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Abstract 53 

The atmospheric boundary layer mediates the exchange of energy, matter, 54 

and momentum between the land surface and the free troposphere, integrating a 55 

range of physical, chemical, and biological processes and is defined as the lowest 56 

layer of the atmosphere (ranging from a few meters to 3 km). In this review, we 57 

investigate how continuous, automated observations of the atmospheric boundary 58 

layer can enhance the scientific value of co-located eddy covariance measurements 59 

of land-atmosphere fluxes of carbon, water, and energy, as are being made at 60 

FLUXNET sites worldwide. We highlight four key opportunities to integrate tower-61 

based flux measurements with continuous, long-term atmospheric boundary layer 62 

measurements: (1) to interpret surface flux and atmospheric boundary layer 63 

exchange dynamics and feedbacks at flux tower sites, (2) to support flux footprint 64 

modelling, the interpretation of surface fluxes in heterogeneous and mountainous 65 

terrain, and quality control of eddy covariance flux measurements, (3) to support 66 

regional-scale modeling and upscaling of surface fluxes to continental scales, and 67 

(4) to quantify land-atmosphere coupling and validate its representation in Earth 68 

system models. Adding a suite of atmospheric boundary layer measurements to 69 

eddy covariance flux tower sites, and supporting the sharing of these data to tower 70 

networks, would allow the Earth science community to address new emerging 71 

research questions, better interpret ongoing flux tower measurements, and would 72 

present novel opportunities for collaborations between FLUXNET scientists and 73 

atmospheric and remote sensing scientists.  74 

Keywords: eddy covariance; boundary layer; land-atmosphere; remote sensing; 75 

atmospheric inversion; micrometeorology  76 
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1 Introduction 77 

The land-atmosphere exchange of energy, matter, and momentum has been 78 

measured using the eddy covariance technique since the late 1960’s (e.g., Hicks & 79 

Martin, 1972; Kaimal & Wyngaard, 1990, McKay & Thurtell, 1978; Leuning et al., 80 

1982; Desjardins et al., 1984; Baldocchi et al., 1988). Since then, the number of 81 

eddy covariance flux tower sites has increased substantially, thus improving the 82 

spatial and temporal coverage of land-atmosphere exchange observations across 83 

the globe (e.g., Chu et al., 2017; Novick et al., 2018; Keenan et al., 2019). As of 84 

2019, eddy covariance-based flux measurements have been conducted at more than 85 

2000 sites located on all continents (Burba et al., 2019). An international network of 86 

flux tower sites called FLUXNET has emerged over the past few decades resulting in 87 

multi-site and multi-year datasets (Baldocchi 2019, Pastorello et al., 2020). Many of 88 

the sites in FLUXNET are now providing open access data to users worldwide. 89 

FLUXNET efforts have focused on measuring biospheric fluxes of carbon dioxide 90 

(CO2), water vapor, latent and sensible heat, while more recent efforts aim to 91 

produce similar datasets for methane fluxes (Knox et al., 2019). The wealth of eddy 92 

covariance-based flux observations has advanced our understanding of land-93 

atmosphere interactions (e.g., role of diffuse radiation on ecosystem carbon uptake 94 

(Niyogi et al, 2004; Knohl & Baldocchi, 2008), effect of increasing atmospheric CO2 95 

concentrations on water-use efficiency (Keenan et al., 2013), thermal optimality of 96 

net ecosystem carbon exchange (Niu et al., 2012), and the effect of increasing vapor 97 

pressure deficit on carbon and water fluxes (Novick et al., 2016)). FLUXNET data 98 

have also proven invaluable for benchmarking and testing ecosystem models (e.g., 99 

Bonan et al., 2011; Collier et al., 2018), and validating remotely sensed information 100 

about land surface function (e.g., Zhao et al., 2005; Heinsch et al, 2006; Schimel et 101 
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al., 2015). However, most studies using eddy covariance-based flux observations 102 

have focused on ecosystem responses to atmospheric (e.g., air temperature and 103 

humidity, CO2 concentrations), environmental (e.g., soil moisture), ecological (e.g., 104 

wildfire and insect disturbances), or anthropogenic drivers (e.g., anthropogenic 105 

disturbances, land management), while fewer studies have addressed complex 106 

interactions between land and atmospheric processes (e.g., Juang et al., 2007a; Lee 107 

et al., 2011; Baldocchi & Ma, 2013; Sanchez‐Mejia & Papuga, 2014; Burns et al., 108 

2015; Rigden & Li, 2017; Brugger et al, 2018; Gerken et al., 2019; Lansu et al., 109 

2020; Helbig et al., 2020a). 110 

The interactions between the land surface and atmosphere are mostly confined 111 

to the atmospheric boundary layer (ABL, e.g., Yi et al., 2004), commonly defined as 112 

the lowest layer of the atmosphere (depth varies from a few meters to 1-3 km), which 113 

is directly influenced by land surface processes. The ABL links properties of soils, 114 

vegetation, and urban landscapes to the free troposphere and is of critical 115 

importance for weather, climate, and pollutant dispersion and chemistry. For 116 

example, land-atmosphere feedback mechanisms (e.g., Raupach, 1998) exert 117 

important controls on global carbon storage dynamics (e.g., Green et al., 2019; 118 

Humphrey et al., 2021), soil moisture availability (e.g., Shi et al, 2013; Vogel et al., 119 

2017), water balance (e.g., McNaughton & Spriggs, 1986; Salvucci & Gentine, 120 

2013), surface energy balance (e.g., Lansu et al., 2020), cloud formation and 121 

patterns (e.g., Siqueira et al., 2009; Vilà-Guerau de Arellano et al., 2012), 122 

atmospheric chemistry and air pollution (e.g., Janssen et al., 2013), and future 123 

climate change trajectories (e.g., Davy & Esau, 2016). Additionally, the state of the 124 

lower atmosphere contains information that can constrain observations of land 125 

surface processes and states (e.g., plant photosynthesis and respiration [Denning et 126 
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al., 1999; Lauvaux et al., 2012], soil water availability [Salvucci & Gentine, 2013]). 127 

However, continuous ABL observations with sufficient vertical resolution are 128 

currently not available globally from spaceborne remote sensing and are rarely 129 

collected across the FLUXNET network even though the advantages of having co-130 

located surface flux, radiation, humidity, and other ABL measurements are 131 

numerous. 132 

In this review paper, we explore how extending co-located ABL observations 133 

(e.g., from radiosondes, ceilometers, and lidar or radar profilers) across the 134 

FLUXNET network could improve our mechanistic understanding of land-135 

atmosphere interactions and feedbacks. First, we discuss typical diurnal ABL 136 

dynamics, then we give a brief overview of available ABL observation systems and 137 

of current ABL observation efforts at flux towers. We conclude with a discussion of 138 

new research opportunities that could emerge from an expansion of ABL 139 

observations across the FLUXNET network. 140 

2 Background 141 

2.1 Typical diurnal atmospheric boundary layer evolution 142 

During daytime, the ABL is frequently well-mixed (above the roughness sublayer 143 

and the surface layer) and bounded by the land surface at its lower boundary and by 144 

a capping thermal inversion at its upper boundary (e.g., Wouters et al., 2019). The 145 

capping inversion can be detected as the maximum positive vertical gradient of 146 

potential temperature and minimum negative gradient of specific humidity, 147 

separating the ABL from the free troposphere (Fig. 1 & 2). The lowest layer of the 148 

ABL is the roughness sublayer (Fig. 3), which has traditionally been defined as the 149 
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layer immediately above the surface wherein surface roughness elements (i.e., 150 

trees, buildings) induce horizontal variability of time-averaged flow (Mahrt, 2000). 151 

Above an extended homogeneous surface, the top of the roughness sublayer can be 152 

thought of as the (local) ‘blending height’ and indicates the height above which the 153 

influence of surface roughness elements and surface heterogeneity decrease. The 154 

depth of the roughness sublayer depends on surface properties, including roughness 155 

length, roughness element spacing, height, and area shape of roughness elements, 156 

but is typically 2-5 times the height of the roughness elements (Raupach et al., 1991; 157 

Fig. 3). The roughness sublayer is overlain by the surface layer, which usually 158 

extends to about 10% of the ABL height. In the surface layer, wind and temperature 159 

profiles are often well-described as logarithmic functions of height (i.e., Monin-160 

Obukhov Similarity Theory functions, Monin & Obukhov, 1954) and turbulent fluxes 161 

are nearly constant with height (also called the constant flux layer). In contrast, 162 

vertical profiles of wind and temperature in the roughness sublayer usually deviate 163 

from profiles predicted by Monin-Obukhov Theory (Fig. 3) since turbulence 164 

characteristics depend on the influence of individual roughness elements (Raupach 165 

& Thom, 1981). Over heterogeneous surfaces, the regional blending height defines 166 

the height above which the impact of individual surface patches vanishes and where 167 

the ABL can be considered to be homogeneous. Regional blending heights depend 168 

on regional (macroscale) roughness characteristics of the surface patches and are 169 

higher than local blending heights, which mainly depend on (microscale) roughness 170 
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characteristics (e.g., Brutsaert, 1998).171 

 172 

Fig. 1: Ideal diurnal development of the atmospheric boundary layer (ABL) during 173 

the day, from sunrise to sunset, and transformation to the stable (nocturnal) 174 

boundary layer from sunset to sunrise (figure after Stull, 1988). 175 
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 176 

