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Abstract -- The National Aeronautics and Space Administration 

(NASA) Soil Moisture Active Passive (SMAP) mission has been 

validating its soil moisture (SM) products since the start of data 

production on March 31, 2015. Prior to launch, the mission 

defined a set of criteria for core validation sites (CVS) that enable 

the testing of the key mission SM accuracy requirement (unbiased 

root-mean-square error <0.04 m3/m3). The validation approach 

also includes other (“sparse network”) in situ SM measurements, 

satellite SM products, model-based SM products, and field 

experiments. Over the past six years, the SMAP SM products have 

been analyzed with respect to these reference data, and the 

analysis approaches themselves have been scrutinized in an effort 

to best understand the products’ performance. Validation of the 
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most recent SMAP Level 2 and 3 SM retrieval products (R17000) 

shows that the L-band (1.4 GHz) radiometer-based SM record 

continues to meet mission requirements. The products are 

generally consistent with SM retrievals from the European Space 

Agency (ESA) Soil Moisture Ocean Salinity mission, although 

there are differences in some regions. The high-resolution (3-km) 

SM retrieval product, generated by combining Copernicus 

Sentinel-1 data with SMAP observations, performs within 

expectations. Currently, however, there is limited availability of 3-

km CVS data to support extensive validation at this spatial scale. 

The most recent (version 5) SMAP Level 4 SM data assimilation 

product providing surface and root-zone SM with complete spatio-

temporal coverage at 9-km resolution also meets performance 

requirements. The SMAP SM validation program will continue 
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throughout the mission life; future plans include expanding it to 

forested and high-latitude regions.  

 

Index Terms—SMAP, Soil Moisture, Validation, Core 

Validation Sites 

 

I. INTRODUCTION 

The National Aeronautics and Space Administration (NASA) 

Soil Moisture Active Passive (SMAP) mission has produced 

global soil moisture (SM) measurements since March 2015 [1].  

SMAP uses the L-band (1.413 GHz) frequency to carry out the 

SM measurements because of its sensitivity to SM changes in 

the surface (~0-5 cm) soil layer and its relative insensitivity to 

confounding effects of surface roughness and vegetation [2]. As 

with other remotely sensed data products, the scientific value of 

these SM products is determined, in part, by how well their 

performance characteristics are known. The process of 

assessing the accuracy of a data product by independent means 

is called validation ([3],[4]). The SMAP mission established a 

rigorous validation program to verify that mission requirements 

are met and to provide information on the quality of the 

products to the community. The mission recognized the 

importance of the calibration and validation program early on, 

resulting a comprehensive plan of validation activities during 

the pre-launch phase ([5]). In particular, the mission started 

engaging external partners and conducting validation exercises 

years before the launch. Moreover, the SMAP validation 

strategy benefited from two earlier missions that had a 

considerable focus on the validation of SM products: the (Japan 

Aerospace Exploration Agency) JAXA AMSR-E (Advanced 

Microwave Scanning Radiometer-Earth Observing System) 

instrument launched by NASA on the Aqua satellite in 2002 

([6]), and the SMOS (Soil Moisture and Ocean Salinity) 

satellite launched by ESA (European Space Agency) in 2009 

([7]). AMSR-E validation efforts spurred the development of 

locally dense observation networks with surface SM 

measurements in hydrologic research watersheds for SM 

validation at the footprint scale of these satellites (tens of 

kilometers) (e.g., [8],[9],[10],[11],[12],[13],[14]). This trend 

continued with SMOS (e.g., [15],[16],[17],[18],[19]). 

Consequently, when SMAP was launched in 2015, there was 

already a significant infrastructure of locally dense networks in 

place with respect to the remote sensing footprint size, due to 

these earlier efforts and active international cooperation.  

The SMAP project evaluated these existing locally dense 

networks for their suitability as so-called SMAP core validation 

sites (CVS) and called for expanding these kinds of 

observations as much as possible, while also incorporating 

sparse networks (typically providing just one point-scale 

observation location within a footprint), other satellite data 

products, model-based products, and field experiments into the 

SM validation plan ([5]). The AMSR-E and SMOS validation 

efforts utilized these components as well. In the US, the AMSR-

E community led a series of field experiments that also included 

airborne observations (e.g., [20],[21],[22]). The experience 

gained from these experiments was invaluable for the 

subsequent SMAP validation experiments (Section III.F). 

SMOS SM validation plans [23] similarly included field 

experiments (e.g., [24]), sparse networks (e.g., [25]), and other 

approaches (e.g., [26]) in addition to dense networks (e.g., 

[27],[28],[18],[29]). In the 1990s, an effort was started to 

collect global SM measurements in a single database called the 

Global Soil Moisture Data Bank [30]. ESA and SMOS 

continued the development of a centralized repository via the 

ongoing collection of in situ SM observations into the 

International Soil Moisture Network (ISMN; [31]).  

The SMAP project required the release of beta and validated 

versions of the SM data products after 6 and 12 months, 

respectively, from the start of science observations [5]. This 

timeline drove many decisions in the development of the 

validation plan and tools. Obviously, only reference data for the 

period after the start of the SMAP science observations on 

March 31, 2015 could be used for SMAP validation. Moreover, 

reference measurements needed to be available to SMAP with 

short temporal latency to facilitate validation of the beta and 

validated product versions in time for their public release.  The 

mission’s emphasis on this point ensured that there were data 

available during the first months of the validation period to 

meet the challenging timeline. This is also the main reason the 

SMAP validation team connected directly to the data providers 

and operated outside of established repositories, such as the 

ISMN, that do not have such strict latency requirements. 

Furthermore, the bulk of the data processing tools were 

developed and the data formats, transfer protocols etc. were 

agreed upon before the launch of SMAP. This arguably reduced 

the flexibility to include data sets that did not meet the 

constraints during the first year of the validation. However, 

once the most intensive phase of the validation was completed, 

the mission was able to increase flexibility and relax its 

previous requirements on the latency of the validation data. 

A unique aspect of the SMAP SM validation is the need to 

assess SM estimates for the nested “surface” (0-5 cm) and 

“root-zone” (0-100 cm) soil layers from the SMAP Level 4 (L4) 

product, which is based on the assimilation of SMAP brightness 

temperature (TB) observations into a land surface model [39]. 

To the extent possible, the SM validation strategy for the L4 

product is similar to that of the directly retrieved Level 2 (L2) 

and Level 3 (L3) surface-only SM products (Section II), which 

were based on CVS, sparse networks, and other data sources. 

However, adaptation to the unique characteristics of the L4 

product resulted in some differences between the validation of 

the L4 and L2/L3 products (Sections III and IV). 

The Committee on Earth Observation Satellites (CEOS) has 

advanced a four-stage validation hierarchy, which has been 

adopted by many providers of satellite data product 

(https://lpvs.gsfc.nasa.gov). The validation stages increase with 

the breadth of the validation effort (Appendix A).  SMAP was 

operating at validation Stage 1 during the first year of the 

mission, which implied that the assessment was conducted 

based on comparisons to in situ reference data collected at a 

small set of locations and over relatively short time periods. The 

SM products achieved Stage 2 shortly thereafter with the 

extension of the spatial and temporal scope and the publication 

of the first validation results in the peer-reviewed literature. 

Since then, SMAP has continued to expand the analysis, with 

significant contributions from the community, to achieve Stage 

3 maturity. Stage 4 (the final stage) requires the Stage 3 level 

analysis to be updated systematically over time. Many of the 

SMAP validation analyses are currently updated on a yearly 
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basis and released in the data product assessment reports (e.g., 

[32],[33]), which satisfies the key aspect of Stage-4 validation. 

The experience of the AMSR-E, SMOS, and SMAP SM 

validation efforts contributed to two important community 

reference documents that outline best practices for SM 

validation along with guidance for future development of these 

practices [34],[35].  The SMAP SM validation approach is 

largely in line with these recommendations. This paper lays out 

the SMAP SM validation approach, describes the use of the 

different methodologies, discusses the uncertainty estimates 

associated with the validation analyses (Section III), and 

presents updated validation results for the most recent versions 

(R17000 for L2/L3 and Vv5030 for L4) of the SMAP SM 

products (Section IV). In Section V, we discuss the reliability 

of the validation approach, its shortcomings, and how to 

improve on the current approach as well as results from other 

validation studies and future directions for the SMAP soil 

moisture products and their validation.  

II. SMAP SOIL MOISTURE DATA PRODUCTS 

Since March 31, 2015, the SMAP mission has delivered data 

products containing instrument measurements (Level 1), 

geophysical SM retrievals (swath-based, L2, and daily 

composite, L3), and SM estimates from data assimilation of the 

instrument measurements into a land surface model (L4). On 7 

July 2015, the SMAP radar malfunctioned and ceased 

operation.  Prior to the radar malfunction, SMAP provided four 

different surface SM products and one root-zone SM product 

[1]: radiometer-based surface SM on a 36-km grid [36], radar-

based surface SM on a 3-km grid [37], radiometer and radar 

combined surface SM on a 9-km grid [38], and surface and root-

zone SM based on the assimilation of SMAP TB observations 

into the NASA Goddard Earth Observing System (GEOS) 

Catchment land surface model on a 9-km grid [39]. The grid 

used by the SMAP products is the version 2 Equal Area 

Scalable Earth (EASEv2) grid system [40],[41]. 

Following the failure of the radar, the mission introduced a 

new TB sampling approach and two new SM products. The 

SMAP 40° angle TB measurements have a 38-km resolution 

(defined by the half-power footprint on the Earth’s surface of 

the radiometer antenna pattern); the radiometric resolution of 

the gridded TB is better than 0.5 K, and the measurements filter 

out radio frequency interference (RFI, [42],[43],[44]). The 

original radiometer sampling averaged the TB measurements 

over the 36-km EASEv2 grid cells using inverse distance 

weighting ([45]). The enhanced TB processing developed after 

the radar malfunction, using a Backus-Gilbert approach to 

sample measurements on the 9-km EASEv2 grid [46]. A new 

SM product was developed based on the enhanced TB product, 

which was also sampled onto the 9-km grid [47]. Because the 

spatial resolution of the TB measurement is considerably larger 

than the 9-km spacing of the sampling grid, the enhanced 

passive radiometer-based SM product (henceforth, PE) inverts 

the TB from a given 9-km grid cell into a SM estimate using 

ancillary data and parameters for a 33-km “aggregation 

domain” centered on the 9-km grid cell, thereby approximating 

the spatial resolution of the TB measurement. The second SM 

product introduced after the radar malfunction uses 

observations from the C-band radar on the Copernicus Sentinel-

1a and 1b satellites to downscale the SMAP L-band radiometer 

TB measurements with an algorithm similar to that used by the 

original SMAP radar/radiometer combined product [38], and 

then derives SM from the downscaled TB field [48]. The 

SMAP/Sentinel-1 product (henceforth, SP) provides SM on 1-

km and 3-km grids. The product uses the SMAP observations 

only when the Sentinel-1 measurements are available; 

therefore, the product covers the Earth in about 12-days (based 

on Sentinel-1 repeat cycle), but the combined revisit interval of 

the two satellites is less for certain areas where data collection 

is prioritized (over Europe, for example) [48].  Table I 

summarizes the SMAP SM products.   

The radiometer-based products (P and PE) include SM 

retrieved using three different algorithms: single channel 

vertical polarization (SCA-V), single channel horizontal 

polarization (SCA-H) and dual channel algorithms (DCA) [49]. 

Besides adding the enhanced and the SMAP/Sentinel-1 

products described above, the mission has broadly improved all 

products over the years. Key improvements include the 

processing of ancillary data, such as the surface temperature 

[49], updating the SM retrieval algorithm for the DCA [50], and 

improving the modeling parameterization for the L4 product 

[51]. New versions of the SMAP SM products have been 

released approximately yearly with various enhancements and 

always accompanied by updated assessment reports (e.g., [32] 

[33]), plus a complete reprocessing of the data.  

The SMAP baseline validation domain is defined by the 

product accuracy requirements of the mission. Surfaces with 

permanent ice and snow, urban areas, wetlands, and areas with 

above-ground vegetation water content greater than 5 kg/m2 are 

excluded from the formal accuracy requirements and identified 

with a non-zero Retrieval Quality Flag (RQF) [1].  In recent 

years, the SMAP SM algorithm research has included 

improving the quality of SM retrievals in more densely 

TABLE I.  SMAP SOIL MOISTURE DATA PRODUCTS.  THE RESOLUTION COLUMN INDICATES THE EFFECTIVE SPATIAL RESOLUTION  
AND THE EASEV2 GRID COLUMN INDICATES THE SPACING OF THE POSTING GRID. 

