y � 0.06x � 5.5
R2�=�0.25
RMSE � 0.7
MAPE � 90.3�%
Bias � 0.7
N�=�1000

1:1

10−2

10−1

100

101

102

103

104

10−2 10−1 100 101 102 103 104

True TSS (g/m3�)

Es
tim

at
ed

 T
SS

 (g
/m

3 �
)

(a) Novoa

y � 7.1x�−205
R2�=�0.93
RMSE � 0.4
MAPE � 56.7�%
Bias � 1.2
N�=�1000

1:1

10−2

10−1

100

101

102

103

104

10−2 10−1 100 101 102 103 104

True TSS (g/m3�)

Es
tim

at
ed

 T
SS

 (g
/m

3 �
)

(b) Yu

y � 0.57x�−7.9
R2�=�0.86
RMSE � 0.4
MAPE � 30.2�%
Bias � 0.6
N�=�991

1:1

10−2

10−1

100

101

102

103

104

10−2 10−1 100 101 102 103 104

True TSS (g/m3�)

Es
tim

at
ed

 T
SS

 (g
/m

3 �
)

(c) SOLID

y � 0.7x � 2.3
R2�=�1
RMSE � 0.1
MAPE � 16.0�%
Bias � 0.8
N�=�1000

1:1

10−2

10−1

100

101

102

103

104

10−2 10−1 100 101 102 103 104

True TSS (g/m3�)

Es
tim

at
ed

 T
SS

 (g
/m

3 �
) Water Type

Type I
Type II
Type III
Type IV

(d) This study

Fig. 7. Comparison of true and estimated TSS values. The estimated TSS values were obtained from the simulated Rrs in Synthetic Dataset III using different 
estimation methods. (a) using the method proposed by Novoa et al. (2017), (b) using the method proposed by Yu et al. (2019), (c) using the SOLID method proposed 
by Balasubramanian et al. (2020), and (d) using the new method proposed in this study. 
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where Xestimated is the estimated TSS value, Xmeasured is the correspond-
ing in situ-measured TSS value, and N is the number of data pairs. The 
regression results between estimated and in situ-measured TSS values 
were also used to help assess algorithm performance (e.g., slope, inter-
cept, and R2). 

In addition, we compared the performance of the proposed TSS 
estimation method with those of three recently published TSS estimation 
methods, which were proposed by Novoa et al. (2017), Yu et al. (2019) 
and Balasubramanian et al. (2020; i.e., SOLID: Statistical, inherent Op-
tical property-based, and muLti-conditional Inversion proceDure). 

4. Results 

4.1. Validation using synthetic dataset III 

Fig. 7 compares “true TSS values” and estimated TSS values from 
Synthetic Dataset III using three existing methods in addition to the new 
method proposed in this study. The new method proposed in this study 
accurately estimates TSS in all four water types with an MAPE of 16.0% 
and RMSE of 0.1 in log TSS units (Fig. 7d). The TSS values estimated 
through the new method show a very high correlation with the true TSS 
values, but with a slight underestimation (R2 = 1, Bias = 0.8, and slope 
= 0.7). In contrast, the method proposed by Novoa et al. (2017) yields 

Table 7 
Performance statistics obtained from Synthetic Dataset III for four methods by water type (and all data pooled). Values 
in bold print with blue background represent the smallest values for RMSE and MAPE, the values closest to 1 for Slope, 
R2, and Bias, and the values closest to 0 for Intercept. 
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overestimations for low TSS and large underestimations for high TSS 
values (RMSE in log10 unit = 0.7, MAPE = 90.3%, Fig. 7(a)); the method 
proposed by Yu et al. (2019) produces large overestimations for low and 
high TSS, and underestimations for moderate TSS (RMSE in log10 unit 
= 0.4, MAPE = 56.7%, Fig. 7(b)); and the SOLID method shows a good 
performance for low TSS, but produces large underestimations for TSS 
values larger than 10 g/m3 (RMSE in log10 unit = 0.4, MAPE = 30.2%, 
Fig. 7(c)). 

Table 7 contains the performance statistics for each water type for 
the four methods. Although several assessment metrics for the existing 
methods show slightly better performance than the new method, the 
new method outperformed them in most cases (see values in bold print 
with blue background in Table 7). It should be noted that the number of 
data points from the SOLID method is less than 1000 because nine 
negative TSS estimations were removed. 