Fig. 2: Typical atmospheric boundary layer profiles of (a & b) potential 177 

temperature and (c & d) specific humidity (a & c) in the early morning just 178 

before sunrise and (b & d) in the late afternoon. Examples typical for 179 

boreal forests are shown (see Barr & Betts 1997). Diurnal changes in 180 

atmospheric boundary layer structure are shown to the left of the profiles 181 
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(FA = free atmosphere, RL = residual layer, NBL = nocturnal boundary 182 

layer, CBL = convective boundary layer). Figure adapted from Stull 183 

(1988). 184 

 185 

Fig. 3: Typical structure of the lower atmospheric boundary layer above an extended 186 

homogeneous surface with actual potential temperature (θ) profile and θ 187 

profile according to Monin-Obukhov similarity theory. Horizontal arrows 188 

indicate mean wind speed profile (adapted from Novick & Katul, 2020). 189 

The state of the ABL (e.g., air temperature and humidity, turbulence 190 

characteristics) is controlled by the exchange of heat, momentum, and scalars (e.g., 191 

water vapor, CO2, methane, aerosols) between the land surface and the ABL and 192 

between the free troposphere and the ABL (Fig. 4). Diurnal growth of the convective 193 

ABL (CBL or mixed layer) causes warmer and typically drier air to be entrained into 194 
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the ABL from the free troposphere. The land-atmosphere exchange of heat, 195 

momentum, and scalars is mediated by the state of the ABL and by the state of the 196 

land surface. For example, evapotranspiration and carbon uptake are partly 197 

controlled by atmospheric humidity and precipitation and, at the same time, by 198 

surface conditions such as vegetation type, vegetation structure, phenology, and soil 199 

moisture. 200 

 201 

Fig. 4: Daytime interactions and feedbacks between surface sensible (H) and latent 202 

heat (LE) fluxes, entrainment fluxes (HE, LEE), atmospheric boundary layer 203 

growth rate (ΔABLH), land surface (e.g., soil moisture) and vegetation 204 

conditions (e.g., stomatal conductance [gs]), and state of the atmospheric 205 

boundary layer (i.e., vapor pressure deficit [VPD], mixed-layer potential 206 

temperature [θABL], and mixed-layer specific humidity [qABL]). The ABL top 207 
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separates the convective ABL from the free troposphere. This separation 208 

zone is defined as the atmospheric boundary layer height (ABLH). Note that 209 

ABLH is not constant in time, and that horizontal advection (not shown) will 210 

also impact ABL quantities. 211 

The growth rate of the daytime ABL (or mixed layer) is mostly driven by thermal 212 

eddies, and thus depends on available energy at the land surface and how energy is 213 

partitioned between latent and sensible heat fluxes, i.e. the Bowen ratio (Fig. 5). If a 214 

greater portion of available energy is converted into sensible heat then this leads to a 215 

higher Bowen ratio, and the ABL grows more rapidly (Yi et al, 2001), while the 216 

opposite is true for a low Bowen ratio (i.e., ABL remains shallower when more 217 

energy goes to latent heat). The rate of growth of the mixed layer is also determined 218 

by the strength of the capping inversion and subsequent entrainment (Driedonks & 219 

Tennekes, 1984; Wyngaard & Brost, 1984), the vertical rate of change of 220 

temperature and moisture, and the shear-mixing by wind (Batchvarova & Gryning, 221 

1991). In addition to local drivers of ABL development, synoptic drivers (e.g., frontal 222 

circulations of midlatitude cyclones, persistent anticyclones) often induce strong 223 

vertical motions and temperature and moisture advection that can substantially alter 224 

the state of the ABL (e.g., Schumacher et al., 2019; Sinclair et al., 2010) and result in 225 

changes in the strength and height of the capping inversion (e.g., Mechem et al., 226 

2010). In some cases, subsidence caused by large- or meso-scale circulation can 227 

substantially suppress ABL growth and needs to be accounted for when assessing 228 

land-atmosphere interactions (e.g., Myrup et al., 1982; Pieteresen et al., 2015; Rey-229 

Sanchez et al., 2021).230 
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 231 

Fig. 5: (a)  Mean diurnal development of the atmospheric boundary layer height (ABLH) in July 2017 at the Kansas Field Station flux tower site (US-232 

KFS) on days with low Bowen ratio (<0.75) and high Bowen ratio (>0.75) and mean diurnal variation of (b) sensible and (c) latent heat fluxes on days 233 

with low and high Bowen ratio. (d) Mean diurnal development of ABLH between July and September 2019 at the Walnut Gulch flux tower site (US-234 

Wkg/Whs) on days with low Bowen ratio (<2) and high Bowen ratio (>2) and mean diurnal variation of (e) sensible and (f) latent heat fluxes on days 235 

with low and high Bowen ratio at the same site. Vertical red dotted lines indicate the approximate timing of sunset. Atmospheric boundary layer 236 

heights were derived from aerosol backscatter profiles measured by ceilometers. Note that the detected early morning ABLH might be the top of the 237 

residual layer. 238 
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At sunset, when solar heating of the surface ceases, buoyancy-driven turbulent 239 

mixing rapidly declines and the onset of the stable nocturnal ABL (NBL) occurs at the 240 

surface, leaving a residual layer aloft (Fig. 1). The residual layer can become 241 

detached and decoupled from the surface and from the shallow NBL (< 30 m) during 242 

periods of very stable atmospheric conditions when vertical mixing is strongly 243 

suppressed (e.g., Banta et al., 2007). The decoupling of the surface and the NBL 244 

has important implications for the accuracy, representativeness, and interpretation of 245 

eddy covariance surface flux measurements, which require sufficient intensity of 246 

turbulent mixing for valid measurements of surface fluxes. The NBL is characterized 247 

by a strong, shallow temperature inversion caused by surface radiative cooling. In 248 

contrast, potential temperature and moisture in the residual layer is well-mixed but 249 

turbulence is weak and intermittent. Stable boundary layers (SBL) can also develop 250 

during daytime when warmer air moves over cooler land or water surfaces or during 251 

the winter in mid to high latitudes, particularly over snow and ice surfaces. Detecting 252 

the height of the SBL can be ambiguous (Seibert et al., 2000) due to the multiple 253 

processes involved in SBL development such as wind shear-induced turbulence, 254 

radiation divergence within the SBL, and orographically induced gravity waves. 255 

When turbulence is strongly suppressed in a very stable boundary layer, turbulent 256 

energy fluxes may be negligible, and the net radiation at the land surface is solely 257 

balanced by the ground heat flux. In contrast, in a weakly stable boundary layer, 258 

turbulence can be well-developed. The top of the layer of continuous turbulence is 259 

often taken as the height of the SBL. However, due to the ambiguity of defining and 260 

detecting the height of a SBL, ensemble approaches based on a range of ABLH 261 

definitions under stable conditions may be preferable (e.g., Stiperski et al., 2020) [a 262 
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more detailed discussion of the physical processes contributing to SBL development 263 

is given by Mahrt (1999) and Steeneveld (2014)]. 264 

A dynamic understanding of the tight coupling between surface fluxes as 265 

measured by the eddy covariance technique (or other techniques such as 266 

scintillometry and flux gradients) and growth and decline of the ABL is thus essential 267 

to improve the current understanding of the land-atmosphere system and to properly 268 

account for dynamic atmospheric processes in studies of land-atmosphere 269 

interactions. This may be especially true for the interpretation of nighttime fluxes or 270 

fluxes collected under stable atmospheric conditions or in complex terrain (e.g., 271 

Kutter et al., 2017; Menke et al., 2019). 272 

2.2 Importance of atmospheric boundary layer height for land-atmosphere 273 

interactions 274 

The ABL mixing height (ABLH) can be defined as the thickness of the turbulent 275 

atmospheric layer adjacent to the ground surface and is an indicator of the volume of 276 

air throughout which heat, momentum, and scalars may mix (see Seibert et al., 2000 277 

for a more detailed discussion). During daytime, surface emissions of aerosols, 278 

water vapor, and trace gases are mixed throughout the ABL by convective and 279 

mechanical turbulence on a time scale from typically 20-30 minutes to a few hours 280 

(i.e., CBL), while mixing can be substantially reduced in the SBL (e.g., Culf et al., 281 

1997; Seibert et al., 2000; Yi et al., 2000; Yi et al., 2001). The CBL is capped by an 282 

entrainment layer where the sign of the heat flux gradient reverses (i.e., sensible 283 

heat is entrained into the CBL), while the SBL usually consists of a lower layer of 284 

continuous turbulence topped by a layer of sporadic or intermittent turbulence. 285 
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The ABLH is a critical variable for understanding and constraining ecosystem and 286 

climate dynamics. For example, air pollutants in deep ABLs are well mixed, leading 287 

to lower pollutant concentrations, while shallow SBL favor accumulation of pollutants 288 

to higher concentrations (e.g., Yin et al., 2019). Carbon dioxide concentrations in the 289 

ABL are governed by large diel variations in ABLH (Yi et al., 2001), changing signs 290 

of CO2 surface fluxes, and daily and seasonal variations in the differences between 291 

free troposphere and ABL CO2 concentrations (Davis et al., 2003; Yi et al, 2004; 292 

Vila-Guerau de Arellano et al., 2004). Given that ABLH controls the volume that is 293 

subject to mixing, differences in CO2 concentrations between the ABL and free 294 

troposphere covary with ABLH on diurnal and seasonal timescales - also known as 295 

the rectifier effect (e.g., Denning et al., 1995). This effect (Denning et al., 1999; Yi et 296 

al, 2004) and the simple relationship between ABLH and ABL CO2 concentrations 297 

(Díaz-Isaac et al, 2018) have direct implications for atmospheric CO2 transport and 298 

its representation in atmospheric transport models (Feng et al, 2020). 299 

The ABLH also directly affects the heat capacity of the ABL and therefore its 300 

potential to slow or enhance daily atmospheric warming rates (e.g., Panwar et al., 301 

2019). ABL heights also play a crucial role for the onset of precipitation events and 302 

cloud dynamics (e.g., Juang et al., 2007; Siqueira et al., 2009; Konings et al., 2010; 303 