Data Product 

Name 
Abbr. Short Description Resolution 

EASEv2 

Grid 
Time Period 

[L2/L3]SMPE PE Enhanced radiometer-based 33 km 9 km March 31, 2015 – present 

[L2/L3]SMP P Radiometer-based 36 km 36 km March 31, 2015 – present 

[L2/L3]SMA A Radar-based 3 km 3 km April 13 – July 7, 2015 

[L2/L3]SMAP AP Combined SMAP radiometer and radar 9 km 9 km April 13 – July 7, 2015 

L2SMSP SP Combined SMAP radiometer and Sentinel-1 radar 3 km 3 km March 31, 2015 – present 

L4SM L4 Model assimilation product (surface and root-zone SM) 9 km 9 km March 31, 2015 – present 
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vegetated regions, which has resulted in validation activities in 

forested areas [52][53].  

III. SMAP SOIL MOISTURE VALIDATION STRATEGY AND 

METHODOLOGIES 

The SMAP SM validation strategy is driven by the mission 

validation requirements, the characteristics of the measured SM 

(accounting for natural variability in the horizontal, vertical and 

time dimensions), and the availability of high-quality reference 

data [5]. NASA required the SMAP mission to measure SM to 

within 0.04 m3/m3 accuracy - in an average aggregate sense - 

across the entire SM validation domain [1],[54], where 

accuracy is defined as the standard deviation of the error or 

unbiased root-mean-square error (ubRMSE, see Appendix B). 

Because the locally dense CVS SM monitoring networks 

provide the best available measurements of SM at the SMAP 

radiometer footprint scale (Section III.B ), the mission chose 

the CVS data as the primary validation reference to establish 

that the accuracy requirement is met. Specifically, the product 

accuracy assessment is based on the average of the unbiased 

root-mean-square difference (ubRMSD) sampled at the CVS 

[56]. Other metrics used in the validation are the RMSD and the 

mean difference (MD) (see Appendix B). Owing to errors in the 

in situ measurements, the ubRMSD, RMSD and MD are 

conservative estimates of the true SMAP ubRMSE, RMSE and 

bias, respectively (section III.A). The validation metrics further 

include the Pearson correlation (R; Appendix B) and the 

anomaly R computed using the departures from the multi-year, 

seasonally varying climatology computed for both the reference 

and SMAP SM [51]. Because the number of available SM CVS 

across the globe is limited, the validation strategy was 

complemented with additional data sources. These sources 

include geographically more extensive SM networks with only 

one, or very few, measurements within the footprint (i.e., sparse 

networks; Section III.C), other global satellite-based SM 

products (Section III.D), global land model-based estimates of 

SM (Section III.E), and field experiments (Section III.F). 

Additionally, the validation of the L4 product included data 

assimilation diagnostics as an important element, reflecting the 

unique nature of L4 among the products (Section III.G). Each 

methodology has key features that are exploited in the 

continuing validation process to accomplish the most 

comprehensive validation possible for each product across time 

and space. 

The application of the methodologies and analysis approaches 

depends on the SMAP products. For example, there are few 

other high-resolution (<30 km) SM products, especially at the 

global scale, that can be compared with the SMAP active (A), 

active-passive (AP) and SP products. Triple collocation (TC) 

analysis has been used to support the use of the sparse networks 

and other satellite data products together with land model-based 

products for complementary assessments of the P and PE 

products [57],[58]. However, since the L4 product is based on 

merging radiometer observations into a land model, traditional 

TC analysis cannot be used for the L4 SM because there are not 

enough independent reference datasets. However, other 

Instrumental Variable approaches can be used to quantify the 

skill improvement from the assimilation of SMAP observations 

in L4 (relative to a model-only baseline; [59]). Table II 

summarizes the different validation methodologies and the 

analysis approaches applied with them for the different data 

products. 

The SMAP satellite makes measurements in the morning and 

evening based on its 6 AM / 6 PM equator crossing sun-

synchronous orbit configuration (Section II). The accuracy 

requirement for L2SM products applies to the SM retrieved 

using the 6 AM (descending) SMAP overpasses because of the 

expected uniformity of the temperature across the soil-

vegetation column [49], but the SM retrieved using the 6 PM 

overpasses is also validated (and actually has roughly 

equivalent accuracy performance to the AM overpasses). L4 

SM is available and validated at 3-hourly intervals. 

Currently, the data record of in situ comparisons with SMAP 

is over 6 years long. This allows a very detailed look into the 

performance of the SMAP products, including seasonal 

characteristics (e.g., [60],[61],[62]). Continuing data collection 

and validation are nevertheless important. CEOS considers the 

continuous monitoring of data consistency to be a key aspect of 

any validation program since it allows for the reliable detection 

of any potential anomalies. For example, SMAP experienced an 

operational anomaly from 19 June to 23 July 2019; once SMAP 

science measurements were available again after 23 July 2019, 

it was extremely important to have immediate access to 

TABLE II.  SMAP CAL/VAL METHODOLOGIES FOR L2-L4 SOIL MOISTURE PRODUCTS, RELEVANT ANALYSIS APPROACHES  
AND ASSOCIATED PRODUCTS. 

Methodology  Key Features Analysis Approaches Products 

Core validation 

sites  

Accurate estimates of products at matching 

scales for a limited set of conditions  

Direct comparisons  P, PE, A, AP, SP, L4 

Retrieval algorithm testing P, PE, A 

Sparse networks  
One point in the grid cell for a wide range of 

conditions  

Direct comparisons (bias-

insensitive metric only)  
P, PE, A, AP, SP, L4 

Triple-collocation P, PE, 

Satellite products  
Estimates over a very wide range of 

conditions at matching scales  

Direct comparisons P, PE 

Triple-collocation P, PE 

Instrumental Variable  L4 

Model products  
Estimates over a very wide range of 

conditions at matching scales  

As part of the triple-collocation 

analysis 
P, PE 

Field campaigns  
Detailed estimates for a very limited set of 

conditions  

Direct comparisons P, PE 

Retrieval algorithm testing P, PE 

Assimilation 

diagnostics 

Assessment of the proper functioning of the 

assimilation system 

Observation-Forecast (O-F) TB 

residuals 
L4 
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concurrent validation data to verify that the SM retrieval 

performance remained unchanged following the operational 

anomaly. 

The metrics computed with respect to in situ data are subject 

to sampling error and should always be provided together with 

statistical confidence intervals. Reference [34] summarizes the 

appropriate methodology to compute confidence intervals for 

each metric. While they provide a quantitative way of 

evaluating the statistical significance of the differences between 

different products and algorithm versions, it is important to 

emphasize that they do not provide the confidence with respect 

to the actual true value, but the confidence in the calculation of 

the difference between the two data sets (SMAP and the 

reference). This approach was adopted also by the SMAP 

validation team. The equations are summarized in Appendix B. 

A. Horizontal and Vertical Variability of Soil Moisture 

SM measurements are scale-dependent and must be 

interpreted in terms of their spatial support, spacing, and 

network extent [63]. The validation of SMAP SM with in situ 

measurements is complicated by the extremely different spatial 

support of the measurements (point-scale in situ sensor 

measurements vs km-scale resolution of the SMAP products). 

Depending on the network, the spacing and extent of the in situ 

measurements may approximate the SMAP footprint, as is the 

case with the CVS. Perhaps most importantly, the spacing of 

the station measurements (number and distribution) must allow 

a reliable estimation of the average SM over the SMAP 

footprint. The required minimum number of point-scale sensors 

and their spacing is dictated by the spatial variability of SM 

within the area of interest and the desired accuracy for the 

estimate at that spatial scale (e.g., [64],[65],[66],[67], 

[68],[9],[10],[69],[70],[71]). Upscaling of in situ measurements 

to a satellite footprint scale can be accomplished by averaging 

in situ measurements with some weighting scheme and it can 

also include additional high-resolution information (e.g., [72], 

[73], [74], [75], [76]). For the SMAP CVS, the geometric 

Voronoi diagram ([77]; or see Thiessen Polygons in [78]) 

approach was chosen as the baseline upscaling approach to 

avoid geographical overweighting of clustered parts of the 

pixels – for uniformly distributed networks, the weighting of 

the stations is also uniform and the upscaling corresponds to a 

simple arithmetic average [54].  Because of an extremely 

distinct soil texture gradient at the Carman CVS, an upscaling 

approach based on the soil texture distribution relative to the 

SM station locations was applied there [79]. Reference [80] 

presented the upscaling approach applied at the Twente CVS 

where a smaller number of continuously measuring stations are 

used to estimate the average SM based on a hydrological model 

and measurements from additional stations that do not cover the 

entire time-period. 

The scale discrepancy presents a particular challenge for 

determining errors in large-scale SM products because the long-

term mean SM at a randomly selected single point may be very 

different from that of the area-average SM. That is, point-scale 

SM measurements are typically biased with respect to area-

average SM. Conversely, the time-varying component of SM 

typically has a large autocorrelation over long distances; that is, 

point measurements can better represent the SM temporal 

changes over domains of several km [81],[82]. Many studies of 

temporal stability of SM very effectively illustrate these 

differences of spatial and temporal evolution of SM (e.g., 

[83],[84],[85],[11],[86],[70]). Generally, the sparse networks 

lack adequate representation for resolving bias and RMSE at 

the scale of satellite SM retrieval footprints.  

While arguably less severe than the challenges facing the 

sampling of bias [82], there are also challenges in estimating 

bias-insensitive metrics (e.g., ubRMSE, R) from sparse ground 

observations. Most notably, random spatial representativeness 

errors will spuriously inflate the sampled ubRMSD [87] and 

degrade the sampled estimates of R [57]. As a result, the 

recovery of absolute ubRMSE and R metrics acquired from in 

situ measurements, and especially from sparse networks, 

requires statistical upscaling techniques capable of estimating, 

and correcting for, the impact of random spatial representative 

errors (see Section III.C).  

In addition to determining performance metrics, 

calibration/validation (cal/val) activities are often used to 

quantify the relative variation of metrics between, for example, 

two different retrieval techniques. It is worth noting that a 

robust bulk characterization of relative skill in terms of 

ubRMSE and R can generally be obtained directly from sparse 

network data – without the application of upscaling techniques. 

While point-to-footprint upscaling errors can be large, they can 

be treated as random in nature and independent of retrieval 

errors. As a result, random spatial representativeness can be 

assumed to have an equal impact on ubRMSD and R calculated 

for multiple products and will not affect the assessment of 

relative metric differences between two products [88].  

A consequential assumption in SMAP validation is that the 

L2/L3 products provide an estimate of the surface SM in the top 

5 cm (on average) and within the grid cell boundaries. This is 

especially important in considering the breakdown of 

uncertainties. The response of a microwave radiometer varies 

depending on the SM content and its vertical distribution (e.g., 

[89],[90],[91],[92]). Accounting for this effect separately in the 

data product would introduce another set of uncertainties, but 

because of the assumption, the uncertainty caused by the 

variable sensing depth is embedded within the product 

uncertainty (e.g., [93],[80]). Hence, the validation of the surface 

SM products is done with respect to in situ measurements that 

correspondingly provide an estimate for the top 5 cm of the soil 

column with their own set of uncertainties. Most of the in situ 

measurements used for SMAP validation measure the SM at 5 

cm depth using a probe that is installed horizontally in the soil 

which captures the SM over an approximate depth range of 3-7 

cm, missing the topmost layer of the soil. Probes that have ~5 

cm prongs and are inserted vertically also capture the topmost 

layer and provide a truer average of water content in the 0-5 cm 

soil column, particularly during rapid dry-down periods after 

rain events [94]. Vertical installation, however, makes sensors 

more vulnerable to surface disturbances, and depending on the 

sensor, may interfere with the water flow, result in inaccurate 

soil temperature compensation of the probe calibration, or the 

assumptions of the SM measurement along the sensor prongs 

may be inaccurate [95]. The study in [96] found that the 

practical difference of these measurements is dependent on the 

soil clay content (increasing dependence on sensor orientation 

with increasing clay content).  
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B. Core Validation Sites 

The SMAP mission engaged with investigators across the 

globe to provide data from dense networks. The networks were 

assessed before the SMAP launch according to the following 

criteria: 

1. Number of sensors: N>8 for 36-km, N>5 for 9-km and N>3 

for 3-km pixels (see [54]). 