4.2. Validation using the In Situ dataset 

Fig. 8 compares in situ-measured and estimated TSS values. TSS 
concentrations were estimated from in situ-measured Rrs spectra using 
the three existing methods and the new method proposed in the present 
study. It should be noted that the number of available data points for 
each method is different. In total, we compiled 3421 Rrs-TSS data pairs 
from various waters. However, since some in situ-measured Rrs spectra 
do not include wavelengths longer than 800 nm, the new method is 
unable to estimate TSS if the corresponding waters were classified as 
Type IV. Therefore, the results in Fig. 8d only include 3343 data pairs. 
Similarly, as the method proposed by Novoa et al. (2017) needs Rrs at 

862 nm for TSS estimation when ρw(671) > 0.08, 3283 data pairs 
remained. For the method proposed by Yu et al. (2019), since the 
method always needs the Rrs at 862 nm in the TSS estimation, only 1439 
data pairs were available from the whole In Situ Dataset. We also omitted 
two outliers with TSS estimations larger than 4000 g/m3 (Fig. 8b). 
Although the SOLID method does not need Rrs at wavelengths longer 
than 800 nm, only 3222 data pairs are shown in Fig. 8c because 193 
negative TSS estimations and six outliers with TSS estimations larger 
than 4000 g/m3 were removed. 

Overall, the new method proposed in this study presents the highest 
accuracy and the smallest MAPE value of 39.7% (45.9%–58.1% for other 
methods) and RMSE value of 0.3 in log10 TSS units (0.5–0.8 for other 
methods). In addition, the new method also had the highest R2 value 
(0.79) and no bias (value of 1). Thus, the new method can provide ac-
curate TSS retrievals across Type I to Type IV waters (Fig. 8d). 

Table 8 lists the performance statistics obtained from the In Situ 
Dataset for each water type and the four methods. RMSE values were 
lowest using the new method for all four water types. Values of MAPE for 
the new method were also the lowest, except for Type IV waters 
(39.23%). For Type IV waters, lower values of MAPE (34.12%), but a 
higher RMSE (0.30) value were found for the method proposed by Yu 
et al. (2019) as compared to the new method. 

4.3. Validation using satellite matchups 

Fig. 9 shows the comparison between in situ-measured and estimated 
TSS concentrations from MERIS and OLCI images using the new method 
(170 matchups). The in situ-measured TSS values ranged from 1.2 g/m3 
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Fig. 8. Comparison of in situ-measured and estimated TSS values. The estimated TSS values were obtained from in situ-measured Rrs using different estimation 
methods. (a) using the method proposed by Novoa et al. (2017), (b) using the method proposed by Yu et al. (2019) (left out two outliers), (c) using the SOLID method 
proposed by Balasubramanian et al. (2020) (left out six outliers), and (d) using the new method proposed in this study. 
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to 88.7 g/m3, which cover Type II (Lake Akan) and Type III (others) 
waters. TSS values were accurately estimated in most cases with a MAPE 
value of 35.5%, RMSE value of 0.4, and a bias value of 0.8. In particular, 
the matchups obtained from Lake Kasumigaura, Japan (N = 81) showed 
good agreement with the MAPE values of 28.8%. For the matchups 
obtained from Lake Suwa, Japan (N = 65), the new method also showed 
good performance except for seven matchups with in situ TSS concen-
trations lower than 10 g/m3. If these seven matchups are excluded, the 
MAPE value for Lake Suwa is reduced from 43.3% to 35.6%. Generally, 
large underestimations were found in areas where in situ TSS < 10 g/m3 

(e.g. in Lake Akan, Lac Vieux Desert, and several matchups in Lake 
Suwa). This is probably due to an imperfect atmospheric correction of 

the satellite images (see discussion in Section 5.2). 

4.4. Long-term TSS time-series in Lake Kasumigaura and Lake Suwa, 
Japan 

Figs. 10 and 11 show the comparison of in situ-measured and 
satellite-estimated TSS concentrations (MERIS and OLCI) in Lake 
Kasumigaura and Lake Suwa, respectively, for an 18-year period 
(2003− 2020). In Lake Kasumigaura, 207 in situ TSS values (monthly 
data) were measured for each site during the study period. In contrast, 
we obtained more than 431 satellite-derived TSS values (maximum 
number of 554 at the lake center) for each site in the same period. 