Yin et al., 2015). Convective clouds and locally generated precipitation only develop 304 

once the top of the ABL reaches the lifting condensation level (LCL, defined by the 305 

height where a parcel of moist air - lifted dry adiabatically from the surface - reaches 306 

saturation, see Fig. 6). However, the relationship between LCL and ABLH is only a 307 

first-order criterion (Yin et al., 2015) and boundary layer cloud development is 308 

additionally governed by other complex feedback mechanisms between temperature 309 

and humidity dynamics and cloud development (see Betts, 1973 and van Stratum et 310 
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al., 2014 for detailed discussions). The transition from clear to cloudy ABLs has 311 

important implications for ABL dynamics. Cloud-ABL feedbacks lead to a reduction in 312 

ABL growth rate and drying of the sub-cloud layer, which is caused by enhanced 313 

entrainment and by moisture transport to the cloud layer (van Stratum et al., 2014). 314 

Convective cloud and precipitation development and deep convection will lead to 315 

deviations from the ABL behavior described above. For example, gust fronts 316 

associated with convective downdrafts quickly alter ABL state and consequently 317 

affect surface fluxes (e.g., Grant & Heever, 2016). Transitions from daytime CBLs to 318 

nighttime SBLs (see Angevine et al., 2020) and from clear sky to cloudy conditions 319 

also remain areas of current research (see van Stratum et al., 2014). 320 

 321 

Fig. 6:  Diurnal growth of the atmospheric boundary layer (ABL) at the Southern 322 

Great Plains atmospheric observatory in Oklahoma, U.S.A. (US-ARM) on 323 

(a) 16 September 2018 [day with ABL cloud development] and on (c) 6 324 

September2019 [clear-sky day] and concurrent changes in lifting 325 
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condensation level (LCL, blue dotted line) and, if present, in cloud base 326 

height (CBH, blue circles, if below 2,500 m above ground) as detected by 327 

Vaisala CL-31 ceilometer measurements. ABL heights (ABLH, black dots) 328 

were defined as the top of the mixed layer as detected by ceilometer 329 

measurements. Solid blue, yellow, and green lines show radiosonde 330 

observation of potential temperature profiles at 05:00, 11:30, and 17:00h, 331 

respectively. Diamonds show ABLH at the same times as derived from 332 

ceilometer measurements. (b,d) Sensible (H) and latent heat (LE) fluxes for 333 

the same days measured using the eddy covariance technique at the same 334 

site. 335 

2.3 Measurements of atmospheric boundary layer heights 336 

Traditionally, ABLH has been derived from atmospheric profiles of air 337 

temperature and humidity measured by radiosondes. Such profile measurements are 338 

labor-intensive and are thus often made only a couple of times per day or are limited 339 

to short-term intensive field campaigns (e.g., Salcido et al., 2020). Operational 340 

soundings (e.g., national weather service soundings) are synchronized to noon and 341 

midnight Coordinated Universal Time (UTC), not local time, and sample different 342 

parts of daily ABL development (Fig. 1) depending on latitude and longitude. Recent 343 

progress in atmospheric observation techniques, specifically radar profilers and lidar-344 

based devices, now allow us to continuously measure ABLH, automatically and at 345 

high temporal resolution. Instruments capable of such measurements are 346 

commercially available, relatively affordable, require minimal maintenance, and are 347 

suited to deployment even at remote field sites such as those typical of the 348 

FLUXNET network. However, at present, direct ABL measurements are only made 349 
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at a small fraction of sites (see Tab. 2 for a list of sites) and ABL data are typically 350 

not submitted to FLUXNET or the regional flux networks.  351 
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Table 1: List of definitions 352 

Term Definition 

Adiabatic process No external heat is transferred to an air parcel 

(e.g., adiabatic cooling of a rising air parcel due 

to decreasing pressure). 

Atmospheric boundary layer [ABL] (or 

planetary boundary layer) 

Lower layer of the troposphere, which is 

directly influenced by the planetary surface. 

Roughly a few meters to 1-3 km.  

Atmospheric boundary layer height (or 

mixing height) [ABLH] 

Thickness of the atmospheric boundary 

layer often characterized by a temperature 

inversion at the top of the ABL. During 

daytime, the ABLH typically responds to 

surface forcing within a time scale of an 

hour to a few hours. In some cases, ABL 

growth may be capped by atmospheric 

subsidence. Mixing height refers to the 

height up to which heat, matter, and 

momentum originating from the land 

surface are well mixed (above the 

roughness sublayer and the surface layer) 

through turbulent vertical mixing. 

Capping inversion Elevated inversion layer (i.e., reversal of 

temperature gradient) at the top of the ABL 

separating ABL from free troposphere 
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Convective boundary layer (or daytime 

boundary layer, mixed layer) [CBL] 

Type of ABL that is characterized by 

vigorous turbulence and mixing due to 

heating at the bottom of the ABL and 

entrainment at the top of the ABL during the 

day. 

Entrainment Process by which the turbulent mixed layer 

incorporates less turbulent air from the free 

troposphere leading to deepening of the 

mixed layer. Entrainment zone shear 

enhances entrainment and can contribute to 

rapid ABL growth. Typically, entrainment is 

associated with warming and drying of the 

ABL. 

Free troposphere Atmospheric layer above the ABL where the 

influence of the planetary surface (surface 

friction/drag) is minimal. Air in the free 

troposphere is warmer (for potential air 

temperature) and drier than in the ABL 

Lifting condensation level Level at which a parcel of moist air 

becomes saturated when lifted dry 

adiabatically 

Potential temperature Temperature that a parcel of dry air would 

have if brought adiabatically to a standard 

pressure (i.e., remains constant with 

pressure changes) 
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Roughness sublayer Lowest ABL layer adjacent to land surface 

and influenced by roughness elements 

(e.g., trees, buildings, vegetation). Layer 

depth (or local blending height) is app. 2-5 

times the height of roughness elements. 

Specific humidity Mass of water vapor in a unit mass of moist 

air (i.e., remains constant with pressure 

changes). May be approximated by the 

(water vapor) mixing ratio (i.e., mass of 

water vapor in a unit mass of dry air) 

Stable boundary layer [SBL] Cool stable layer adjacent to the ground 

characterized by a positive vertical potential 

temperature gradient developing due to 

radiative cooling of the land surface during 

the night (i.e., nocturnal boundary layer 

[NBL]) or when warm air moves over a 

cooler surface (e.g., snow or ice). Mixing in 

the SBL is mainly driven by shear (i.e., 

mechanical turbulence) and intermittent 

turbulence events. 

Surface layer Atmospheric layer where mechanical 

generation of turbulence dominates 

extending from the top of the roughness 

sublayer to about 10% of the ABL height  

  353 
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3 Currently available technology for atmospheric boundary layer 354 

observations 355 

Various ground-based technologies are available for observations of 356 

aerodynamic and thermodynamic (i.e., air temperature and humidity) ABL properties 357 

(Table 2, e.g., Wilczak et al., 1996; Seibert et al., 2000; Emeis et al., 2004). Here, we 358 

outline basic measurement principles of (1) radiosonde observations, (2) ceilometers 359 

and aerosol backscatter lidars, (3) Doppler sodar, and (4) wind profiling radars and 360 

lidars. Differences in measurement techniques and their observed variables can lead 361 

to discrepancies between ABLH estimates, which typically are in the order of 10% 362 

(for well defined capping inversion) to 25% (for weak capping inversions or non-well 363 

mixed ABL) for CBLs while being much more variable for SBLs. For a detailed 364 

discussion of technique-dependent differences in ABLH estimates, the readers are 365 

referred to Seibert et al. (2000). 366 

3.1 Radiosonde observations 367 

Radiosonde observations have been widely used for decades to detect ABLH 368 

(e.g., Barr & Betts, 1997; Yi et al., 2001; Wang & Wang, 2014; Wouters et al., 2019, 369 

Salcido et al., 2020). Atmospheric profiles from radiosonde observations provide 370 

detailed information on the vertical variation of air temperature and humidity, air 371 

pressure, and wind speed and direction. During the daytime, the upper boundary of 372 

the ABL can be defined as the height where the maximum (i.e., positive) vertical 373 

gradient in potential temperature is located, coinciding with a sharp increase in 374 

potential temperature, or as the height where the minimum (i.e., negative) vertical 375 

gradient of specific humidity is observed, coinciding with a sharp drop in specific 376 

humidity (Wang & Wang, 2014, Fig. 2 & 7). However, defining ABLH during stable 377 



Helbig et al.   Atmospheric boundary layer measurements 

24 

atmospheric conditions using air temperature, humidity, and wind profiles is 378 

challenging since no universal relationships exist to determine NBL and SBL heights 379 

(Seibert et al., 2000). With a 1 s temporal and ~5 m vertical resolution, the resolution 380 

of radiosonde observations is usually similar to the resolution of ceilometers and 381 

lidars (<30 m) but varies with atmospheric conditions and ascent speed of the sonde. 382 

Balloons are often used to launch radiosondes and travel horizontally with the mean 383 

wind. Depending on wind conditions, the location of the derived ABLH may no longer 384 

be representative of the conditions at the launch location. Radiosonde observations 385 

represent the most labor-intensive way of measuring ABLH requiring ongoing costs 386 

for manual labor and instrumentation. Global networks of synoptic observation sites 387 

provide daily radiosonde data, which are archived in the Integrated Global 388 

Radiosonde Archive (Durre et al., 2006; available through the NOAA National 389 

Centers for Environmental Information) and in the University of Wyoming sounding 390 

data archive (http://weather.uwyo.edu/upperair/sounding.html). However, the launch 391 

points for long-term observations are fixed and may not represent the air masses 392 

surrounding flux tower sites. Relatively low-cost, lightweight ABL-focused 393 

radiosondes (i.e., Windsond weather balloon systems; Bessardon et al., 2019) have 394 

recently emerged that allow to increase temporal and spatial resolution of sampling 395 