2. Geographical distribution: The sensors are not clustered in 

only one portion of the pixel but cover (approximately) the 

entire pixel (although not necessarily evenly, see the next 

requirement). 

3. Spatial upscaling: An average SM can be established based 

on the measured SM and ancillary information (such as 

additional short-term observations), see Section III.A.  

4. Calibration: The sensors have undergone a calibration 

using additional measurements, or the calibration is 

otherwise verified based on past measurements. 

5. Quality assessment: The time-series of each sensor is valid 

(no dropouts, spikes, drifting, etc.). 

6. Maturity: The network has been up and running for a 

sufficiently long period during which the overall 

consistency of the measurements was verified. 

7. Latency: The data is made available for SMAP validation 

within 1 week (at most 1 month). This criterion was applied 

only in the early phase of the mission.  

Based on these requirements, currently 15 sites provide 

reference data at the 33-km scale (or 36 km for the standard P 

product), 17 sites provide reference data at the 9-km scale, and 

8 sites provide reference data at the 3-km scale. At the 9-km and 

3-km scales, a few sites include more than one independent 

reference pixel, for a total of 22 (15) pixels at the 9-km (3-km) 

scale. Two of the original 36-km sites (Kyeamba and Bell Ville) 

[54] did not continue to provide data from a sufficient number 

of stations after the initial validation period and were therefore 

moved to the candidate site category. One site (HOBE; [97]) 

was added only after the initial validation period because it had 

not met the first-year latency requirement. The 9-km L4 product 

is validated primarily using 9-km reference pixels that were 

selected following largely the same principles as for L2 SM 

validation, resulting in a nearly identical set of 18 CVS with 

sufficient in situ measurements for surface SM validation. Only 

7 CVS provide sufficient measurements for root-zone SM 

validation. Table III lists the CVS and candidate sites and 

Figure 1 shows their locations.   

Most of the 33-km CVS have more than the minimum 

required number of measurement locations, which would 

suggest an uncertainty of less than 0.03 m3/m3 for the average 

in situ SM across the 33-km reference pixel [54]. However, [82] 

found that the variability of the SM caused the confidence 

interval (CI) for the MD to be greater than 0.03 m3/m3 at seven 

of the 15 analyzed CVS. The study also accounted for the 

distribution of the stations (spacing) so that clustered 

installations had less sampling power; using this adjustment, the 

MD CI exceeded 0.03 m3/m3 at nine CVS. The study found that 

these sites would need to add about eight stations on average to 

meet the CI goal. At four of the CVS, temporary SM sensors 

were installed that provided an additional 19-34 measurement 

stations over one season. These temporary measurements are 

useful as a reference for the permanent network measurements. 

As expected, SM measurements from the permanent and 

temporary networks were very well correlated overall, but the 

absolute SM difference ranged from 0.009 m3/m3 to 0.034 

m3/m3 [98], which supports the finding by [82] that significant 

uncertainties in absolute SM remain even with relatively dense 

spatial sampling. 

Even though the candidate validation sites did not satisfy all 

of the core site requirements, they still offered rich data sets. 

The 18 candidate sites provided data from six continents and 

for diverse land cover and climate conditions. The candidate 

sites could be applied to investigate SM anomalies, the impact 

of RFI on SM retrievals, and performance outside the validation 

domain (e.g., forests).  

In Section IV, updated performance metrics at the CVS are 

presented using the six-year data record of the latest SMAP 

product version for each SM product. The metrics obtained for 

  
Figure 1. Map of core and candidate validation sites and sparse networks overlaid on a land cover map (MODIS IGBP). 
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each CVS are averaged to derive an overall representative 

value. 
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TABLE III. CORE AND CANDIDATE VALIDATION SITES  

 Location Site Name 

No. of ref. pixelsa 

No. sensors 

(short-term) 

Short-

term 

stations 

Data period 

used 

(month/ 

year)b 

Field 

Experimentsc 

Climate 

Regimed 

MODIS IGBPe Land Cover (True 

Land Cover) 
References L2

33 

L2

9 

L2

3 

L4

SF 

L4

RZ 

C
o
r
e 

Argentina Monte Buey 1 1 1 1 - 19  4/15-3/21  Arid Croplands  

Australia Yanco 1 2 4 2 - 38  4/15-8/20 ‘06,‘10/’11,‘15 Semi-Arid Croplands (Crop-grass mix) [14][99][100][17] 

Benin AMMA-CATCH-Benin 1* 1 - 1 - 9  4/15-12/20  Arid Savannas [101] 

Canada Kenaston 1 2 2 2 1 36  4/15-8/19 ‘10 Cold Croplands [19][102] 

Canada Carman 1 1 - 1 - 27(50) ‘16 4/15-3/21 ‘12, ‘16 Cold Croplands [79] [103][104][105] 

Denmark HOBE 1 1 1 1 - 30  4/15-3/19  Temperate Croplands (Crop-natural mix) [15] 

Mongolia Mongolian grasslands 1 - - - - 14  4/15-10/20  Cold Grasslands [106] 

Niger AMMA-CATCH-Niger 1* 1 - 1 - 6  4/15-12/20  Arid Grasslands [101] 

Spain REMEDHUS 1 2 - 2 - 23  4/15-3/21  Temperate Croplands [11] 

Spain Valencia - 1 1 1 - 9  4/15-7/17  Arid Savannas woody  

The Netherlands Twente 1 - - - - 20  4/15-12/18  Temperate Cropland/natural mosaic [80][16]  

USA (Arizona) Walnut Gulch 1 2 2 3 - 54(49) ‘15 4/15-3/21 ’04, ‘15 Arid Shrub open [107][10][108] 

USA (California) Tonzi Ranch 1* 1 1 1 1 121  4/15-10/20  Temperate Savannas woody  

USA (Georgia) Little River 1 1 - 1 1 33(48) ‘17 4/15-12/20 ‘03 Temperate Cropland/natural mosaic [109][110] 

USA (Idaho) Reynolds Creek 1 1* - 2 - 15  4/15-12/20  Arid Grasslands [111] 

USA (Indiana) St. Josephs - 1 - 1 - 15  4/15-3/20  Cold Croplands [112] 

USA (Iowa) South Fork 1 1 - 3 3 20(39) ‘16 4/15-12/20 ‘16 Cold Croplands [113][114][52] 

USA (Oklahoma) Fort Cobb 1 1 - 2 2 15  4/15-12/20 ‘07 Temperate Grasslands (Crop-grass mix) [115] [86] 

USA (Oklahoma) Little Washita 1 1 - 3 2 20  4/15-12/20 ’99, ’03, ‘07 Temperate Grasslands [115] [86] 

USA (Texas) TxSON 1 2 3 2 2 40  4/15-3/21  Temperate Grasslands [70] 

C
a
n

d
id

a
te

 

Argentina Bell Ville 1 - - - - 8  4/15-3/21  Arid Croplands  

Australia Kyeamba 1 1 - - - 14  4/15-8/20 ‘06 Temperate Croplands [14] [17] 

Austria HOAL 1 - 1 - - 37  4/15-12/20  Temperate Mixed forest (Crop-grass-forest mix) [116] 

Canada Alberta 1 1 - - - 30  6/17-9/19  Cold Mixed forest  

Canada BERMS 1 1 - - - 17(20) ‘22 5/18-10/19 ‘22 Cold Forest evergreen needl.  

Canada Casselman - 1 - - - 15  4/15-3/21  Cold Croplands  

Finland Sodankylä 1 1 1 - - 25  4/15-3/21  Cold Savannas woody (Evergreen needl.) [117] 

Finland Saariselkä - - 1 - - 4  4/15-3/21  Cold Savannas woody (Tundra)  

Germany TERENO 1 1 - - - 14  4/15-10/15  Temperate Forest mixed [118] 

India Berambadi - 1 - - - 8  4/15-3/18  Tropical  Savannas woody (Crop-natural mix) [119] 

Italy EURAC - 1 1 - - 12  4/15-3/16  Polar Shrub open [120] 

Kuwait Kuwait 1 1 1 - - 3(5) ’18 4/15-3/20  Temperate Barren/sparse [121] 

Mexico Tabasco - 1 - - - 2  4/15-9/16 ‘13-‘15 Tropical Croplands  

Tibet Ngari 1 2 - - - 25  4/15-8/17  Arid Barren/sparse [122] 

Tibet Naqu 1 1 - - - 11  4/15-8/17  Polar Grasslands [122] 

Tibet Maqu 1 1 1 - - 28  4/15-8/17  Cold Grasslands [122] 

Tunisia Tunisia 1 - - - - 6  4/15-6/20  Arid Croplands  

USA (Alaska) Sagwon 1 1 - - - 12  6/17-9/19  Polar Shrub open  

USA (Mass.) Harvard Forest 1 1 1 - - (23) ‘19-‘22 4/19-3/21 ‘22 Cold Forest deciduous broadleaf [52] 

USA (New York) Millbrook 1 1 1 - - 7(25) ‘19-‘22 4/15-3/21 ‘22 Cold Forest deciduous broadleaf [123] 

*) Candidate at this scale 

a) A single site can have multiple pixels at various spatial scales (see, e.g., [54]). SF stands for surface and RZ for root-zone. 

b) Some but not all sites provide data before 4/15 and/or after 3/21. The range does not account for station outages. 

c) Experiments including an L-band retrieval aspect and a large-scale sampling. 

d) Koeppen-Geiger climate classification scheme [124] 

e) MODIS-based International Geosphere-Biosphere Program classification [125] 
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C. Sparse Networks 

During the SMAP period (2015-present), a large number of in 

situ SM measurements are available from across the world, 

albeit with larger concentration in North America (see Figure 

1).  Most of these measurements are from sparse networks and 

do not provide SM at the spatial scale of SMAP estimates 

(Section III.A). Nevertheless, they still provide useful 

information and greatly expand the spatial coverage of the in 

situ validation. The periodically released SMAP assessment 

reports include performance metrics computed using the sparse 

network measurements (e.g., [49]). These metrics are not used 

in an absolute sense, but give a general indication of retrieval 

performance and to track consistency between algorithm 

versions (see Section III.A). Table IV summarizes the networks 

used in the SMAP validation activities. Most of the networks 

use conventional probe-based measurements, but the PBO H2O 

network uses GPS reflectometry to derive SM [126] and the 

COSMOS network uses neutron measurements to derive SM 

[127], which have different spatial and vertical support 

compared to probes. 

The use of sparse networks together with other satellite-based 

and land model-based SM products in TC approaches has been 

studied extensively (e.g., [128],[129],[130]). The basic 

principle has been to use TC to statistically characterize point-

to-footprint upscaling errors and then apply this 

characterization to correct for the biasing impact of such error 

on satellite validation metrics [87]. However, despite this 

potential, work conducted during the SMAP cal/val project 

revealed significant limitations in the utility of TC for this 

purpose. First, TC analysis is insensitive to the presence of 

additive or multiplicative biases in a time series. Such biases 

can only be detected (and thus eliminated) if TC is given access 

to a perfectly calibrated data set (i.e., data lacking bias of any 

kind and degraded only via additive random noise).  This 

assumption, unfortunately, is not satisfied by the sparse 

network SM observations [57]. As a result, TC cannot 

contribute directly to the specification of either RMSE (which 

is sensitive to both additive and multiplicative biases) or even 

ubRMSE (which is sensitive to multiplicative bias). Even for a 

bias-tolerant metric like R, TC is only truly trustworthy when 

applied to a SM anomaly time series, that is, after removing the 

multi-year mean (seasonally varying) SM climatology 

[57],[131].  Therefore, the utility of TC analysis for the 

calculation of absolute SMAP cal/val metrics from sparse 

networks is limited to anomaly R.  

We computed bias-insensitive performance metrics with 

respect to the sparse networks with confidence intervals using 

the six-year data record for each product. The metrics obtained 

for each network location were averaged based on land cover to 

derive representative values for each major land cover class 

(Section IV).  

D. Other Global Satellite Products 

Other global satellite-based SM products can be compared 

directly with SMAP SM estimates by computing the 

performance metrics between the products at each grid point 

[137]. Such results do not indicate the correctness of the 

retrievals - rather the degree of consistency between the 

products; anomalies in the consistency across the globe can 

point to potential weak points in the algorithm that are not 

revealed by geographically limited in situ measurements.  