Table 8 
Performance statistics obtained from the In Situ Dataset for four methods by water type (and all data pooled). Values in 
bold print with blue background represent the smallest values for RMSE and MAPE, the values closest to 1 for Slope, 
R2, and Bias, and the values closest to 0 for Intercept. 
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During the period of 2016–2020, there were 8.5 to 10.9 times more OLCI 
retrievals than in situ TSS measurements (Fig. 10). In Lake Suwa, 715 in 
situ TSS values (almost weekly data) were measured from 2003 to 2020, 
whereas we obtained 174 MERIS-derived TSS values from 2003 to 2012, 
and 358 OLCI-derived TSS values from 2016 to 2020. The observation 
frequency of OLCI is still higher than that of field surveys during 
2016–2020 (Fig. 11). 

Visually, the satellite-derived TSS values agree well with the in situ- 
measured TSS values (Figs. 10 and 11). In Lake Kasumigaura, both in 
situ-measured and satellite-derived TSS values show comparable 
decreasing trends from 2003 to 2012 (slope < 0 and p value<0.01 based 
on a linear regression analysis) but higher values from late 2019 to early 
2020 (Fig. 10). In Lake Suwa, in situ-measured and satellite-derived TSS 
values show decreasing trends from 2003 to 2020 (Fig. 11, slope < 0 and 
p value<0.05 based on a linear regression analysis). During the period of 
2016–2020, as the high observation frequency of the OLCI, a clear 
seasonal variation of TSS can be seen in both lakes. For example, at sites 
3 and 7 in Lake Kasumigaura, OLCI-derived TSS concentrations are 
higher in summer and lower in winter between 2016 and 2020, which 
agrees well with the pattern observed with in situ-measured TSS data 
(Fig. 10a and c). It is also notable that several extremely high TSS events 
were observed from OLCI data (green dots) but were not captured by the 
field surveys between 2016 and 2020. In contrast, during 2003–2012, 
peaks in TSS concentration were observed in in situ data (blue dots) but 
not in MERIS data. These very high TSS values resulted from resus-
pension by typhoons (also see Figs. 13j – 13 l), as Lake Kasumigaura and 
Lake Suwa are both shallow. 

4.5. Showcase of TSS spatial distribution maps 

The new TSS estimation method was applied to map spatial distri-
butions of TSS from OLCI images over the three longest river estuaries 
(Nile River, 2020/05/20; Amazon River, 2019/08/24; Yangtze River, 
2018/04/08) and four lakes in Africa and Asia (Lake Victoria, 2016/08/ 
17; Lake Turkana, 2020/03/13; Lake Qinghai, 2020/06/29; and Lake 
Kasumigaura, 2019/10/13). 

Fig. 12 illustrates the standard false colour OLCI images (R:G:B =
17:8:6), water type classification maps, and TSS distribution maps for 
the three river estuaries. It can be seen that the Nile River Estuary lacked 
Type III (highly turbid) and Type IV (extremely turbid) waters in 
contrast to the Amazon and Yangtze River Estuaries (Fig. 12b, e, h). In 
the Amazon and Yangtze River Estuaries, we can clearly observe that 
water types change from Type IV to Type I from the river mouths to the 
open ocean. In the Amazon River Estuary, Type IV waters extend ~110 
km offshore. As expected, the TSS distributions in the three estuaries 
showed a gradual decrease in TSS concentrations from the river mouths 

into the open ocean (Fig. 12c, f, i). 
Prominent spatial heterogeneity of the TSS distribution was also 

observed in the four example lakes (Fig. 13). Different from the spatial 
distribution patterns in the estuaries in Fig. 12, the TSS values in Lake 
Victoria and Lake Qinghai gradually decreased from the shoreline to the 
center of the lakes (Fig. 13c, f), whereas they gradually decreased from 
the north to the south in Lake Turkana (Fig. 13i). Type IV waters and 
very high TSS concentrations (with a lake averaged value of 86 g/m3) 
were temporarily observed in the central and western parts of Lake 
Kasumigaura due to resuspension by Typhoon Hagibis, which made 
landfall in Japan on October 12, 2019 (Fig. 13k, l). 

5. Discussion 

5.1. Applicability of the new TSS estimation method 

In this study, we proposed a widely applicable method for estimating 
TSS from remote sensing data in clear to extremely turbid waters. To this 
end, all development procedures were based on semi-analytical models 
and synthetic datasets with wide ranges of inherent optical properties. 
For example, to build a widely applicable relationship between bbp and 
TSS, we generated a large dataset (Synthetic Dataset I; N = 1,171,875), 
in which the magnitude and the spectral shape of bbp as well as TSS 
concentrations varied widely. Therefore, the adoption of the median 
b*bp from Synthetic Dataset I can commonly represent most water 
bodies. To allow us to accurately estimate bbp from Rrs using the semi- 
analytical model in various waters, we employed four reference wave-
lengths (560, 665, 754, and 865 nm) and switched between them 
depending on four water types. The adoption of multiple reference 
wavelengths has two advantages: (1) the assumption of a ≈ aw is always 
fulfilled, and (2) a TSS-sensitive wavelength (band) is chosen automat-
ically to match the expected turbidity levels of the water. Moreover, to 
classify water types accurately, we used another large synthetic dataset 
(Synthetic Dataset II; N = 91,287), to develop the classification 
algorithm. 