(see Table 2).396 
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 397 

Fig. 7:  Atmospheric profiles of (a-e) potential temperature and (f-j) water vapor mixing ratio between 05:15h and 15:15h local 398 

time on 30 July 1996 at Candle Lake, Saskatchewan, Canada (data from the BOREAS Southern Study Area: 399 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=238). Dashed lines show height of the atmospheric boundary 400 

layer/mixing layer as determined by the gradient method (see Seidel et al., 2010) 401 
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3.2 Ceilometers and lidars 402 

Ceilometers and aerosol backscatter lidars emit a laser pulse at wavelengths 403 

between 300 and 1500 nm, which is scattered in the atmosphere by aerosols. A 404 

portion of this scatter is directed back to the receiver and recorded as backscatter. 405 

Ceilometer is a term more traditionally used to describe aerosol backscatter lidars 406 

that are used to detect the height of the cloud base, while backscatter lidar is a more 407 

general term. Aerosol backscatter lidars, including those called ceilometers, produce 408 

aerosol profiles for each laser pulse, which can be used to derive cloud base height 409 

and, if the signal to noise of the instrument is sufficient, ABLH (Kotthaus & 410 

Grimmond, 2018a; Lotteraner & Piringer, 2016). The ABLH in this case is typically 411 

defined as the height at which aerosol concentration and thus the backscatter signal 412 

decreases sharply (Fig. 8). Therefore, the ability of an aerosol backscatter lidar to 413 

detect ABLH depends on the level of aerosol concentrations in the ABL and on the 414 

sensitivity of the instrument to low aerosol concentrations (e.g., Eresmaa et al., 415 

2006). In clean air, retrievals of ABLH may therefore be problematic with lower 416 

signal-to-noise backscatter lidars. 417 

Strong vertical gradients of attenuated backscatter often coincide with the 418 

location of the capping inversion, but considerable differences can occur, such as 419 

during the evening transition when new gradients of backscatter slowly form after the 420 

turbulence has decayed (Kotthaus et al., 2018). Additionally, interpreting aerosol 421 

backscatter profiles can be difficult if aerosol layers are the result of advection 422 

processes or if vertical aerosol gradients are weak such as in some SBLs. In 423 

contrast to the ABLH derivation from thermodynamic profiles using radiosondes, 424 

aerosol backscatter lidars allow more direct observations of the depth of the mixing 425 
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layer. Differences in these ABLH estimates can be caused by turbulence (and 426 

mixing) extending beyond the capping inversion (Seibert et al., 2000). 427 

The advantage of the aerosol backscatter lidar is that it allows continuous 428 

observations of ABLH and that it can be a relatively inexpensive instrument (Table 429 

2). Additionally, aerosol backscatter lidars provide information on the height of cloud 430 

base above the ground (see Fig. 6), and considerable effort has gone into the 431 

development of automated algorithms for determining ABLH (e.g., Davis et al., 2000; 432 

Brooks, 2003). In contrast to radiosonde observations, aerosol backscatter lidars do 433 

not measure atmospheric profiles of temperature and humidity and thus do not allow 434 

the derivation of potential temperature and specific humidity gradients in the free 435 

troposphere. However, these gradients are essential for the calculation of 436 

entrainment fluxes (van Heerwaarden et al., 2009).  437 

To add information on atmospheric humidity profiles, aerosol backscatter 438 

lidars can be paired with radiosonde observations or with water vapor lidar 439 

instruments (e.g., compact water vapor differential absorption lidar [DIAL], Newsom 440 

et al., 2020; Raman lidar, Wulfmeyer et al., 2018), which allow continuous 441 

measurements of water vapor profiles up to a few kilometers above ground (Fig. 9). 442 

Alternatively, passive detection of atmospheric emission and absorption lines in the 443 

infrared and microwave bands can also provide information on temperature and 444 

humidity gradients (e.g., Löhnert et al., 2009). Microwave and infrared radiometers 445 

use variations in water vapor and oxygen emissions with pressure at selected 446 

wavelengths to deduce profiles of temperature, humidity, and cloud liquid water or to 447 

measure column integrated water vapor and liquid water. The observed variations 448 

are very subtle requiring careful calibration. Some studies report success at 449 
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resolving simple shallow ABLs of the order of 100 meters, although caution should 450 

be exercised in interpreting measurements of deeper or more complex ABLs since 451 

the vertical resolution can degrade significantly (e.g., Blumberg et al., 2015). Pairing 452 

aerosol backscatter lidars and profiling observation systems can give new insights 453 

into complex feedback mechanisms between land and atmosphere. 454 

New active ground-based remote-sensing technologies, such as Doppler, 455 

Raman, and DIAL lidar are already or will soon become commercially available 456 

(Wulfmeyer et al., 2018). They offer the possibility for quasi-continuous 457 

thermodynamic profiles of the entire ABL at unprecedented accuracy and spatio-458 

temporal resolution (Wulfmeyer et al., 2015) adding crucial information on the state 459 

of the ABL to continuous ABLH measurements. These instruments even allow to 460 

measure turbulent fluxes of sensible and latent heat between the surface layer and 461 

the entrainment zone directly, via eddy-covariance from remotely sensed data 462 

(Behrendt et al., 2020). Such measurements allow ABLH detection as the height at 463 

which the sensible heat flux changes its sign.  The potential of such observations 464 

was explored at the Yatir forest FLUXNET site (IL-Yat). As part of a study on land-465 

atmosphere feedbacks, two Doppler lidars and a ceilometer were deployed in order 466 

to investigate the impact of heterogeneity-induced secondary circulations on the 467 

surface flux measurements (Eder et al. 2015b) and the effect of this distinct surface 468 

heterogeneity on the structure and dynamics of the ABL (Brugger et al. 2018). 469 

  470 
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 471 

Fig. 8: Example of the diurnal development of a backscatter profile at the Southern 472 

Great Plains atmospheric observatory in Oklahoma, U.S.A.. Colors show a 473 

full day of the logarithm of smoothed attenuated backscatter in arbitrary 474 

units. Backscatter measurements were conducted using a Vaisala CL-31 475 

ceilometer. Lines indicate estimates of the location of the top of the nocturnal 476 

boundary layer, residual layer, and convective boundary layer. Boundary 477 

layer cloud development starts at around noon initiating convective mass 478 

flux. Timing of sunrise and sunset are shown too.  479 
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 480 

Fig. 9:  (a) Cumulative (i.e., stacked) latent, sensible heat flux, and energy 481 

balance residual (LE, H, and CEB) measured by Ameriflux tower US-PFa at 30 482 

m AGL with mean net radiation and ground flux (RN and G) measurements from 483 

17 nearby eddy-covariance towers installed during the CHEESEHEAD19 field 484 

campaign; (b) and (d) daytime radiosonde profiles on August 20 & 21, 2019; 485 

and (c) winds measured by a 449 MHz radar wind profiler overlaid with Vaisala 486 

CL51 ceilometer (black circles) and radiosonde-derived (diamonds) ABL 487 

heights (NCAR/EOL ISF 2020; Butterworth et al., in press). 488 

3.3 Doppler Sodar 489 

A Doppler sodar is an acoustic remote sensing instrument. Doppler sodars 490 

derive atmospheric profiles of horizontal and vertical wind velocities and temperature 491 

(when combined with a radio acoustic sounding system [RASS]) from the scattering 492 

of sound pulses (wavelength between 0.1 m and 0.2 m) by atmospheric turbulence 493 

(i.e., reflectivity). Vertical reflectivity profiles can be used to derive ABLH since the 494 

interface between ABL and free troposphere (i.e., the entrainment zone) is 495 
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characterized by intense thermodynamic fluctuations and thus by a maximum in 496 

reflectivity (Beyrich, 1997). However, the vertical range of sodar instruments is 497 

typically restricted to heights well below 1000 m. Deep ABLs can therefore not be 498 

detected using sodar technology. Additional constraints of sodar instruments are 499 

related to instrument noise issues affecting the local community. 500 

3.4 Wind profiling radars and lidars 501 

Another technology widely used to observe the ABL are wind profiling radars 502 

(e.g., Yi et al., 2001) and lidars (e.g., Tucker et al., 2009). Wind profiling radars emit 503 

pulses of electromagnetic radiation (wavelength of ~0.5 m) along one vertical beam 504 

and two to four oblique beams, and receive backscatter signals, which can be used 505 

to derive atmospheric profiles of wind speed and direction. Radar wind profilers have 506 

a wider vertical range than Doppler sodar systems but typically lack coverage at 507 

heights below 100 m in the case of the 915 MHz profiler, and below 500 m when 508 

using the 449 MHz profiler (Table 2). ABLH can be derived by identifying the 509 

maximum signal-to-noise ratio (SNR) in the backscatter, which is proportional to the 510 

maximum in the refractive-index structure parameter (Wesely, 1976; White et al., 511 

1991). This maximum SNR typically coincides with lower humidity levels (White et 512 

al., 1991; Grimsdell & Angevine, 1998), buoyancy fluctuations (Angevine et al., 1994; 513 

Bianco et al., 2008), and the steepest gradient in air temperature, humidity, and 514 

aerosol concentration at the transition between ABL and free troposphere (Compton 515 

et al., 2013; Molod et al., 2015). A continuous time series of ABLH can be obtained 516 

after careful processing of the profiler data (e.g., Bianco et al., 2008; Molod et al., 517 

2015). 518 
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Wind profiling lidars have a more powerful and spectrally narrower laser light 519 

source than ceilometers and are similar to radars except that they use light (~0.5 - 2 520 

μm) instead of radio waves (~0.5 m). Due to the use of shorter wavelengths, wind 521 

profiling lidars can track the movement of aerosols with air motions within the 522 

scanning cone to estimate wind speed and direction (Grund et al., 2001). A 523 

combination of backscatter and atmospheric turbulence data can be used to derive 524 