The intercomparison can be developed further by applying 

TC with additional global information sources. Provided that 

certain statistical assumptions (e.g., mutual error independence) 

are met, TC can provide unbiased estimates of anomaly R – 

even in the absence of ground-based observations. Using a 

triplet of SMAP (or SMOS) SM retrievals, ASCAT SM 

retrievals and surface SM estimates from land surface models, 

[58] validated the assumptions underlying TC (over limited 

areas of the globe containing ground-based observations) and, 

subsequently, applied TC globally to obtain unbiased, 36-km 

estimates of anomaly R for SMAP, ASCAT and SMOS SM 

retrievals. Their results illustrated that SMAP retrievals are 

significantly outperforming their SMOS or ASCAT equivalents 

over a large fraction of the globe.   

SMOS provides the most relevant satellite products for 

comparison with the SMAP SM because it uses the same L-

band frequency as SMAP. Moreover, SMOS retrievals utilize 

multi-angle TB measurements to compensate for the vegetation 

effect, but otherwise the retrieval approaches are similar. The 

comparisons between SMAP and SMOS were updated over the 

SMAP lifetime (Section IV). The SMAP PE product on the 9-

km grid allows for interpolation of the SM values to the SMOS 

grid with minimal loss of information because the 9-km SMAP 

grid spacing is less than a half of the effective resolution of the 

product (Nyquist Sampling Theorem). Therefore, the metrics 

(ubRMSD, MD, RMSD, Pearson correlation) were computed 

over each SMOS grid point with sufficient valid retrievals with 

the SMAP PE (SCA-V algorithm) and SMOS L3 products after 

applying the quality flags for both products. The standard 

bilinear interpolation of the four nearest data points was applied 

to the SMAP PE product and if any of the values used in the 

interpolation was flagged, the result was also flagged.  

TABLE IV. SPARSE NETWORKS.  

Network Area Technique 
No. of 

stationsa 

Data 

period used 

(month/ 

year)b 

Ref. 

CRN USA 
HydraProbe 

(triplet) 
119 4/15-3/21 [132] 

SCAN USA HydraProbe 202 4/15-3/21 [133] 

Oklahoma 

Mesonet 

Oklahoma, 

USA 

Campbell 

Scientific 

229-L 

140 4/15-4/18 [134] 

Pampas Argentina HydraProbe 20 4/15-3/21  

SMOSMANIA France ThetaProbe 21 4/15-12/19 
[135] 

[136] 

Mongolian 

Grasslands 
Mongolia Trime IT 14 4/15-10/20 [106] 

PBO H2O Western USA 
GPS 

reflectometry 
124 4/15-12/17 [126] 

COSMOS Mostly USA 
Cosmic ray 

probe 
79 4/15-12/19 [127] 

OzNet Australia 

CS615/ 

HydraProbe/ 

SDI-12 

50 4/15-8/20 [14] 

a) Total number of stations in network.  Not all stations provide data suitable 

for SMAP product validation. 

b) Some but not all sites provide data before 4/15 and/or after 3/21. The date 

range does not account for station outages. 
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E. Global Model-based Products 

Like other satellite products, land surface model-based SM 

products cannot be used as a direct reference for SMAP SM 

validation [138]. Nevertheless, land models capture the most 

relevant hydrological processes and SM dynamics based on a 

large set of input parameters, including precipitation, and 

therefore, offer an additional source of SM information at 

global scale and at very high temporal resolution. Various land 

model products have been used in SMAP validation studies, 

especially to support TC analyses, including the GMAO Nature 

Run [57][58], MERRA-2 [34], ECMWF ERA [139], and 

ECMWF H-TESSEL [58]. These studies exploit the 

independence of the model products from remote and in situ 

measurement to compensate remote-sensing error metrics for 

the impact of random error in model and in situ reference 

products.  

F. Field Experiments 

Before the launch, the SMAP field experiments facilitated 

retrieval algorithm development and testing (e.g., [99], [103]). 

After the launch, the field experiments have supported the 

testing of specific algorithm features under a limited set of 

conditions. These analyses can be supported by CVS data sets 

as they offer a longer-term reference set, albeit without the 

supporting measurements provided in a field experiment. For 

this reason, the SMAP Validation Experiment 2015 

(SMAPVEX15) [108] and SMAPVEX16 [104] focused on the 

locations of the Walnut Gulch, South Fork and Carman CVS 

sites. The main objectives of these experiments were, 

respectively, to support the development and validation of the 

SM spatial disaggregation algorithm used by SMAP and to 

provide additional insight into algorithms over agricultural 

domains, where the analysis of the first-year retrievals revealed 

specific issues [36]. The SMAP Experiment-4 (SMAPEx-4) 

and SMAPEx-5 in Australia at the Yanco CVS were also 

designed to support the development and validation of SM 

downscaling algorithms [100].  

Unfortunately, only SMAPEx-4 was executed before the 

SMAP radar malfunctioned; when SMAPVEX15 and 

SMAPEx-5 were conducted later in 2015, only the SMAP 

radiometer was operational. The Copernicus Sentinel-1 mission 

– now used for the SP product – did not make measurements 

over the SMAPVEX15 site at that time, but did cover the 

SMAPEx-5 site [140]. The topic is particularly important 

because the validation of the spatial disaggregation techniques 

is exceptionally difficult. The issue is related to the challenge 

of reliably characterizing the SM areal mean (discussed in 

Section III.A), since, in order to show that a disaggregation 

approach works as intended, absolute SM levels in neighboring 

grid cells need to be known accurately (see also Section IV.B). 

Furthermore, the difference between the average SM in the cells 

needs to be large enough for the disaggregation to have a 

meaningful impact on the retrieved SM pattern. Such cases are 

extremely difficult to capture during a short-term field 

experiment.  

Airborne measurements providing high-resolution SM 

retrievals are well-suited for evaluating the effectiveness of 

downscaling approaches because they provide a spatially 

distributed SM reference (e.g., [141]). The data collected during 

SMAPVEX15 (despite not being able to test SMAP radar-based 

disaggregation) was useful for examining: sub-footprint spatial 

heterogeneity; discrepancies in 5-cm in situ sensor readings and 

SMAP measurements with the help of rain gauge records [108]; 

the effectiveness of a high-resolution hydrological model for 

SM validation [142], and surface roughness effects on SM 

retrievals [143]. 

Over agricultural areas, SM retrievals face rapidly changing 

vegetation and surface roughness conditions that may be large 

enough to disrupt L-band retrieval of SM (e.g., [61][60][144]). 

In SMAPVEX16, the vegetation water content (VWC) and 

surface roughness were sampled at multiple fields within the 

South Fork and Carman CVS. VWC was measured multiple 

times over the growing season. While the VWC calibrated 

using the experiment data [114] shows significant differences 

with respect to the data used by the SMAP algorithm, the 

differences cannot by themselves explain the retrieval errors of 

the operational algorithm [104]. 

G. Assimilation Diagnostics 

In any operational data assimilation system, model estimates 

are routinely confronted with the assimilated observations.  The 

L4 algorithm computes, in 3-hourly intervals, the difference 

between the SMAP TB observations that are available during 

each 3-hour period and the corresponding model forecast TB 

[145].  These observation-minus-forecast (O-F) TB residuals 

encapsulate the new information provided by the SMAP 

observations to the modeling system; they consequently form 

the basis of the L4 SM analysis, which converts the O-F TB 

residuals into corrections to the modeled SM estimates (a.k.a. 

SM increments).  Because the O-F TB difference involves only 

TB observations that have not contributed to the corresponding 

TB forecast, the statistics of the O-F TB residuals provide 

independent verification of the quality of the model’s TB 

estimates and, by extension, the model’s SM estimates within 

the assimilation system.  Specifically, in a well-calibrated, 

unbiased assimilation system, the time series mean of the O-F 

TB residuals should be close to zero.  Moreover, the typical 

magnitude of the O-F TB residuals (computed as their time 

series standard deviation) should be consistent with the error 

assumptions underpinning the assimilation system. Finally, a 

well-designed land data assimilation – parameterized with 

accurate measurements of both model and observation errors – 

will also minimize the temporal standard deviation of O-F TB 

residuals. This principle is particularly useful when evaluating 

new L4 algorithm versions. For example, the land model 

revisions in Version 4 of the L4 algorithm resulted in a 

reduction of the typical magnitude of the O-F TB residuals by 

0.13 K compared to Version 3 [51].   

IV. UPDATED VALIDATION RESULTS 

A. Radiometer-Based Product (PE) 

This section presents updated validation results for the PE 

algorithm only. Results for the P algorithm are essentially the 

same (not shown) because of the very similar resolution of the 

products [47]. Figure 2 shows histograms of the validation 

metrics for the 6 AM overpasses computed over the CVS, with 

the average metric indicated by the vertical blue line.  Metrics 

include the ubRMSD, MD, RMSD, R and anomaly R. The 

numbers in the plots list the average and median metrics, along 
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with lower and upper bounds of the 95% confidence interval of 

the average metric (see Appendix B). The performance of the 

SCA-V (current baseline) and DCA algorithms is essentially 

the same (well within the confidence interval), while the SCA-

H algorithm has a significantly larger MD and ubRMSD. 

When categorized based on land cover, the grassland 

dominant sites have markedly better performance metrics 

compared to agriculture-dominated sites (Table 5).  Across all 

sites, the DCA performed slightly better than SCA-V (0.036 vs 

0.038 m3/m3 ubRMSD).  This difference stems from the 

agricultural sites, where DCA is better at addressing rapid 

temporal variability in vegetation attenuation characteristics 

than SCA-V due to the latter’s use of a prescribed NDVI-based 

VWC climatology. 

The metrics were also compared to the soil texture and the 

mean and variance of the VWC at each site. The soil texture 

was based on the values obtained from in situ samples where 

available and from the global data set used for the SM retrieval 

otherwise. The only parameter pair that resulted in a meaningful 

correlation was the MD versus soil clay content. Figure 3 shows 

the scatterplot for the MD of each algorithm as a function of the 

clay content at the CVS. SCA-V exhibits the strongest 

correlation, while DCA has a somewhat weaker correlation; for 

SCA-H, the correlation is only marginally meaningful (P-value 

0.016). The MD has the most uncertainty of the metrics as 

discussed in Section III.A, but the level of correlation with clay 

content is compelling, especially for SCA-V. Although the 

result seems to indicate a systematic bias in the SMAP SM, the 

effect may be linked to the vertical distribution of water in the 

top layers of the soil and the difference between the in situ 

sensor and the SMAP measurements as the clay content impacts 

the water retention in the soil. It is also possible that the clay 

content correlates with the upscaling uncertainty contributing to 

the observed relationship.  

Next, Figure 4 shows histograms of ubRMSD and correlation 

vs. the sparse network measurements for each algorithm, 

broken down by grasslands and croplands. The SCA-H has 

somewhat weaker performance than SCA-V and DCA, 

 
Figure 2. Histograms of the performance metrics over the core validation sites (all available data between March 31, 2015 and March 31, 2021) for the L2SMPE 

SCA-H, SCA-V and DCA algorithms (version R17000) morning overpasses. The blue line shows average metric values. Text in brackets gives the 95% confidence 

intervals of the average metric values. Validation period is from April 2015 through March 2021. 

 
Figure 3. Core validation site (CVS) SM MD vs clay fraction observed at the 

site for each of the PE algorithms. 

 

TABLE V.  L2SMPE ALGORITHM PERFORMANCE OVER CVS DOMINATED 

BY GRASSLANDS (N=6) AND CROPLANDS (N=6) FOR 6 AM OVERPASSES 

L2SMPE Land ubRMSD MD RMSD R Anom. R 

SCA-H 

 

Grass 0.033 -0.053 0.066 0.84 0.80 

Crops 0.055 -0.038 0.070 0.73 0.74 

SCA-V 
Grass 0.030 -0.015 0.038 0.85 0.81 

Crops 0.043 -0.020 0.052 0.79 0.74 

DCA 
Grass 0.031 -0.010 0.037 0.86 0.82 

Crops 0.039 -0.021 0.050 0.80 0.74 
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particularly for croplands, consistent with the CVS results. All 

algorithms performed significantly worse for croplands 

compared to grasslands. As discussed in Section III.C, the 

representativeness errors over sparse network sites are expected 

to be large, which is reflected also in the level of the ubRMSD 

and R values, which are generally worse than for CVS. 

Furthermore, the sparse networks are particularly susceptible to 

representativeness errors over croplands, which have relatively 

higher heterogeneity compared to grasslands. Moreover, the in 

situ measurements in croplands are typically installed next to 

the actual fields to avoid interfering with the cultivation 

activities, which may exacerbate the problem. The metrics of 

the core site and sparse network comparisons for AM and PM 

overpasses are tabulated in Appendix C. 