The validation results obtained from 1000 independently simulated 
and 3421 globally distributed in situ Rrs-TSS data pairs, as well as the 
satellite-derived long-term TSS time-series in two Japanese lakes, 
collectively indicate that our proposed TSS estimation method can be 
successfully used in a wide range of waters without needing to vary 
parameter values (Figs. 7d, 8d, 10, and 11). However, from the simu-
lations shown in Fig. 3, we demonstrate that the value of b*bp varied at 
each wavelength due to variable SIOPs. Therefore, one should be 
cautious when applying the median b*bp value to extreme cases, even 
though these extreme cases are probably rare in the natural world. For 
example, we found slight overestimations in Lake Erie (N = 328, MAPE 
= 49%, RMSE = 0.3, and Bias = 1.4) using the proposed TSS estimation 
method. Binding et al. (2019) reported that cyanobacteria occurrences 
in Lake Erie are associated with higher bbp values compared to other 
phytoplankton species due to their different cell morphology. Therefore, 
the value of b*bp in Lake Erie was slightly larger than the median b*bp 
used in this study. If we use upper quartile b*bp values instead of the 
median b*bp values for Lake Erie, the overestimation is improved (MAPE 
= 40%, RMSE = 0.3, Bias = 0.9). Consequently, although we have 
shown that the proposed median b*bp values can be widely used in 
various waters, if actual b*bp values are available in a water body, users 
can simply replace the proposed median b*bp values with their own 
measured b*bp values to obtain more accurate regionally-tuned esti-
mates of TSS concentration. 

5.2. Influence of Rrs accuracy on TSS estimation 

Since the proposed method uses a single band to estimate TSS values 
from Rrs, the accuracy of Rrs will strongly influence the accuracy of TSS 
estimations. For example, several previous studies found that the Rrs 
spectra measured using the above-water approach frequently suffer 
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from the effects of residual reflected skylight (Δ) (Ruddick et al., 2005; 
Lee et al., 2010; Kutser et al., 2013; Groetsch et al., 2017; Jiang et al., 
2020). In this study, we compiled 1110 Rrs spectra measured using the 
above-water approach. We used Jiang et al. (2020) or Ruddick et al. 
(2005) methods to correct the Δ effects for 973 Rrs spectra. The 
remaining 137 Rrs spectra did not require this correction because 
skylight effects were already corrected for by the data provider (Knaeps 
et al., 2018). Without the corrections, the MAPE, RSME, and Bias 
associated with TSS retrievals would have increased from 39.7% to 
63.4%, 0.3 to 0.4, and 1.1 to 1.6, respectively (Fig. 14). 

Atmospheric correction remains a challenge over coastal and inland 
waters for obtaining accurate Rrs and thus accurate TSS estimations from 
satellite images (Balasubramanian et al., 2020). In this study, we used 
the Case 2 Regional Processor implemented in BEAM 5.0 and SNAP 7.0 
to carry out atmospheric correction for MERIS and OLCI images, and 
observed larger underestimations in TSS when the in situ-measured TSS 
values were lower than 10 g/m3 (Fig. 9). It is likely that inaccurate at-
mospheric corrections caused differences in the magnitude and shape of 
the atmospherically corrected Rrs spectra relative to those obtained with 
field surveys. For example, the shapes of OLCI atmospherically corrected 
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Fig. 12. Showcase maps for the three longest river estuaries, showing the RGB OLCI image, the water type classification map, and the estimated TSS values for: (a)- 
(c) the Nile River Estuary (May 20, 2020), (d)-(f) the Amazon River Estuary (Aug. 24, 2019), and (g)-(i) the Yangtze River Estuary (Apr. 8, 2018). 
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Rrs differed from the in situ-measured Rrs spectra in Lake Akan and Lake 
Vieux Desert, and the values of Rrs at the selected band (560 nm) are 
obviously lower than in situ-measured Rrs (Fig. 15b and c). Therefore, the 
OLCI-derived TSS concentrations in these two lakes were 

underestimated (pink and yellow points in Fig. 9). However, there were 
some cases where the atmospherically corrected Rrs had similar 
magnitude and shape to that of in situ measured Rrs spectra. For example, 
the shape of OLCI atmospherically corrected Rrs is similar to the in situ- 