ABLH (Tucker et al, 2009). Wind profiling lidars can be designed with high vertical 525 

resolution and some can be pointed at an angle to resolve shallow nighttime ABLH 526 

as well as resolve daytime ABLs (e.g., Tucker et al. 2009). The ability to measure 527 

atmospheric turbulence also yields perhaps the most direct measure of the active 528 

mixing depth of the ABL (Tucker et al., 2009). Further, wind profiling lidar can be co-529 

located with DIAL to measure eddy covariance flux profiles of water vapor (Kiemle et 530 

al, 2007) and potentially of CO2 as instrumentation improves (Gibert et al, 2011).531 
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Table 2: Available technologies for ground-based atmospheric boundary layer observations and specifications of different instrumentation. Specifications and 532 
basic information on instruments have been sourced from manufacturer websites. For more details see Tab. S1. 533 

Instruments Price range* Wavelength Power Vertical 
Range  Vertical 

Res. Weight Example instrumentation Basic information 

Aerosol 
backscatter 
LiDAR (incl. 
ceilometer) 

         

 $$ 355-1550 nm 20 W - 
800 W 7-15 km  5-30 m 10 – 70 kg 

Campbell CS135, Lufft CHM 15k 
NIMBUS, PSI Compact Ceilometer, 
Vaisala CL51 & CL31 Ceilometers, 

Micro Pulse LiDAR 

Allows cloud base detection and aerosol 
concentration measurements, vertical 

profiles of aerosol backscatter are used 
to determine ABL height 

Balloon 
Sounding           

 $ (receiving 
station $-$$$) - - 8 – 40 km  variable 10 – 300 g 

Windsond, Vaisala RS41, Lockheed 
Martin LMS-06, GRAW DFM-09, 

InterMet iMet-1 

Radiosondes report wind, temperature, 
and humidity profiles; ABL height can be 

derived from profile measurements, 
measure vertical gradients of temperature 

and humidity in the free troposphere 

 Doppler Sodar     

 $$ - $$$ 0.1-0.2 m 60-250 
W 

10-1,000 
m  5-50 m 50-100 kg Metek DSDPA.90-24 and PCS2000, 

Remtek PA-XS and PA-0, Scintec MFAS 

Measures vertical wind profiles and 
(virtual) temperature profiles with RASS 

extension 
Radar Wind 

Profiler     .      

 $$$$-$$$$$ 0.33 – 0.7 m 

100 W 
(average) 
- 2000 W 

(max) 

2-10 km  

Low: 
60 & 100  

High: 
250 & 500 

m 

Up to 1,000 
kg 

Scintec LAP3000 and LAP8000, 
Radiometrics Raptor 

Use electromagnetic radiation pulses 
to measure wind and precipitation 

profiles  
 

Lidar Wind 
Profiler     .     

 

Profiling lidar: 
$$$ 

Scanning 
lidar: 
$$$$ 

Raman lidar: 
$$$$$ 

1,500 – 2,000 
nm 

20 - 10,000 
W 

300 m  - 
15 km  1 – 150 

m 
45 kg – 

1,630 kg 

Profiling lidar: ZephIR300, Leosphere 
WindCube v2, Spidar, Metek Wind 

Scout, Vaisala Differential Absorption 
Lidar [DIAL] 

Scanning lidar: WindTracer (Lockheed 
Martin), HALO Photonics Streamline 
Wind Lidar, Leosphere WindCube 

100S & 200S Wind Lidar, NOAA High-
Resolution 

 Doppler Lidar, Purple Pulse Raman 
Lidar, Raymetrics Raman Lidar 

Lidar wind profilers allow for tracking of 
moving objects (e.g., aerosols) and a 
depiction of wind fields along a narrow 

cone around zenith (profiling) or for 
varying angles (scanning). Raman Lidar 
and DIAL allow continuous observations 

of temperature and humidity profiles. 
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* Price range is estimated based on current instrument pricing in the respective instrument classes ($ < 10k USD, $$ 10k-50k USD, $$$ 50k-100k USD, $$$$ 100k-500k USD, $$$$$ > 500k USD) 534 
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4 Atmospheric boundary layer observations co-located with eddy covariance 535 

flux instrumentation 536 

 To date, there have been relatively few instances of continuous, high-537 

frequency atmospheric measurements of ABLH being conducted simultaneously with 538 

co-located eddy covariance flux measurements (Tab. 3) and ABLH observations are 539 

not routinely shared through FLUXNET or the regional observation networks. Until 540 

2006, when a ceilometer was installed at the Morgan Monroe State Forest site, it 541 

appears that previous efforts had been limited to campaigns of only a few months to 542 

one year in duration. For example, in 1998 a wind profiling radar and radiosonde 543 

observation system was deployed for one year at the WLEF tall tower (US-PFa; Yi et 544 

al, 2001; 2004) and for a second year, in 1999, at the Walker Branch Watershed 545 

(US-WBW). The Park Falls flux tower included a co-located ceilometer for several 546 

years, but it was removed around 2005. The Morgan Monroe measurements were 547 

discontinued in 2013. 548 

Currently, there are ongoing, long-term ABLH measurements at (or near) a 549 

few sites in North America (see Tab. 3 for site information). Measurements at the 550 

Southern Great Plains (US-ARM), the Oliktok Point (US-A03), and the Utqiagvik 551 

(US-A10) sites are collected as part of the Department of Energy Atmospheric 552 

Radiation Measurement program (www.arm.gov), while the Twitchell Island (US-553 

Twt1 and US-Tw3) measurements are collected through the NOAA ESRL program. 554 

The measurements at Howland Forest (US-Ho1) were initiated by the site PI, while 555 

those at Walnut Gulch (US-Wkg) and Kansas Field Station (US-KFS) were initiated 556 

by site collaborators. Campaigns on NBLs were conducted at the Tonzi (US-Ton) 557 

and Wind River (US-WRC) sites (Wharton et al., 2017). At the 47 National Ecological 558 
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Observatory Network (NEON) terrestrial sites, neither ceilometers nor wind profilers 559 

are included in the instrument package deployed. 560 

In Europe, the Integrated Carbon Observation System (ICOS) network is 561 

planning to deploy ceilometers at all Class 1 atmospheric monitoring stations, which 562 

are co-located with Ecosystem stations (i.e., eddy covariance flux towers). At the 563 

ICOS Sweden Atmosphere sites at Hyltemossa (SE-HTM), Norunda (SE-NOR), and 564 

Svartberget (SE-SVB) ceilometers are already in operation and co-located with 565 

simultaneous eddy covariance flux measurements. Three sites of the Terrestrial 566 

Environmental Observatories (TERENO) pre-Alpine observatory in Germany are 567 

equipped with ceilometers for ABLH detection since 2012 (sites DE-Fen, DE-RbW, 568 

and DE-Gwg; Eder et al., 2015a; Kiese et al., 2018). The Indianapolis Flux 569 

Experiment (INFLUX; Davis et al, 2017), which was running from 2013 through 2017, 570 

included eddy covariance flux towers and a Doppler lidar. Co-located surface flux 571 

and ABL observation datasets are publicly available only for a few sites. Making 572 

more existing observation datasets available to the wider community through public 573 

data repositories would enable studies addressing new emerging research 574 

questions.575 
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Table 3: Examples of previous and ongoing atmospheric boundary layer observations co-located with eddy covariance flux towers. 576 
Links to publications and additional information on the flux tower sites can be accessed through the footnotes. Ecosystem types 577 
include deciduous broadleaf forest (DBF), mixed forest (MF), evergreen needleleaf forest (ENF), cropland (CRO), barren 578 
sparse vegetation (BSV), woody savanna (WSA), urban (URB), grassland (GRA), open shrubland (OSH), and evergreen 579 
broadleaf forest (EBF). 580 

Location Site 
Code Contact Ecosystem Measurements Period Instrument(s) 

Walker Branch, TN1 US-WBW K. Davis & D. 
Baldocchi DBF boundary layer height, wind profiles, radar reflectivity, 

thermodynamics 1999 NCAR Integrated Sounding System 

Park Falls, WI1 US-PFa K. Davis MF boundary layer height, wind profiles, radar reflectivity 
cloud base and fraction, thermodynamics 1998, 1999 NCAR Integrated Sounding System  

Old Jack Pine, SK 
(BOREAS)2 CA-Ojp J. Wilczak ENF boundary layer height 1994 NOAA/ETL 915 MHz radar wind/RASS 

profiler  

Morgan Monroe 
State Forest, IN3 US-MMS K. Novick DBF boundary layer height, cloud base and amount; 

backscatter profile 
2006-2009, 
2011-2013 Vaisala CL31 lidar ceilometer 

Southern Great 
Plains ARM, OK4 US-ARM S. Biraud CRO boundary layer height, cloud base and amount; 

backscatter profile; wind profiles 2011- CEIL lidar ceilometer; radar wind profiler; 
micropulse lidar 

Utqiaġvik, AK5 US-A10 R. Sullivan BSV boundary layer height, cloud base and amount, water 
vapor, temperature, and turbulence profiles 2011- 

Ceilometer, micropulse lidar, balloon sonde, 
G-band radiometer profiler, microwave 
radiometer  

Tonzi, CA6 US-Ton S. Wharton & D. 
Baldocchi  WSA 

wind profile from ground to 150m, thermodynamic and 
wind profiles from ground to top of troposphere, ABL 
height  

2012, 2013 WindCube v2, ZephIR 300, radiosondes  

Wind River, WA67 US-Wrc S. Wharton ENF 
Wind profile from ground to 150m, thermodynamic 
and wind profiles from ground to top of troposphere, 
ABL height 

2012 WindCube v2, radiosondes 

Howland Forest, 
ME8 US-Ho1 D. Hollinger ENF boundary layer height, cloud base and amount; 

backscatter profile 2013- Vaisala CL31 lidar ceilometer 

INFLUX 
(Indianapolis Flux 
Experiment)9 

- K. Davis & A. 
Brewer URB boundary layer height, wind profiles, turbulence 

profiles, cloud base and fraction 2013-2017 HALO Photonics scanning doppler lidar 