Finally, Figure 5 shows a comparison of the SMAP L3SMPE 

SCA-V with the SMOS L3 SM product from their morning 

overpasses. The quality flags of the products were cross applied 

before the comparisons. For reference, panels (a) and (b) show 

the time series of mean and standard deviation, respectively, for 

SMAP SM for the nearly 6-year period from 31 March 2015 to 

13 March 2021. As expected, the mean and variation are small 

in arid and desert regions, such as the Sahara, the Arabian 

Peninsula, and western Australia. Large variations are seen in 

the Pampas, in the savannas south of the Sahel region, in the 

savannas south of the Congo rainforest and in eastern Australia. 

Panel (c) shows the number of valid SMAP-SMOS data pairs 

used in the comparison, indicating good coverage except in 

forested regions. Panel (d) shows the MD between the products. 

SMAP has generally wetter features in the western Sahel, 

southern Congo rainforest and eastern India, for example. Panel 

(e) shows the ubRMSD between SMAP and SMOS. First, 

regions with low SM variability have naturally low ubRMSD, 

and regions with high variability are prone to have a high 

ubRMSD. Therefore, the patterns in SM variability (panel (b)) 

are, for the most part, repeated in those of the ubRMSD (panel 

(e)). However, the savannas south of the Sahel and in eastern 

Australia exhibit relatively low ubRMSD indicating a 

particularly good match between the SMAP and SMOS 

products there. Finally, panel (f) shows the correlation between 

products.  Significant parts of the globe have strong 

correlations, including regions with relatively low SM 

variability such as western Australia. Owing to the lack of 

underlying signal, low correlations are expected in areas with 

extremely low SM variability, such as the Arabian Peninsula 

and Sahara Desert. There are regions where the differences 

between the products draw more attention. For example, the 

Indian subcontinent has relatively large ubRMSD and low 

correlation, which are not directly explained by high or low 

variability, respectively, and relatively large and varying MDs. 

Based on a global TC analysis, [58] suggest that SMAP SM is 

more reliable than SMOS L3 SM product (v300) in this region. 

B. SMAP/Sentinel-1 Combined Product (SP) 

Figure 6 shows the histograms of the validation metrics over 

the CVS for the SP product at 9-km and 3-km resolution. 

Anomaly correlation was not computed because the number of 

SP retrievals does not allow for a reliable computation of the 

climatology. The number of sites used is less than shown in 

Table III. The smaller number of sites reflects the limited 

coverage by Sentinel-1; SP retrievals are also flagged when the 

site happens to be systematically on the edge of a Sentinel-1 

data granule [48]. The average ubRMSD of 0.035 m3/m3 at the 

9-km scale is below the 0.04 m3/m3 ubRMSE threshold of the 

requirement. The difference to the ubRMSD of the PE SCA-V 

and DCA products is within the statistical confidence intervals. 

The average MD is reasonable, but with large variation from 

site to site, which is reflected in the relatively large average 

RMSD value (compared to that of the SCA-V and DCA 

algorithms of the PE product). The correlation is in line with the 

good ubRMSD performance. Considering that the SP algorithm 

is susceptible to additional uncertainties because of the 

disaggregation scheme, the performance is overall very 

satisfactory at 9-km. The narrow distribution of the individual 

site results around the average value, especially for ubRMSD 

and correlations, is also a good sign regarding the consistency 

of the performance.  

At the 3-km scale, the overall number of sites is smaller than 

at the 9-km scale. Additionally, as in the 9-km case, the number 

of sites used in the comparison is smaller than values shown in 

Table III because of the limited Sentinel-1 coverage. However, 

at 3-km, the site-to-site consistency observed in the 9-km 

evaluation breaks down. The reliability of the aggregate results 

is somewhat questionable, given the large dispersion of the site-

specific results around the average values. However, the 

requirement of only three stations within footprint for the 3-km 

sites seems particularly small (relative to requirements enforced 

at 9- and 33-km) and may be the primary reason for large spread 

in the metrics. Naturally, some of the dispersion is due to the 

retrieval performance; however, the current reliability of 3-km 

results remains relatively low. 

Figure 7 shows the sparse network metrics for the SP product 

for grasslands and croplands at the 3-km scale. The number of 

stations is not the same as in the PE comparison (Figure 4) 

because of the coverage of the SP product, as discussed above. 

 
Figure 4. Histograms of the performance metrics over the sparse network sites 

for the PE SCA-H, SCA-V and DCA algorithms. The blue (red) vertical lines 

indicate average values for grassland (cropland) stations. The numerical values 

for the average are provided in each panel and the number of stations (N) is 

provided in the legend. Validation period is from April 2015 through March 

2021. 
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The performance over grasslands is identical to that of the PE 

product. Over croplands, the correlation is very similar to that 

of the PE product and the average ubRMSD is somewhat 

smaller.  

Figure 8 shows the spatial distribution of SM for a 400 km by 

300 km area in Georgia, USA (a) based on the PE product (b) 

and the SP product at the 3-km resolution (c) and aggregated up 

to the 9-km resolution (d). Panel (b) illustrates the true 

resolution of the PE product (33 km) as the SM features are 

spatially smoothed over the 9-km grid. In contrast, the SM 

features of the 9-km SP product follow distinctly the 9-km grid, 

and the same is true for the 3-km resolution (d). The 

observations are consistent with the SP algorithm principle, 

which relies on the TB observations to provide the information 

content on the absolute SM level at the coarse scale (33 km), 

while the backscatter observations provide the information 

content on the higher-resolution spatial variations starting from 

1 km (not shown).  

In principle, the smaller temporal ubRMSD obtained with the 

SP product over croplands implies that the 3-km SP product, 

through its disaggregation technique, compensates for some of 

the heterogeneity that the PE product cannot resolve. However, 

in order to evaluate quantitatively this possibility, the skill of 

the spatial disaggregation would need to be assessed using 

approaches focused on spatial measures of downscaling 

performance (as discussed in Section III.F).  

C. Assimilation Product (L4) 

Figure 9 summarizes the performance of L4 surface and root-

zone SM product across the CVS for the 9-km reference pixels 

(Table 3). The ubRMSD values for individual CVS locations 

are relatively tightly clustered around their average values, 

which are 0.040 m3/m3 for surface and 0.027 m3/m3 for root-

zone SM. When factoring in the measurement error of the 

reference pixel-average in situ observations, which reference 

[82] conservatively estimates as ubRMSE~0.01-0.02 m3/m3, 

the L4 product clearly meets the accuracy requirement (i.e., 

average ubRMSE≤0.04 m3/m3) specified prior to the launch of 

SMAP. The MD values are spread across a much wider range 

of approximately ±0.1 m3/m3, with an average MD of 0.023 

m3/m3 for surface and 0.027 m3/m3 for root-zone SM. The 

average absolute MD is 0.049 m3/m3 for surface and 0.047 

m3/m3 for root-zone SM. The relatively large MD values 

originate in the underlying land surface modeling system that 

 
Figure 5. Comparison of SMAP SCA-V SM (R17000) and SMOS Level 3 SM (v300) for morning overpasses between March 31, 2015-March 31, 2021. Time 

series (a) mean and (b) standard deviation of SMAP SM. (c) Number of SMAP-SMOS data pairs used in the analysis. (d) Mean difference (SMAP minus SMOS) 

and (e) ubRMSD and (f) Pearson correlation between SMAP and SMOS SM. 
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dictates the SM climatology in which the SMAP TB analysis 

operates. Owing to the large MD values, the RMSDs are 

noticeably larger than the ubRMSDs and spread across a wider 

range. The average RMSD is 0.068 m3/m3 for surface and 0.059 

m3/m3 for root-zone SM. Finally, correlation values exceed 0.6 

at most of the sites, with average correlation values of 0.75 for 

surface and 0.76 for root-zone SM and average anomaly 

correlation values of 0.71 for surface and 0.80 for root-zone 

SM. It must be emphasized that the L4 SM validation presented 

in Figure 9 is based on 3-hourly data and 9-km pixels at 18 core 

sites. When evaluated at the 33-km reference pixels (not 

shown), the ubRMSD for L4 surface SM drops to 0.037 m3/m3 

and is thus comparable to that of the L2SMPE product (Figure 

2). 

Next, Figure 10 summarizes the performance of L4 SM across 

178 grassland and 94 cropland sparse network stations. Root-

zone measurements are not available at all stations, and at one 

station each for surface and root-zone SM there is no anomaly 

correlation metric because the number of available 

measurements was not sufficient to compute the climatology 

needed for this metric. The average ubRMSD for L4 surface 

(root-zone) SM is ~0.056 (~0.038) m3/m3, with typical values 

ranging from 0.03 to 0.09 m3/m3 for surface SM and from 0.02 

to 0.07 m3/m3 for root-zone SM. The surface SM ubRMSD is 

slightly higher for cropland than grassland stations, but the 

difference is much less pronounced than for the L2 product 

(Figure 4 and Figure 7); for L4 root-zone SM, the ubRMSD is 

nearly identical for grasslands and croplands. As expected, the 

ubRMSD at the sparse network stations is larger than at the 

CVS (Figure 9) due to enhanced levels of upscaling error 

associated with characterizing SM at the 9 km scale using only 

one or two point-scale sparse network measurements.  

Typical values for the L4 correlation and anomaly correlation 

at the sparse network stations range from 0.5 to 0.9 at a large 

majority of the stations, with average metrics falling between 

0.65 and 0.74 for surface and between 0.59 and 0.70 for root-

zone SM (Figure 10). Interestingly, the L4 correlation and 

anomaly correlation skill is better by ~0.04 on average for 

cropland than for grassland stations, which is the opposite of 

the result seen for the L2 product (Figure 4 and Figure 7). Most 

of the sparse network stations are in the continental US, where 

the L4 algorithm benefits from high-quality land model 

background estimates owing to the dense network of 

precipitation gauges available to force the land surface model. 

Consequently, L4 SM should be less sensitive than the L2 

retrievals to errors incurred in the challenging parameterization 

of the surface radiative transfer equations over cropland.  

Finally, the L4 algorithm’s consistency between the 

assimilated SMAP TB observations and the corresponding TB 

model forecasts was examined (Section III.G). Figure 11(a) 

shows a global map of the mean O-F TB residuals from the L4 

algorithm, with a global average value of only 0.06 K and an 

average absolute value of just 0.29 K. The small values 

primarily reflect the impact of the climatological rescaling of 

the assimilated SMAP TB observations prior to their 

assimilation into the land surface model [145]. The L4 

algorithm, through this TB rescaling, efficiently assimilates the 

time series anomaly information contained in the SMAP TB 

observations while ensuring that the analysis is unbiased. 

Whereas earlier versions of the L4 algorithm relied on SMOS 

TB observations to determine the rescaling parameters and 

resulted in mean absolute O-F TB values of ~0.6 K, only SMAP 

observations are used to compute the rescaling parameters in 

Version 5. This, together with improvements in the underlying 

modeling system, considerably improved the algorithm 

calibration. Figure 11(b) shows the global distribution of the 

standard deviation of the O-F TB residuals, with values ranging 

from 2-3 K in very densely and very sparsely vegetated regions 

 
Figure 7. Histograms of the ubRMSD and correlation over the sparse network 

sites for the SP product at the 3-km resolution. The blue (red) vertical lines 

indicate average values for grassland (cropland) stations. The numerical values 

for the average are provided in each panel and the number of stations (N) is 

provided in the legend. Validation period is from April 2015 through March 

2021. 

 
Figure 6. Histograms of the performance metrics over the core validation sites (all available data between March 31, 2015 and March 31, 2021) for the L2SMSP 

at 9-km and 3-km resolution (version R17000). The blue line shows the average of the values. The brackets show the 95% confidence intervals of the average 

value. Validation period is from April 2015 through March 2021. 
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up to 10-12 K in regions with strong SM variability.  The 

typically very large O-F TB residuals in central Australia are a 

consequence of gross errors in gauge-based precipitation 

forcing used in the land modeling system. These errors were 

revealed by the assimilation of SMAP TB observations in the 

L4 algorithm [145],[59]. The global average O-F TB standard 

deviation is 5.5 K in the Version 5 algorithm, which represents 

a ~0.2 K reduction from the corresponding value in the Version 

4 algorithm [51].  This reduction in the typical magnitude of the 

O-F TB residuals reflects improvements in the underlying land 

surface modeling system as well as in the calibration stability 

of the assimilated SMAP TB observations [146]. 