Fig. 13. Showcase maps showing the RGB OLCI image, the water type classification map, and the estimated TSS values for: (a)-(c) Lake Victoria (Aug. 17, 2016), (d)- 
(f) Lake Qinghai (Jun. 29, 2020), (g)-(i) Lake Turkana (Mar. 13, 2020), and (j)-(l) Lake Kasumigaura (Oct. 13, 2019). 
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measured Rrs spectra in Lake Kasumigaura, and the value of Rrs at the 
selected band (754 nm) for TSS estimation is very close to in situ- 
measured Rrs (Fig. 15a). Therefore, the OLCI-derived TSS estimations 
agreed well with in situ TSS in Lake Kasumigaura (green points in Fig. 9). 
Additional improvements to atmospheric corrections should ensure 
more accurate Rrs estimates from satellite images. 

Although we used a one-pixel buffer along the shoreline to minimize 
land effects, adjacency effects are considered to be another error source 
for obtaining accurate Rrs and thus accurate TSS estimations from sat-
ellite images. The Improved Contrast between Ocean and Land (ICOL) 
processor available in BEAM can be used to correct the adjacency effects 
for improving the retrieval of Rrs from satellite data (Odermatt et al., 
2010). This issue will be further investigated in future study. 

5.3. Significance of TSS estimation from satellite imagery 

Lake Kasumigaura and Lake Suwa are two of the most intensively 
monitored lakes in Japan (National Institute for Environmental Studies, 
2020, personal communication). Even so, only monthly or weekly 
monitoring data at several sites are provided by the field surveys. In 
contrast, satellite images provide frequent water quality data (e.g., 
Figs. 10 and 11), allowing us to capture more episodic events. For 
example, during April 2016 – March 2020 in Lake Kasumigaura, only 48 
in situ TSS samples were collected by NIES for each monitoring site, but 
more than 370 TSS estimates were obtained from OLCI images in the 
same period (Fig. 10). An extreme TSS event occurred when Typhoon 
Hagibis made landfall in Japan on October 12, 2019. This event was 
accurately captured by an OLCI image acquired on October 13, 2019 
(Fig. 13l), but no in situ TSS data was collected during the same time 

period. Generally, field surveys are not carried out under strong winds, 
and thus these high TSS events cannot be monitored. 

Importantly, satellite images can provide detailed spatial distribu-
tion maps for a wide range of TSS concentrations (Figs. 12 and 13), 
which can help us efficiently monitor water quality, assess the aquatic 
ecosystem status, and take management actions. 

6. Conclusions 

In this study, we propose a widely applicable method based on a 
semi-analytically derived bbp for estimating TSS concentrations in clear 
to extremely turbid waters. The new method employs four wavelengths 
to estimate TSS concentration in clear (Type I, 560 nm), moderately 
turbid (Type II, 665 nm), highly turbid (Type III, 754 nm), and 
extremely turbid (Type IV, 865 nm) waters, respectively. The choice of 
an optimal wavelength (band) for different water types can not only 
satisfy the key assumption of a ≈ aw at the core of the semi-analytical 
algorithm, but also ensures a TSS-sensitive wavelength for TSS re-
trievals, and thus allows the proposed method to work seamlessly over a 
wide range of turbidity levels. The validations using 1000 simulated 
data points (TSS ranging from 0.01 g/m3 to 1100 g/m3) and 3421 in situ 
data points (TSS ranging from 0.09 g/m3 to 2627 g/m3) confirmed the 
above findings. The proposed TSS estimation method, with the smallest 
RMSE and MAPE values (RMSE = 0.1 and MAPE = 16.0% for simulation 
data, RMSE = 0.3 and MAPE = 39.7% for in situ data), outperformed 
other state-of-the-art methods. The proposed TSS estimation method 
was also applied to MERIS and OLCI satellite images over Lake Kasu-
migaura and Lake Suwa, Japan for a long-term period (2003–2020). The 
results not only showed good agreement between the satellite-derived 
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Fig. 14. Comparison of in situ-measured and estimated TSS values only for using in situ-measured Rrs spectra collected by the above-water approach. (a) TSS es-
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and in situ-measured TSS values, but also demonstrated that monitoring 
of TSS can be enhanced using satellite data in combination with field 
surveys. 
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