Oliktok Point, AK5 US-A03 R. Sullivan BSV boundary layer height, cloud base and amount, water 
vapor, temperature, and turbulence profiles 2014- Ceilometer, micropulse lidar, balloon sonde, 

radar wind profiler, Doppler lidar 
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Walnut Gulch, 
AZ10,11 

US-
Wkg/Whs 

J. Perkins & P. 
Hazenberg GRA/OSH boundary layer height, cloud base and amount; 

backscatter profile 2017- Lufft CHM15k lidar ceilometer 

Walnut Gulch, AZ 

10,11 
US-

Wkg/Whs A. Richardson GRA/OSH boundary layer height, cloud base and amount; 
backscatter profile 2019- Campbell CS135 lidar ceilometer 

CHEESEHEAD19, 
WI12 US-PFa A. Desai various 

boundary layer height, cloud base, aerosol 
backscatter and polarization, PBL temperature, wind 
and moisture profiles, radar reflectivity, precipitation 
imaging 

June-Oct 
2019 

NCAR Integrated Sounding System, UW 
SSEC SPARC (AERI AND HSRL), KIT IFU 
H2O and wind LiDAR, NOAA CLAMPS and 
SURFRAD, UW MRR and PIP 

Twitchell Island, 
CA913 US-Twt D. Baldocchi & 

NOAA CRO boundary layer sounding 2017- 915 MHz wind profiler 

Kansas Field 
Station, KS14 

US-KFS N. Brunsell GRA boundary layer height, cloud base and amount; 
backscatter profile 2016- Vaisala CL51 lidar ceilometer 

Graswang, 
Germany15 

DE-Gwg M. Mauder 
(TERENO) GRA boundary layer height, cloud base and amount; 

backscatter profile 2012- Vaisala CL51 lidar ceilometer 

Rottenbuch, 
Germany15 

DE-RbW M. Mauder 
(TERENO) GRA boundary layer height, cloud base and amount; 

backscatter profile 2012- Vaisala CL51 lidar ceilometer 

Fendt, Germany15 DE-Fen M. Mauder 
(TERENO) GRA boundary layer height, cloud base and amount; 

backscatter profile 2012- Vaisala CL51 lidar ceilometer 

NY State Mesonet 
(17 sites, co-located 
atmos. & eddy 
covariance 
measurements)16 

- C. Thorncroft various 
atmospheric profiles: winds up to 7km above the 
surface; temperature and liquid up to 10km above the 
surface 

2018- 
Leosphere WindCube WLS-100 series 
Doppler LiDAR; Radiometrics MP-3000A 
Microwave Radiometer 

Ruisdael Obs., 
Netherlands17 

multiple H. Russchenberg various various in dev. 
multiple instruments for in situ 
characterization of physical and chemical 
properties of the atmosphere 

Selhausen Juelich 
ecosystem site18 DE-RuS M. Schmidt CRO 

boundary layer height, cloud base and amount; 
backscatter profile, wind profiles, air temperature and 
humidity profiles 

2007- 
LufftCHM15k and Vaisala CT25k lidar 
ceilometer, HALO Doppler wind lidar, 
radiosondes, microwave radiometer 

Renon19 IT-Ren S. Minerbi ENF vertical profiles of wind velocity, backscatter profile 2000 Doppler Sodar Remtech PA1 

Guadiana20 ES-Gdn P. Serrano Ortiz EBF 
vertical and temporal evolution of atmospheric water 
vapor and aerosols, wind profiles, air temperature and 
humidity profiles 

2016, 2019 HALO Doppler lidar, scanning Raman lidar, 
radiosondes 
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Tharandt21 DE-Tha C. Bernhofer ENF vertical profiles of wind and turbulence, air 
temperature and humidity profiles 2016 tethered Vaisala balloon sonde, Metek 

Doppler-SODAR PCS2000-64/MF 

Grillenburg22 DE-Gri C. Bernhofer GRA 

line- and area-averaged wind components and 
acoustic virtual temperature [100x100 m²], path-
averaged concentrations of greenhouse gases 
[100x100 m²] 

2016 acoustic travel-time tomography, Bruker 
EM27 Open Path Spectrometer (OP-FTIR) 

Yatir Forest23 IL-YAT D. Yakir ENF boundary layer height, cloud base and amount; 
backscatter profile 2015- Vaisala CL51 ceilometer 

Lannemezan24 - S. Derrien mixed 
vertical wind profiles, air temperature and humidity 
profiles, boundary layer height, cloud base and 
amount; backscatter profile 

2010- Wind profiler radar, radiosondes, ceilometer 

Hyltemossa25 SE-Htm M. Heliasz ENF 
boundary layer height, cloud base and amount; 
backscatter profile 2017- Vaisala CL51 ceilometer 

Svartberget26 SE-Svb P. Smith ENF 
boundary layer height, cloud base and amount; 
backscatter profile 2018- Vaisala CL51 ceilometer 

Norunda27 SE-Nor M. Mölder ENF 
boundary layer height, cloud base and amount; 
backscatter profile 2018- Vaisala CL51 ceilometer 

Tapajos National 
Forest, Brazil BR-SA1 S. Saleska & S. 

Wofsy EBF cloud base, backscatter profile 2001-2003 Vaisala CT-25K ceilometer 

1https://www.osti.gov/biblio/808114-regional-forest-abl-coupling-influence-co-sub-climate-progress-date; 2https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=240 ; 581 
3https://www.sciencedirect.com/science/article/pii/S0168192311000244; 4https://www.arm.gov/capabilities/observatories/sgp; 5https://www.arm.gov/capabilities/observatories/nsa; 582 
6https://www.sciencedirect.com/science/article/pii/S0168192317300308; 7https://ameriflux.lbl.gov/sites/siteinfo/US-Wrc; 8https://ameriflux.lbl.gov/sites/siteinfo/US-Ho1; 9https://sites.psu.edu/influx/; 583 
10https://ameriflux.lbl.gov/sites/siteinfo/US-Wkg; 11https://ameriflux.lbl.gov/sites/siteinfo/US-Whs; 12https://www.eol.ucar.edu/field_projects/cheesehead; 584 
13https://www.esrl.noaa.gov/psd/data/obs/sites/view_site_details.php?siteID=tci; 14https://ameriflux.lbl.gov/sites/siteinfo/US-KFS; 15https://www.tereno.net; 16http://nysmesonet.org/about/welcome; 17http://ruisdael-585 
observatory.nl/; 18https://www.fz-juelich.de/ibg/ibg-3/EN/Research/Terrestrial_observation_platforms/ICOS/Selhausen_agricultural_station/_node.html; 19https://deims.org/5d32cbf8-ab7c-4acb-b29f-600fec830a1d; 586 
20https://www.ugr.es/~andyk/pubs/066.pdf; 21http://www.icos-infrastruktur.de/en/icos-d/komponenten/oekosysteme/beobachtungsstandorte/tharandt-c1/; 22http://sites.fluxdata.org/DE-Gri/; 587 
23https://www.weizmann.ac.il/EPS/Yakir/biosphere-atmosphere-fluxes; 24http://p2oa.aero.obs-mip.fr/spip.php?rubrique125&lang=fr; 25https://www.icos-sweden.se/hyltemossa; 26https://www.icos-sweden.se/svartberget; 588 
27https://www.icos-sweden.se/norunda; 27https://daac.ornl.gov/LBA/guides/CD03_Ceilometer_Km67.html 589 
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5 Research opportunities emerging from co-located ABL and tower-based 591 

surface flux observations  592 

 Extending current ABL observations across the FLUXNET network would 593 

open new opportunities to tackle pressing research questions and add value and 594 

exposure to ongoing eddy covariance surface flux measurements (see Table 4 for a 595 

summary of possible applications). In this section, we outline how continuous and 596 

long-term ABL observations at flux tower sites would provide crucial information to 597 

(1) interpret surface flux dynamics at flux tower sites, (2) support flux footprint 598 

modelling and quality control of flux measurements (including flux correction 599 

algorithms), (3) support regional-scale modelling and upscaling of surface fluxes, (4) 600 

and quantify land-atmosphere coupling and validate its representation in Earth 601 

system models. Long-term continuous ABL observations have the advantage that 602 

they can capture ABL responses to seasonal changes in surface fluxes (Bianco et 603 

al., 2011) and to interannual variability of surface and boundary-layer dynamic 604 

conditions (e.g., drought, Miralles et al., 2014). However, cost limitation or 605 

requirement of personnel often only allow long-term observations of a limited range 606 

of atmospheric variables (e.g., ABLH). Shorter intense ABL observation campaigns 607 

(e.g., BOREAS, FIFE) typically feature a wider range of observed atmospheric 608 

variables but are only feasible at a few selected sites. 609 

For site-specific applications in heterogeneous terrain, spatial differences 610 

between surface flux footprints and ABL source areas should be carefully assessed 611 

to ensure that observed fluxes are representative of the observed ABL conditions 612 

(e.g., Sugita et al., 1997, Wang et al., 2006). Horizontal scales of surface flux 613 

footprints from flux towers can be substantially smaller than source areas of 614 
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meteorological observations in the ABL, particularly for deep ABLs (Wilson & 615 

Swaters, 1991; Schmid, 1994). Scintillometers allow measurements of area-616 

averaged surface sensible heat and momentum fluxes over a path length of up to 617 

several kilometers and can be paired with eddy covariance flux measurements (see 618 

Meijninger et al., 2002). Comparisons of ecosystem-scale surface fluxes from eddy 619 

covariance towers and landscape-scale area-averaged surface fluxes from 620 

scintillometers can help assess the representativeness of flux tower measurements 621 

for larger scale ABL development. 622 

Table 4: Summary of research directions that would substantially benefit from 623 

co-located eddy covariance surface flux and atmospheric boundary layer 624 

(ABL) observations. The most useful atmospheric variables and the 625 

recommended site setup are given for each research direction. 626 

 Most useful variables Site setup 

 