V. DISCUSSION 

The CVS analysis illustrates that the performance of the 

current versions of the SMAP SM products is as expected based 

on earlier results. The PE product (and, by extension, the P 

product) meets the mission requirements by achieving 

ubRMSD of less than 0.04 m3/m3 (with both SCA-V and DCA 

algorithms). The enhancements in the DCA algorithm [50] 

helped achieve a mean performance of less than 0.04 m3/m3 

ubRMSD also over agricultural areas, although some of the 

individual sites still exhibit performance not meeting 

expectations.  

The temporal performance of the SP product at 9-km based 

on the CVS comparisons is satisfactory. The CVS comparisons 

at 3-km suffer from a lack of sites and the low number of 

sampling points within the 3-km reference pixels (even though 

meeting the original requirement of three stations). The 

validation of high-resolution and/or disaggregated SM products 

will need significantly more resources in the future for 

completing a full assessment of these products. The availability 

of sites meeting the original CVS requirements (Section III.B) 

at 3-km (or 1-km) is not adequate, and even sites meeting these 

criteria do not reliably capture the area-average SM. The skill 

of the spatial downscaling algorithm, as discussed in Section 

IV.B, is difficult to resolve. Improving the skill requires 

measurement setups, such as airborne field experiments (e.g., 

[147],[140]) or particularly dense measurement networks close 

to each other, which are not commonly available. This is a very 

significant aspect of the validation of spatially downscaled 

products that is often overlooked in algorithm assessments.   

The performance of L4 surface SM compared well with the 

PE and SP products over the CVS. Like the SP product, the 

root-zone product comparisons also suffer from a lack of 

suitable reference sites, with only 7 independent CVS locations 

currently available. 

As discussed in Section III.B, studies have found that to 

estimate reliably the absolute level of the area-average SM, the 

number of point measurements required seems to be larger than 

originally estimated. The SMAP criteria for the number of 

spatially distributed measurement locations was computed 

based on the relationship between SM variability in the area and 

the desired accuracy with a certain level of confidence 

presented in [67].  The original computation assumed 70% 

confidence, and for the 3-km and 9-km scales, a 0.05 m3/m3 

target accuracy with an assumption of a 0.05 m3/m3 SM spatial 

variation within the pixel, which resulted in three and five 

measurement-location minimums, respectively [54]. With a 

 
Figure 8. SMAP SM over a region in Georgia, USA. (a) Map of the area. (b) 

SMAP L2SMPE SM. The grid size is 9-km. (c) SMAP L2SMSP at the 9-km 

resolution. (d) SMAP L2SMSP at the 3-km resolution. 

 

[m3/m3]

a

c

b

d

150 Km 

33.04°
-82.60°

30.97°

-85.69°



16 

90% confidence, a 0.03 m3/m3 target accuracy and spatial 

variation assumptions of 0.06 m3/m3 and 0.07 m3/m3 (which are 

more in line with literature, e.g., [67]) the corresponding 

minimum number of locations would be 17 and 23. For the 33-

km scale, a 90% confidence and a 0.08 m3/m3 SM variability 

(instead of the original 0.07 m3/m3) would result in 30 locations 

(instead of 8). These numbers are consistent with the findings 

of [82] (which also applied 90% confidence in the 

computations). This translates into a strong desire to not only 

see more CVS at different spatial scales but to see them deploy 

even denser networks at all scales to enable an accurate 

computation of the bias-sensitive SM metrics. For the bias-

insensitive metrics (e.g., R or ubRMSE), the requirements are 

not as strict; the sampling currently available at the 33-km sites 

provides a solid reference for computing these metrics [82]. At 

smaller scales (9-km, 3-km, and even 1-km and below), the 

availability of sites with an adequate sampling, even for 

resolving the bias-insensitive metrics, is scarcer. Inadequate 

validation resources will hinder the development of the SM 

products overall because spatially representative validation 

references are needed to reveal the true performance of the 

algorithms; otherwise, the representativeness errors will 

dominate the comparisons and algorithm improvement will be 

difficult. 

The SMAP SM products have been investigated in several 

other studies using various dense and sparse networks. Most of 

the networks are captured in this study, but there are a few 

additional ones, including the BIEBRZA-S-1 network in 

Poland [148], the RSMN network in Romania [149], CTP-

SMTMN in China [150] and an agricultural area in China [151]. 

Several studies include complementary analysis approaches 

and comparisons to other spaceborne SM products over the in 

 
Figure 9. Histograms of performance metrics over the 9-km reference pixels from N core validation sites for L4 SM Vv5030 (top) surface and (bottom) root-

zone soil moisture. Thin vertical lines indicate average values. Numerical values for average (Avg) and median (Med) are provided in each panel, along with 

estimates of 95% statistical confidence intervals for the mean in brackets.  Validation period is from April 2015 through March 2021. 

 
Figure 11. (a) Mean and (b) standard deviation of O-F TB residuals from the 

L4 algorithm (Vv5030) for April 2015 through March 2021.  Areas where too 

few SMAP TB observations are assimilated to compute the O-F TB statistics 

are shown in white.  

 
Figure 10. Histograms of performance metrics over the sparse network sites for 

L4 SM Vv5030 (top) surface and (bottom) root-zone soil moisture, shown 

separately for grassland and cropland stations.  Thin solid (dashed) vertical 

lines indicate average values for grassland (cropland) stations. The number of 

stations (N) and numerical values for the average are provided in each panel. 

Networks include CRN, SCAN, OK Mesonet, SMOSMANIA and OzNet 

(Table IV). Validation period is from April 2015 through March 2021. 
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situ measurement sites, for example, [36], [152], [25], [148] and 

[151]. In all these studies, the SMAP performance over the 

study sites was rated very favorably with respect to the other 

products. Most of these studies did not include confidence 

intervals and the differences were small in some cases. In [151], 

SMAP was the only product to produce reasonable performance 

over a corn field in China. The study also highlighted the 

importance of the varying surface roughness in agricultural 

areas.  

Several of these studies also assess the surface temperature 

used in the SM retrieval algorithm. These comparisons shed 

light on potential systematic errors arising from the estimation 

of the effective soil temperature needed for the inversion of the 

radiative transfer model [153], even though the effective soil 

temperature (based on GEOS model analysis soil temperature 

for the SMAP algorithms, [49]) generally differs from the 

physical soil temperature. This aspect is also particularly 

important for the consistency of the retrievals between the 6 

AM and 6 PM overpasses. Different soil temperatures and the 

different vertical distribution of temperature in the soil-

vegetation continuum can cause systematic differences in the 

retrievals even though their overall performance metrics are 

similar.  

Capturing SM during or right after precipitation is important 

for many hydrological applications. Reference [154] quantified 

the retrieval degradation over CVS during and right after (high 

vertical gradient in SM) rain events and showed that the SMAP 

PE product maintains sensitivity to SM even during rain events 

and suggests that flagging of rain events may be unnecessary to 

ensure SM retrieval quality.  

The utility of the SMAP SM products has been also revealed 

through other means than comparisons to reference 

measurements. For example, [155] showed that the L4 product 

is consistent with SM condition surveys conducted by USDA 

National Agriculture Statistics Service volunteers indicating the 

value of the SMAP observations in the prediction of crop yield 

by geographical area. Reference [156] showed the value of 

SMAP SM in clarifying water supply controls affecting 

ecosystem productivity and land-atmosphere CO2 exchange. 

Reference [157] showed that the SMAP SM improves 

evapotranspiration retrievals for water limited regions. 

References [158] and [159] used an analysis of SMAP SM 

dynamics to investigate the coupling between SM and energy 

fluxes. Reference [160] showed the value of the SMAP SM data 

in improving hydrologic forecasts and [88] showed the SMAP 

products can achieve meaningful correlation between SM and 

near-surface air temperature.    

 During the first three years of the SMAP mission, the 

objective was to provide SM products that meet the 

requirements across the validation domain. Thereafter, the 

objective was broadened to include areas outside of the original 

validation domain, including forests. The mission is currently 

engaged in exploring the improvement and validation of SMAP 

SM products over forested areas through field experiments 

[52],[161], an added focus on forested candidate CVS (see 

Table III) and other networks, such as the National Ecological 

Observatory Network (NEON) [53]. Furthermore, the effort to 

expand the validation domain includes accounting for the 

complex soil composition of the boreal and arctic regions. One 

obstacle in addressing the retrieval issues in these areas has 

been the distortion of the global projection of the EASE v2 grid 

at high latitudes [162]. One solution is the use of the north polar 

grid projection, which is currently being implemented by the 

SMAP mission. 

VI. CONCLUSION 

The validation of six years of SMAP SM products 

demonstrate that they meet the accuracy requirements set for 

the mission. The DCA algorithm of the radiometer-based 

enhanced product (PE) exhibits the best performance - although 

the differences between the DCA and SCA-V are small. All of 

the algorithms show a relative degradation of the performance 

over croplands where the retrievals are challenged by rapidly 

changing vegetation and landscape heterogeneity. DCA is the 

only algorithm maintaining less than 0.04 m3/m3 mean 

ubRMSD for the agriculturally dominated CVS. The PE 

product is also consistent with the SMOS L3 product across 

most parts of the globe. The validation of the 3-km SM product 

is hindered by the small number of high-quality validation 

pixels and the limited temporal and spatial coverage of 

Copernicus Sentinel-1 data. When aggregating the 3-km SM up 

to 9-km, the evaluation is more robust and the performance is 

satisfactory. The 9-km L4 product provides surface and root-

zone SM, and the performance of both meet the mission 

accuracy requirement. Notably, L4 SM does not exhibit similar 

degradation of performance over croplands as the L2 products.  

The SMAP validation program has fostered an increased use 

of in situ resources for SM validation. At the same time, studies 

have found that the spatial sampling requirements for the CVS 

may need to be even higher than originally planned for SMAP 

to accurately measure the area-average absolute SM [82]. 

Going forward, it would be important for the community to 

support efforts that aim at providing more accurate reference 

data at all spatial scales. Counterintuitively, the availability of 

reference data is more restrictive at smaller scales (1 and 3 km) 

than at coarser scales. Accurate reference data – designed to 

capture true SM conditions at a variety of spatial scales – are 

the only way to ensure continued improvement in the quality of 

satellite-based SM products.  

ACKNOWLEDGMENTS 

Funding for this work was provided by the NASA SMAP 

mission. The research described in this publication was carried 

out in part at the Jet Propulsion Laboratory, California Institute 

of Technology, under a contract with the National Aeronautics 

and Space Administration. Computational resources for L4 

production were provided by the NASA High-End Computing 

program through the NASA Center for Climate Simulation. The 

University of Salamanca team involvement in this study was 

supported by the Spanish Ministry of Science, Innovation and 

Universities (project ESP2017- 89463-C3-3-R), the Castilla y 

León Government (projects SA112P20 and CLU-2018-04) and 

the European Regional Development Fund (ERDF). SMAP 

radiometer and SM data products and SMAP core site 

validation data are available from the National Snow and Ice 

and Data Center (https://nsidc.org/data/smap). SMAP radar 

products are available from the Alaska Satellite Facility 

(https://asf.alaska.edu/data-sets/sar-data-sets/smap/smap-data-

and-imagery/). This research was supported by the U.S. 



18 

Department of Agriculture, Agricultural Research Service. 

USDA is an equal opportunity provider and employer. This 

research was a contribution from the Long-Term 

Agroecosystem Research (LTAR) network. LTAR is supported 

by the United States Department of Agriculture. 

APPENDIX A 

CEOS has put forward a four-stage validation hierarchy 

which has been adopted by many data providers 

(https://lpvs.gsfc.nasa.gov). The validation stage increases with 

increasing product maturity and extensiveness of the validation 

effort. It is a useful guide to assess the progress of a validation 

program. 

• Stage 1 Validation: Product accuracy is assessed from a 

small (typically < 30) set of locations and time periods by 

comparison with in-situ or other suitable reference data. 

• Stage 2 Validation: Product accuracy is estimated over a 

significant (typically > 30) set of locations and time periods 

by comparison with reference in situ or other suitable 

reference data. Spatial and temporal consistency of the 

product, and its consistency with similar products, has been 

evaluated over globally representative locations and time 

periods. Results are published in the peer-reviewed 

literature.  

• Stage 3 Validation: Uncertainties in the product and its 

associated structure are well quantified over a significant 

(typically > 30) set of locations and time periods 

representing global conditions by comparison with 

reference in situ or other suitable reference data. Validation 

procedures follow community-agreed-upon good practices. 