Atmospheric 
boundary 
layer height 

Air 
temperature 
& humidity  
profiles 

Wind  
profiles 

Cloud 
base 
height &  
cover 

Single 
tower 

Tower network 
or paired  
towers 

Interpretation of  
surface flux 
measurements       
Understanding 
feedbacks 
between surface 
fluxes and 
atmosphere 

x    x  

Linking atmospheric 
profiles and stability 
conditions to surface 
flux observations 

x x x  x  

Interpreting 
spatial patterns of 
evaporation rates 

x     x 

Validating 
techniques 
to estimate regional 
evaporation rates 

x x   x  

Impacts of land 
cover and land x x x   x 
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surface 
heterogeneity 
on near-surface  
climates 
Understanding  
turbulence transport  
in mountainous  
terrain 

x  x   x 

Improving quality 
of eddy covariance 
flux measurements       
Improving quality 
control of eddy 
covariance flux 
measurements 

  x  x  

Interpreting nighttime 
eddy covariance 
flux measurements 

 x x  x  

Reducing 
uncertainties in 
flux footprint 
estimates 

x    x  

Regional-scale 
modeling       
Inferring regional- 
scale fluxes x    x  
Bridging gap 
between inverse 
flux modeling 
and surface flux 
observations 

x x x   x 

Land-atmosphere 
coupling and 
model validation       
Validating 
land-atmosphere 
modeling efforts 

x x   x x 

Quantifying 
land-atmosphere 
coupling across 
biomes 

x x    x 

Understanding  
vegetation-cloud 
interactions 

x   x x x 

Development 
of test-bed 
sites/networks 

x x x x  x 

Validating 
spaceborne 
ABL missions 

x x    x 

 627 
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5.1 Interpretation of surface flux measurements 628 

To fully understand the feedback between surface fluxes and the 629 

atmosphere, we require ABLH observations in addition to eddy covariance flux 630 

measurements. Fluxes of mass and energy at the land surface, as measured at 631 

eddy covariance tower sites, are not isolated from the conditions of ABL and free 632 

troposphere. Mass and energy fluxes at the land surface respond to changes in 633 

ABLH and to the heat, moisture, and matter that is mixed into the growing ABL from 634 

the free troposphere (i.e., entrainment). In turn, the depth of the ABL and the 635 

concentration of scalars within it are a function of the surface fluxes and the 636 

entrainment of dry air from above the growing ABL (Denmead et al., 1996; Davis et 637 

al, 1997). Thus, observations of ABLH and of its growth can support the 638 

interpretation of surface flux observations. 639 

The growth of the ABL is directly coupled to land surface conditions and is 640 

influenced by feedback mechanisms between the surface energy balance and the 641 

entrainment of dry and warm air from above the ABL. Enhanced entrainment of drier 642 

free tropospheric air increases atmospheric water demand from vegetation and soils 643 

and can lead to an increase in surface latent heat flux and a concurrent reduction in 644 

surface sensible heat flux. Under well-watered conditions (i.e., with sufficiently high 645 

soil moisture), surface latent heat flux continues to increase, which in turn moistens 646 

the ABL, lowers soil moisture (van Heerwaarden et al., 2009; Seneviratne et al., 647 

2010; Santanello et al., 2018), and reduces ABL growth (e.g., McNaughton & 648 

Spriggs, 1986; van Heerwaarden et al., 2009; Salvucci & Gentine, 2013). However, 649 

stomata closing in response to increasing vapor pressure deficit or to decreasing soil 650 

moisture reduces surface conductance and can reduce latent heat flux leading to a 651 
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concurrent increase in sensible heat flux (i.e., increasing Bowen ratio; Helbig et al., 652 

2020b; Lansu et al., 2020). In addition, cloud formation and precipitation occurrence 653 

are tightly coupled to ABL growth dynamics (Konings et al., 2010). If the ABLH 654 

reaches the LCL, condensation occurs, and convective clouds may form (Fig. 6). 655 

While the associated increase in diffuse radiation can positively affect photosynthetic 656 

uptake (Niyogi et al, 2004; Knohl & Baldocchi, 2008), cloud formation also reduces 657 

the amount of solar radiation that reaches the Earth’s surface (Juang et al., 2007a; 658 

Vilà-Guerau de Arellano et al., 2014, see Fig. 10). This reduction in available energy 659 

at the land surface can exert a negative feedback on surface energy fluxes. For 660 

example, the impact of cloud cover on surface energy fluxes and ABL growth 661 

dynamics was seen during the CHEESEHEAD19 field campaign in Wisconsin 662 

(Butterworth et al., in press) on two consecutive days with different degrees of cloud 663 

cover (Fig. 9). The cloudy day showed a delayed onset of ABL development and 664 

large reductions in sensible and latent heat, while the sunny day showed a more 665 

typical diurnal cycle with surface energy fluxes peaking midday and a rapidly growing 666 

ABL. 667 
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 668 

Fig. 10: Daytime feedbacks between cloud cover, radiative fluxes (net radiation 669 

[Rnet], incoming shortwave [SWIN] and longwave radiation [LWIN], outgoing 670 

shortwave [SWOUT] and longwave radiation [LWOUT]), surface energy fluxes 671 

(i.e., sensible heat flux [H], latent heat flux [LE]), land surface properties 672 

(albedo [α], land surface temperature [LST], and Bowen ratio [ß]), and state 673 

of the atmospheric boundary layer (atmospheric boundary layer height 674 

[ABLH] and its growth rate [ΔABLH], and lifting condensation level [LCL]). 675 

While cloud cover and patterns can change on short timescales (< 30 mins, 676 

dynamic heterogeneity), land cover patterns are relatively static on shorter 677 

timescales (< 1 month, static heterogeneity). 678 

   679 
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Surface fluxes and atmospheric stability are strongly coupled via 680 

turbulent mixing and, thus, atmospheric profile measurements of temperature 681 

and specific humidity (needed to derive atmospheric stability) and wind may 682 

improve our understanding of the dynamic interaction between surface fluxes 683 

and atmospheric conditions. For example, aerodynamic coupling between the 684 

land surface and the ABL affects the surface energy balance and is primarily 685 

controlled by atmospheric stability. During unstable conditions, a negative feedback 686 

occurs: an increase in surface temperature increases convective instability, turbulent 687 

mixing, and aerodynamic conductance, resulting in an increase in sensible heat flux. 688 

This increase in sensible heat flux acts to reduce surface temperature. During stable 689 

atmospheric conditions, temperature profiles are inverted, and turbulence is 690 

dampened. Over well-watered surfaces (e.g., lakes, wetlands, or flooded/irrigated 691 

sites), the downward transport of sensible heat can feed evaporation and 692 

evaporative cooling of the surface reinforcing the temperature inversion and 693 

promoting further stable stratification (Brakke et al., 1978; Lang et al., 1974, 1983). 694 

The ABLH represents the vertical extent of the atmosphere that is directly 695 

influenced by the Earth’s surface (Fig. 1). Therefore, the ABLH has been used as a 696 

scaling parameter under a range of atmospheric stability conditions (Zilitinkevich et 697 

al., 2012, Banerjee and Katul, 2013, Banerjee et al., 2014, Banerjee et al., 2015) to 698 

characterize the exchange between the land surface and the atmosphere. The 699 

measurement of ABLH alongside land-atmosphere exchange can therefore help 700 

constrain surface fluxes. On the other hand, the ABLH itself is a function of the 701 

sensible heat flux gradient across the ABL. Thus, over flat and homogeneous 702 

surfaces, the ABLH can be computed by a thermodynamic encroachment model: 703 
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𝑑ℎ
𝑑𝑡

= 𝑤′𝜃′−𝑤′𝜃ℎ
′

𝛾 ℎ
                                                                      (1) 704 

where h is the ABLH, 𝑤′𝜃′  is the kinematic sensible heat flux at the surface, 𝑤′𝜃ℎ
′  is 705 

the entrainment flux at the ABL top, and 𝛾 denotes the potential temperature gradient 706 

of the free atmosphere above the ABL (e.g., Tennekes, 1973; Zilitinkevich et al., 707 

2012; Brugger et al., 2018). The entrainment heat flux is often modeled as a fixed 708 

proportion of the surface heat flux. Equation 1 approximates the ABL as a single slab 709 

without any internal source and sink terms. Integrating equation 1 (Brugger et al., 710 

2018) or more complex ABL growth formulations (e.g., Driedonks & Tennekes, 1984) 711 

offers a technique to couple eddy covariance flux measurements and ABLH 712 

observations at a particular site (Batchvarova & Gryning, 1991; Brugger et al., 2018).  713 

Additionally, profiles of wind and air temperature in the lowest levels of the 714 

ABL (i.e., the roughness sublayer, the surface layer, and into the lower mixed layer, 715 

see Fig. 3) can provide critical information for extrapolating the influence of 716 

vegetation structure and function at the surface into the ABL. The parameters of the 717 

Monin-Obukhov Similarity Theory functions for the diabatic profiles of wind and 718 

temperature (Monin & Obukhov, 1954) depend on measured fluxes (e.g., momentum 719 

and sensible heat), as well as scaling parameters like the zero-plane displacement 720 

and roughness lengths for momentum and heat (which themselves are strongly 721 

affected by canopy structure, Brutsaert 1982). Properly constraining the parameters 722 

of these profile equations is made substantially easier if at least one, and ideally 723 

multiple, observations of the key scalars (air temperature, wind speed) are made 724 

within the surface layer, which is often assumed to extend from a height of 2-5 times 725 

the height of the canopy (i.e., local blending height) to about 10% of the ABL height 726 