Spatial and temporal consistency of the product, and its 

consistency with similar products, has been evaluated over 

globally representative locations and time periods. Results 

are published in the peer-reviewed literature.   

• Stage 4 Validation: Validation results for stage 3 are 

systematically updated when new product versions are 

released and as the interannual time-series expands.  When 

appropriate for the product, uncertainties in the product are 

quantified using fiducial reference measurements over a 

global network of sites and time periods (if available).   

APPENDIX B 

This Appendix describes the computation of the performance 

metrics and the statistical confidence intervals. The 

performance metrics are computed following [55]. The root-

mean-square difference (RMSD) is defined as: 

RMSD = √
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1 , (1) 

where xi is the SMAP soil moisture samples; yi is the in situ soil 

moisture samples (either core validation site or sparse network), 

and N is the number of samples. The mean difference (MD) is 

defined as: 

MD =
1

𝑁
∑ 𝑥𝑖 − 𝑦𝑖

𝑁
𝑖=1 . (2) 

The unbiased RMSD is defined as: 

ubRMSD = √RMSD2 − 𝑀𝐷2 (3) 

The Pearson correlation (R) is defined as: 

𝑅 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

 (4) 

where the overbar denotes average. Anomaly R is computed 

using the same equation, but the climatology of x and y is 

removed from them before applying the equation. 

The confidence intervals (CI) of the aforementioned metrics 

are calculated following [34]. The CI of the MD for one 

measurement location is defined as: 

𝐶𝐼𝑀𝐷 = [𝑀𝐷 + 𝑡𝑁−1
𝛼/2 𝑢𝑏𝑅𝑀𝑆𝐷

√𝑁
,   𝑀𝐷

+ 𝑡𝑁−1
1−𝛼/2 𝑢𝑏𝑅𝑀𝑆𝐷

√𝑁
] 

(5) 

where 𝑡𝑁−1
𝛼/2

 is the value at 𝛼/2 for the t-distribution with N-1 

degrees of freedom. The CI of the ubRMSD for one 

measurement location is defined as: 

𝐶𝐼𝑢𝑏𝑅𝑀𝑆𝐷

= [𝑢𝑏𝑅𝑀𝑆𝐷
√𝑁 − 1

𝜒𝑁−1
1−𝛼/2 ,   𝑢𝑏𝑅𝑀𝑆𝐷

√𝑁 − 1

𝜒𝑁−1
𝛼/2

] 
(6) 

where 𝜒𝑁−1
1−𝛼/2

 is the value at 1 − 𝛼/2 for the 𝜒-distribution with 

N-1 degrees of freedom. The CI of RMSD for one measurement 

location is defined as: 

𝐶𝐼𝑅𝑀𝑆𝐷 = [√𝐶𝐼𝑀𝐷
2 (1) + 𝐶𝐼𝑢𝑏𝑅𝑀𝑆𝐷

2 (1), 

                            √𝐶𝐼𝑀𝐷
2 (2) + 𝐶𝐼𝑢𝑏𝑅𝑀𝑆𝐷

2 (2)] 

(7) 

The CI of R for one measurement location is defined as: 

𝐶𝐼𝑅 = [
𝑒2𝑧𝐿 − 1

𝑒2𝑧𝐿 + 1
,   

𝑒2𝑧𝑈 − 1

𝑒2𝑧𝑈 + 1
] (8) 

where  

𝑧𝐿/𝑈 = 𝑧𝑟 −/+ 
𝐹−1(𝛼/2)

√𝑁𝑒𝑓𝑓 − 3
 (9) 

in which F-1 is the normal inverse function with mean 0 and 

standard deviation 1, and 

𝑧𝑟 =
1

2
𝑙𝑛 (

1 + 𝑅

1 − 𝑅
) (10) 

In the calculation of the CIR, the effective number of samples is 

computed as: 

𝑁𝑒𝑓𝑓 = 𝑁 (
1 − 𝜌

1 + 𝜌
) (11) 

where 

𝜌 = √𝜌𝑥𝜌𝑦 (12) 

in which 𝜌𝑥 and 𝜌𝑦 are the 1-lag autocorrelation of the SMAP 

and in situ SM samples, respectively. The confidence interval 
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for the anomaly R is computed similarly as for R. For the 95% 

confidence intervals,  = 0.05.  

For the average metrics, the confidence intervals of the 

separate locations are combined as follows: 

𝐶𝐼𝑃
̅̅ ̅̅ =

1

𝑀
∑ 𝑃𝑗 −

𝑃𝑗 − 𝐶𝐼𝑃,𝑗

√𝑀

𝑀

𝑗=1
 (13) 

where Pj denotes the metric (MD, ubRMSD, RMSD, R, or 

anomaly R) whose confidence intervals are computed for site j, 

and M denotes the number of sites. 

APPENDIX C 

A. Result Tables for Radiometer-Based Product (PE)  

Table VII and Table VI show the PE product CVS metrics for 

the 6 AM and 6 PM overpasses, respectively. Table VIII shows 

the sparse network comparison results for the PE product. 

 

 

 

 

 

 

 

 

 

TABLE VII. CVS METRICS FOR THE L2SMPE PRODUCT CATEGORIZED BASED ON THE LAND COVER FOR THE 6 AM OVERPASSES. N REFERS TO THE 

NUMBER OF DATA POINTS. 

L2SMPE (6 AM)  ubRMSD (m3/m3) MD (m3/m3) RMSD (m3/m3) R (-) Anom R (-) N 

Land Cover Site Name 
SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

Grasslands  

Reynolds Creek 0.041 0.041 0.044 -0.07 -0.022 -0.013 0.081 0.046 0.046 0.64 0.67 0.63 0.58 0.58 0.51 150 174 171 

TxSON 0.022 0.022 0.025 -0.074 -0.017 0.001 0.077 0.028 0.025 0.92 0.93 0.92 0.91 0.91 0.90 828 828 828 

Fort Cobb 0.033 0.029 0.032 -0.084 -0.046 -0.042 0.09 0.054 0.053 0.88 0.89 0.89 0.86 0.87 0.88 767 769 753 

Little Washita 0.022 0.021 0.027 -0.060 -0.014 -0.002 0.064 0.025 0.027 0.90 0.92 0.91 0.87 0.90 0.91 613 613 613 

MAHASRI 0.035 0.033 0.025 -0.018 -0.011 -0.022 0.039 0.035 0.034 0.78 0.80 0.88 0.72 0.76 0.85 295 287 117 

Yanco 0.042 0.038 0.034 -0.016 0.019 0.018 0.045 0.042 0.039 0.90 0.90 0.92 0.85 0.86 0.89 543 542 532 

Average 0.033 0.030 0.031 -0.053 -0.015 -0.010 0.066 0.038 0.037 0.84 0.85 0.86 0.80 0.81 0.82  

Croplands 

South Fork 0.052 0.046 0.040 -0.075 -0.054 -0.046 0.091 0.071 0.062 0.70 0.74 0.77 0.76 0.76 0.76 351 358 324 

Kenaston 0.041 0.030 0.031 -0.035 0.00 0.007 0.053 0.030 0.031 0.72 0.78 0.79 0.79 0.8 0.78 265 266 266 

Carman 0.085 0.062 0.051 -0.069 -0.062 -0.069 0.109 0.088 0.085 0.61 0.67 0.70 0.64 0.67 0.72 421 427 429 

Monte Buey 0.067 0.045 0.033 -0.035 -0.013 -0.021 0.075 0.047 0.040 0.76 0.85 0.85 0.76 0.82 0.82 332 350 359 

REMEDHUS 0.039 0.038 0.038 -0.020 0.007 0.010 0.044 0.039 0.039 0.83 0.85 0.85 0.69 0.69 0.68 678 730 690 

HOBE 0.045 0.036 0.042 0.002 0.001 -0.004 0.045 0.036 0.042 0.75 0.86 0.85 0.77 0.74 0.69 124 124 124 

Average 0.055 0.043 0.039 -0.038 -0.020 -0.021 0.070 0.052 0.050 0.73 0.79 0.80 0.74 0.74 0.74  

Crops/ 

natural 

Little River 0.045 0.036 0.040 0.014 0.064 0.040 0.047 0.074 0.057 0.73 0.77 0.78 0.68 0.71 0.74 721 718 722 

Twente 0.071 0.060 0.054 0.002 0.029 -0.025 0.071 0.066 0.060 0.81 0.81 0.82 0.64 0.66 0.67 449 449 448 

Average 0.058 0.048 0.047 0.008 0.046 0.008 0.059 0.070 0.058 0.77 0.79 0.80 0.66 0.68 0.71  

Shrub open  Walnut Gulch 0.025 0.026 0.028 -0.014 0.024 0.029 0.029 0.036 0.040 0.76 0.77 0.69 0.74 0.75 0.64 315 335 301 

 

 

TABLE VI. CVS METRICS FOR THE L2SMPE PRODUCT CATEGORIZED BASED ON THE LAND COVER FOR THE 6 PM OVERPASSES. N REFERS TO THE NUMBER 

OF DATA POINTS. 

L2SMPE (6 PM)  ubRMSD (m3/m3) MD (m3/m3) RMSD (m3/m3) R (-) Anom R (-) N 

Land Cover Site Name 
SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

SCA-

H 

SCA-

V 
DCA 

Grasslands  

Reynolds Creek 0.047 0.044 0.046 -0.074 -0.027 -0.017 0.087 0.051 0.049 0.55 0.63 0.6 0.57 0.61 0.55 207 246 240 

TxSON 0.02 0.019 0.022 -0.068 -0.016 -0.001 0.071 0.025 0.022 0.93 0.93 0.93 0.9 0.91 0.89 900 900 900 

Fort Cobb 0.038 0.03 0.03 -0.081 -0.05 -0.051 0.089 0.058 0.059 0.87 0.89 0.87 0.85 0.87 0.85 847 856 798 

Little Washita 0.025 0.021 0.026 -0.048 -0.009 -0.002 0.054 0.023 0.026 0.9 0.91 0.90 0.87 0.9 0.89 642 642 639 

MAHASRI 0.034 0.031 0.031 -0.026 -0.018 -0.019 0.043 0.035 0.037 0.76 0.77 0.70 0.72 0.73 0.64 353 448 213 

Yanco 0.048 0.041 0.033 -0.012 0.016 0.011 0.05 0.044 0.035 0.90 0.91 0.92 0.84 0.85 0.84 573 575 521 

Average 0.035 0.031 0.031 -0.052 -0.017 -0.013 0.066 0.040 0.038 0.82 0.84 0.82 0.79 0.81 0.78  

Croplands 

South Fork 0.052 0.045 0.038 -0.068 -0.057 -0.054 0.086 0.073 0.066 0.73 0.76 0.77 0.78 0.78 0.77 357 367 297 

Kenaston 0.036 0.025 0.03 -0.031 -0.001 0.006 0.047 0.025 0.031 0.83 0.89 0.85 0.85 0.86 0.83 366 367 365 

Carman 0.085 0.066 0.052 -0.072 -0.065 -0.072 0.111 0.093 0.089 0.50 0.53 0.57 0.57 0.58 0.62 494 495 488 

Monte Buey 0.062 0.04 0.033 -0.005 0.001 -0.022 0.062 0.04 0.04 0.83 0.88 0.8 0.8 0.86 0.83 315 336 338 

REMEDHUS 0.04 0.037 0.035 -0.029 -0.007 -0.007 0.049 0.038 0.036 0.82 0.85 0.86 0.71 0.7 0.67 704 860 805 

HOBE 0.043 0.035 0.042 0.01 0.008 0.000 0.044 0.036 0.042 0.72 0.85 0.84 0.74 0.66 0.62 123 123 123 

Average 0.053 0.042 0.038 -0.032 -0.02 -0.025 0.067 0.051 0.050 0.74 0.79 0.78 0.74 0.74 0.72  

Crops/ 

natural 

Little River 0.044 0.036 0.038 0.023 0.067 0.043 0.05 0.076 0.057 0.76 0.76 0.78 0.71 0.71 0.72 642 637 641 

Twente 0.072 0.059 0.054 0.019 0.03 -0.026 0.074 0.067 0.059 0.83 0.82 0.82 0.64 0.64 0.63 562 562 562 

Average 0.058 0.048 0.046 0.021 0.049 0.009 0.062 0.071 0.058 0.80 0.79 0.8 0.68 0.68 0.68  

Shrub open  Walnut Gulch 0.026 0.025 0.026 -0.026 0.01 0.013 0.036 0.027 0.029 0.70 0.73 0.63 0.71 0.71 0.57 573 669 596 
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B. Result Tables for SMAP/Sentinel-1 Combined Product 

(SP) 

Table IX and Table XI show the SP product CVS metrics for 

the 9-km and 3-km scales, respectively. Table X shows the 

sparse network comparison results for the SP product at the 3-

km scale. 

 

 

 

 

 

 

 

 

 

 

TABLE IX. CVS METRICS FOR THE L2SMSP PRODUCT AT THE 9-KM 

SCALE CATEGORIZED BASED ON THE LAND COVER. PIX REFERS TO THE 

PIXEL ID WITHIN THE SITE. N REFERS TO THE NUMBER OF DATA POINTS. 

Land 

Cover 

Site Name Pix ub 

RMSD 

(m3/m3) 

MD 

(m3/m3) 

RMSD 

(m3/m3) 

R 

(-) 
N 

Grasslands  

  

  

  

  

  

  

  

Walnut Gulch 6 0.023 0.028 0.037 0.88 42 

TxSON 2 0.017 -0.031 0.036 0.9 14 

TxSON 11 0.02 -0.024 0.031 0.91 64 

Fort Cobb 11 0.03 -0.019 0.035 0.85 66 

Little Washita 25 0.033 -0.028 0.043 0.84 155 

Niger 2 0.031 0.026 0.041 0.87 63 

Yanco 2 0.055 -0.011 0.056 0.88 58 

Yanco 16 0.05 0.041 0.065 0.8 83 

Average 
 

0.032 -0.002 0.043 0.87 
 

Croplands  

  

  

  

  

  

  

  

  

South Fork 10 0.045 -0.06 0.075 0.79 57 

St Josephs 7 0.03 -0.034 0.046 0.68 31 

Kenaston 10 0.032 -0.082 0.088 0.79 44 

Kenaston 11 0.036 -0.08 0.087 0.76 35 

Carman 6 0.07 -0.037 0.079 0.4 46 

Monte Buey 11 0.023 -0.039 0.045 0.93 19 

REMEDHUS 3 0.047 0.087 0.099 0.79 118 

REMEDHUS 8 0.043 -0.039 0.059 0.77 329 

Valencia 6 0.023 -0.023 0.033 0.77 15 

Average 
 

0.039 -0.034 0.068 0.74 
 

Crops/ 

natural 

Little River 21 0.03 0.09 0.095 0.84 32 

Shrub 

open  

Walnut Gulch 7 0.031 0.06 0.068 0.79 109 

 

 

TABLE XI. CVS METRICS FOR THE L2SMSP PRODUCT AT THE 3-KM 

SCALE CATEGORIZED BASED ON THE LAND COVER. PIX REFERS TO THE 

PIXEL ID WITHIN THE SITE.N REFERS TO THE NUMBER OF DATA POINTS. 

Land 

Cover 

Site Name 

Pix 

ub 

RMSD 

(m3/m3) 

MD 

(m3/m3) 

RMSD 

(m3/m3) 

R 

(-) 
N 

Grasslands   TxSON 1 0.031 0.060 0.068 0.79 109 

TxSON 2 0.017 -0.031 0.036 0.90 14 

Yanco 2 0.030 0.090 0.095 0.84 32 

Yanco 3 0.032 -0.082 0.088 0.79 44 

Yanco 4 0.036 -0.080 0.087 0.76 35 

Average  0.039 -0.034 0.068 0.74 
 

Croplands  

  

Kenaston 1 0.020 -0.024 0.031 0.91 64 

Kenaston 2 0.03 -0.019 0.035 0.85 66 

Monte Buey 1 0.033 -0.028 0.043 0.84 155 

Valencia 1 0.045 -0.06 0.075 0.79 57 

Yanco 1 0.030 -0.034 0.046 0.68 31 

Average  0.030 0.090 0.095 0.84 
 

Shrub 

open  

Walnut Gulch 
5 

0.023 0.028 0.037 0.88 42 

 

TABLE X. SPARSE NETWORK COMPARISON RESULTS FOR THE L2SMSP 

PRODUCT AT THE 3-KM SCALE CATEGORIZED BASED ON THE LAND 

COVER. N REFERS TO THE NUMBER OF STATIONS. 

Land Cover 
ubRMSD 

(m3/m3) 

R 

(-) 

N 

  
Grasslands 0.050 0.63 78 

Croplands 0.068 0.54 26 

Crops/natural  0.077 0.25 3 

Shrubs open 0.042 0.57 32 

Savannas 0.036 0.47 2 

Woody Savanna 0.069 0.38 1 

Barren/Sparse 0.017 0.72 2 

 

TABLE VIII. SPARSE NETWORKS METRICS FOR THE L2SMPE PRODUCT CATEGORIZED BASED ON THE LAND COVER FOR THE 6 AM AND 6 PM OVERPASSES. 

N REFERS TO THE NUMBER OF STATIONS. 

Land Cover 
Over-

pass 

ubRMSD (m3/m3) R (-) Anom R (-) 
N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Grasslands 
AM 0.050 0.050 0.050 -0.076 -0.031 -0.018 0.096 0.073 0.071 0.67 

PM 0.050 0.049 0.049 -0.071 -0.030 -0.020 0.093 0.072 0.071 0.66 

Croplands 
AM 0.077 0.068 0.066 -0.039 -0.010 -0.007 0.122 0.108 0.104 0.54 

PM 0.076 0.066 0.064 -0.032 -0.012 -0.014 0.119 0.105 0.100 0.55 

Crop/Natural 

vegetation mosaic 

AM 0.071 0.063 0.062 -0.036 0.011 -0.008 0.104 0.090 0.090 0.58 

PM 0.071 0.062 0.061 -0.013 0.021 -0.001 0.098 0.090 0.088 0.58 

Open shrublands 
AM 0.041 0.040 0.041 -0.045 0.000 0.015 0.066 0.055 0.058 0.52 

PM 0.042 0.042 0.042 -0.050 -0.003 0.012 0.069 0.055 0.058 0.47 

Savannas 
AM 0.037 0.035 0.037 -0.037 -0.003 -0.006 0.065 0.053 0.054 0.83 

PM 0.038 0.037 0.037 -0.030 0.002 -0.003 0.063 0.056 0.056 0.83 

Woody savannas 
AM 0.060 0.055 0.055 -0.029 0.024 0.013 0.096 0.090 0.085 0.7 

PM 0.059 0.054 0.053 -0.015 0.030 0.018 0.093 0.091 0.085 0.7 

Barren/Sparse 
AM 0.022 0.022 0.023 -0.017 0.014 0.022 0.036 0.034 0.038 0.51 

PM 0.023 0.024 0.024 -0.021 0.013 0.020 0.038 0.034 0.037 0.43 

Evergreen 

needleleaf forest 

AM 0.038 0.035 0.031 -0.037 0.022 0.062 0.062 0.052 0.07 0.75 

PM 0.038 0.037 0.039 -0.041 0.021 0.062 0.063 0.055 0.074 0.66 

Mixed forest 
AM 0.063 0.062 0.061 -0.068 -0.024 -0.014 0.092 0.067 0.063 0.71 

PM 0.058 0.055 0.053 -0.057 -0.017 -0.008 0.081 0.058 0.054 0.77 
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C. Result Tables for Assimilation Product (L4) 

Table XII shows the L4 product CVS metrics. Table XIII 

shows the sparse network comparison results for the L4 

product.  

 

 
 

 
 
  

TABLE XII. CVS METRICS FOR L4 SURFACE (SF) AND ROOT-ZONE (RZ) SM AT THE 9-KM SCALE CATEGORIZED BASED ON LAND COVER. 

L4 (9-km, 3-hourly) ubRMSD MD RMSD R Anomaly R No. of 9-km 

ref. pixels 

Avg. no. of 3-hr 

data per ref. pix. (m3/m3) (m3/m3) (m3/m3) (-) (-) 

Land Cover Site Name SF RZ SF RZ SF RZ SF RZ SF RZ SF RZ SF RZ 

Grasslands Reynolds Creek 0.044 n/a -0.021 n/a 0.049 n/a 0.70 n/a 0.69 n/a 2 n/a 3,222 n/a 

TxSON 0.033 0.019 0.073 0.110 0.080 0.112 0.86 0.89 0.83 0.87 2 2 14,583 13,969 

Fort Cobb 0.037 0.026 -0.042 0.000 0.056 0.041 0.82 0.80 0.83 0.78 2 2 12,239 9,510 

Little Washita 0.037 0.029 -0.021 -0.021 0.046 0.037 0.78 0.76 0.77 0.74 3 2 9,181 3,850 

Niger 0.039 n/a 0.067 n/a 0.078 n/a 0.48 n/a 0.44 n/a 1 n/a 1,053 n/a 

Yanco 0.057 n/a -0.028 n/a 0.064 n/a 0.85 n/a 0.82 n/a 2 n/a 10,207 n/a 

Average 0.041 0.025 0.005 0.029 0.062 0.063 0.75 0.81 0.73 0.79   

Croplands South Fork 0.055 0.037 0.021 0.003 0.063 0.050 0.66 0.48 0.75 0.82 3 3 9,319 4,743 

Kenaston 0.032 0.021 -0.019 -0.033 0.039 0.039 0.76 0.90 0.76 0.92 2 1 4,911 2,803 

Carman 0.065 n/a 0.056 n/a 0.086 n/a 0.41 n/a 0.36 n/a 1 n/a 8,274 n/a 

Monte Buey 0.036 n/a -0.071 n/a 0.079 n/a 0.79 n/a 0.81 n/a 1 n/a 3,738 n/a 

REMEDHUS 0.042 n/a 0.064 n/a 0.098 n/a 0.67 n/a 0.63 n/a 2 n/a 9,667 n/a 

HOBE 0.045 n/a -0.013 n/a 0.047 n/a 0.83 n/a 0.63 n/a 1 n/a 1,067 n/a 

St Josephs 0.041 n/a 0.056 n/a 0.070 n/a 0.72 n/a 0.66 n/a 1 n/a 2,413 n/a 

Average 0.045 0.029 0.013 -0.015 0.069 0.045 0.69 0.69 0.65 0.87   

Crops/natural Little River 0.031 0.027 0.081 0.097 0.087 0.101 0.80 0.60 0.79 0.65 1 1 4,290 3,471 

Open shrubs  Walnut Gulch 0.035 n/a 0.040 n/a 0.060 n/a 0.68 n/a 0.66 n/a 3 n/a 12,363 n/a 

Woody 

savannas 
Tonzi Ranch 0.036 0.029 0.012 0.033 0.038 0.035 0.93 0.90 0.72 0.80 1 1 9,283 3,667 

Valencia 0.027 n/a 0.066 n/a 0.072 n/a 0.65 n/a 0.73 n/a 1 n/a 1,766 n/a 

Savannas Benin 0.048 n/a 0.114 n/a 0.124 n/a 0.75 n/a 0.32 n/a 1 n/a 2,523 n/a 

 

 

TABLE XIII. SPARSE NETWORKS METRICS FOR L4 SURFACE (SF) AND ROOT-ZONE (RZ) SM CATEGORIZED BASED ON LAND COVER. 

L4 ubRMSD R Anomaly R No. of stations 

(9-km, 3-hr) 

(m3/m3) (-) (-) 

ubRMSD, 

R 

Anomaly 

R 

Land Cover SF RZ SF RZ SF RZ SF RZ SF RZ 

Grasslands   0.053 0.038 0.70 0.67 0.65 0.59 178 126 177 126 

Croplands   0.059 0.039 0.74 0.70 0.68 0.65 94 65 94 64 

Crop/Natural vegetation mosaic   0.059 0.043 0.72 0.67 0.66 0.64 41 37 41 37 

Open shrublands   0.037 0.026 0.70 0.67 0.64 0.62 27 12 27 12 

Woody savannas   0.063 0.044 0.69 0.67 0.59 0.58 31 24 31 24 

Barren/Sparse  0.024 n/a 0.72 n/a 0.65 n/a 2 n/a 2 n/a 

Evergreen needleleaf forest   0.058 0.044 0.71 0.64 0.58 0.55 7 4 7 4 

Mixed forest   0.058 0.040 0.70 0.68 0.61 0.65 23 17 23 16 

Evergreen broadleaf forest   0.036 0.028 0.51 0.25 0.47 0.23 1 1 1 1 

Deciduous broadleaf forest   0.049 0.034 0.73 0.70 0.67 0.67 15 11 14 9 

Urban and built-up   0.071 0.038 0.58 0.67 0.62 0.70 4 3 3 2 
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