(Raupach & Thom, 1981). For ecosystems with short canopy heights (i.e., 727 
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grasslands, croplands), many existing flux tower heights extend into the surface 728 

layer (Fig. 3), substantially facilitating the application of similarity theory. However, 729 

for forests and woodlands, most flux tower heights are constrained to within the 730 

roughness sublayer, where diabatic profile functions do not apply due to local, near-731 

surface canopy drag effects (Harman & Finnigan, 2007, 2008). At these sites, 732 

additional information about the profiles of temperature and wind in the surface layer 733 

(for example, from radiosonde observations or sodar) could better constrain 734 

estimates of the zero-plane displacement and roughness lengths, and better 735 

facilitate the transfer of information about measured fluxes to their impacts on 736 

atmospheric state variables throughout the ABL (e.g., Novick & Katul, 2020). 737 

ABL growth observations can help interpret differences in measured 738 

evaporation rates over a spectrum of sites from well-watered and productive to 739 

dry, sparse and unproductive. Evaporation of an extended wet surface exceeds 740 

the equilibrium rate of evaporation (lEeq) through the coupling mechanisms between 741 

land surface and ABL. This effect can be best demonstrated by applying a coupled 742 

ABL model (McNaughton & Spriggs, 1986) that links the Penman-Monteith equation 743 

to a simple one-dimensional slab ABL model. Evaporation rates depend on the vapor 744 

pressure deficit within the ABL, whose growth and entrainment depend on sensible 745 

heat flux at the surface (e.g., Raupach, 2000, 2001). Under conditions of low surface 746 

resistance (i.e., well-watered conditions), the ratio of actual evaporation to lEeq 747 

approaches 1.26 because of this coupling (i.e., Priestley-Taylor coefficient; Priestley 748 

& Taylor, 1972). If well-watered surfaces are isolated within a drier landscape (e.g., 749 

irrigated land), large regional sensible heat flux and enhanced vapor pressure deficit 750 

can accelerate water losses to the atmosphere and lead to ratios of actual 751 

evaporation to lEeq well above 1.26 (Shuttleworth et al., 2009; Baldocchi et al., 2016). 752 
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In such cases, direct measurements of ABLH and of temperature and humidity 753 

profiles are crucial to interpret the large observed evaporation rates. 754 

Observations of atmospheric temperature and humidity profiles and 755 

ABL growth across flux tower sites can provide unique datasets to validate 756 

techniques to estimate regional evaporation rates (e.g., Rigden & Salvucci, 757 

2015). One of the outstanding challenges to computing land atmosphere fluxes is 758 

assessing the down regulation of stomatal (and surface) conductance as soil 759 

moisture deficits increase (Fig. 4). The lack of consistent and large-scale soil 760 

moisture observations poses another challenge to this task. Recent work, 761 

demonstrating how plants can act as a “sensor” for soil moisture, has highlighted 762 

their influence on the humidification of the ABL (e.g., Pedruzo-Bagazgoitia et al., 763 

2017; Vilà-Guerau de Arellano et al., 2014; Combe et al., 2016; Denissen et al., 764 

2021). The vertical variance of the relative humidity profile within the ABL can be 765 

used to infer the large-scale surface conductance from weather station data only 766 

(Gentine et al., 2016; Salvucci & Gentine, 2013). Due to the tight coupling of latent 767 

heat exchange at the land surface and atmospheric humidity and temperature, this 768 

approach can serve as an inferential measure of land surface conditions (e.g., soil 769 

moisture) at large spatial scales (McColl & Rigden, 2020) and has been shown to 770 

produce estimates of evapotranspiration rates across North America comparable to 771 

a range of other evapotranspiration data products (Rigden & Salvucci, 2015). Co-772 

located continuous measurements of ABLH, temperature and humidity profiles, and 773 

surface fluxes can provide an important tool to test the validity of these new 774 

approaches. 775 
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Analyses of land use and cover impacts on near-surface climates can be 776 

expanded across the FLUXNET network but require both direct ABL 777 

measurements and models to interpret observations. Recent work has assessed 778 

how land use and cover affects local air temperatures through land surface-779 

atmosphere interactions (Lee et al., 2011; Baldocchi & Ma, 2013; Helbig et al., 2016; 780 

Hemes et al., 2018; Helbig et al., 2020a; Novick & Katul, 2020). To quantify such 781 

effects on local near-surface and regional climate, the coupling between land 782 

surface, ABL, and free troposphere needs to be accounted for (van Heerwaarden et 783 

al., 2009). Similarly, co-location of flux towers and ABL observations in urban 784 

environments can help better understand the effect of urban planning on near-785 

surface climate and air pollution and thus on human health and comfort (e.g., 786 

Kotthaus & Grimmond, 2018b; Wood et al., 2013). 787 

Apart from surface heating and cooling, the ABL height is also highly sensitive 788 

to land surface cover, topography, and synoptic conditions. While a number of 789 

studies have investigated the changes in ABLH with atmospheric stratification, 790 

studies on the impact of surface heterogeneity and land-cover transitions on ABLH 791 

are scarce. Brugger et al. (2018) investigated the influence of surface heterogeneity 792 

on ABLH in the context of a semi-arid forest surrounded by a shrubland (i.e., Yatir 793 

forest in the Negev desert, Israel). The presence of a large-scale surface 794 

heterogeneity violated the assumption of planar homogeneous conditions; however, 795 

an internal boundary layer model originally conceptualized by Venkatram (1977) and 796 

modified by Brugger et al. (2018) was used to compute the change of ABLH due to 797 

the surface roughness transition. This spatially explicit model accounts for turbulent 798 

fluxes measured by eddy covariance towers over the different surfaces and the 799 

geometric configuration of the transition and couples these measurements with the 800 
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mixed layer and ABL measurements over the land surfaces. For example, a 801 

transition from a shrubland to forest results in the growth of an internal boundary 802 

layer, which assumes a vertical transport of the forest’s effects at the convective 803 

velocity scale to the ABL top while being advected horizontally at the same time by 804 

the background flow. Kröeniger et al. (2018) conducted large eddy simulation over 805 

the same site and was able to validate this model and the eddy covariance 806 

measurements along with ABL models were useful to interpret the results, especially 807 

to investigate the role of secondary circulations that could further modulate land-808 

atmosphere exchange (Banerjee et al., 2018). Similar modeling exercises reinforced 809 

with co-located eddy covariance surface flux and ABL measurements could be 810 

beneficial for other applications such as models for regional climate, pollutant 811 

transport, and urban heat islands. 812 

Combining surface flux and continuous ABL observations can be an 813 

effective approach to disentangle complex transport mechanisms in 814 

mountainous terrain and to resolve the non-prototypical multi-layered 815 

structure of mountainous boundary layers. Eddy covariance flux measurements 816 

in complex mountainous terrain have been successfully conducted despite the 817 

typical diurnal development of regional wind systems (e.g., Hammerle et al., 2007; 818 

Hiller et al., 2008). Surface energy flux observations from flux towers can contribute 819 

to a better understanding of turbulence over complex terrain and thus of ABL 820 

development in mountainous terrain, which results from diverse transport processes 821 

(e.g., orographic gravity waves, thermally driven circulation; see Kutter et al., 2017 822 

and Serafin et al., 2018). The complexity of mountainous ABL development is also 823 

reflected in the mismatch between CBL heights and mixing heights (i.e., aerosol 824 

layer). Aerosol layer heights can be substantially higher due to mountain venting 825 
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processes caused by slope flows in mountainous terrain (e.g., De Wekker et al., 826 

2004). For a more detailed discussion of mountainous boundary layers, the reader is 827 

directed to the work by Lehner & Rotach (2020) and Serafin et al. (2018). 828 

5.2 Improving quality of eddy covariance flux measurements 829 

Atmospheric boundary layer observations can provide important 830 

information on the state of the atmosphere and can thus improve quality 831 

control of eddy covariance fluxes. The quality of eddy covariance flux 832 

measurements varies with atmospheric conditions and depends on the fulfilment of 833 

fundamental micrometeorological assumptions (e.g., negligible advective fluxes). 834 

The influence of regional or mesoscale (i.e., non-local) motions on turbulent 835 

exchange between the land and atmosphere have often been studied using short-836 

term, campaign-style observations (e.g., Shen & Leclerc, 1995, Aubinet et al., 2010). 837 

Such studies revealed the effect of certain ABL processes on uncertainties in eddy 838 

covariance flux measurements emphasizing the need for continuous ABL 839 

measurements at flux tower sites. These observations could for example detect large 840 

vertical exchanges of air within the canopy, which can originate from the ABL and be 841 

important particularly in tall (e.g., forest) canopies (e.g., Thomas and Foken, 2007; 842 

Wharton et al., 2017). Non-local motions can occur at larger timescales than those 843 

typically associated with canopy transport and eddy covariance averaging intervals. 844 

Patton et al. (2015) argue that single point (e.g., tower) observations should be 845 

averaged over time scales of the ABL motions rather than of canopy-scale transport 846 

processes. There is evidence that inability to resolve large eddies that entrain warm-847 

dry air in traditional eddy covariance flux calculation methodology may contribute to 848 

the lack of surface energy balance closure, which leads to systematic 849 
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underestimation of energy and possibly of carbon fluxes at most flux tower sites 850 

(Stoy et al., 2013; Eder et al., 2015b; Mauder et al., 2020). Continuous ABL 851 

observations of wind speed and direction could be used to identify periods when 852 

these eddies are present and be used to correct or flag biased flux measurements 853 

(de Roo et al., 2018). 854 

Interpretation of nighttime fluxes is a major focus for the integration of 855 

ABL and eddy covariance flux measurements. Friction velocity (u*) thresholds are 856 

commonly applied as a proxy for inadequate turbulent mixing whereby periods below 857 

the u* thresholds are removed from the estimate of the nighttime CO2 (respiration) 858 

flux and subsequently gap-filled. While the appropriateness of u* thresholds remain 859 

highly debated (Acevedo et al., 2009), others have focused on understanding the 860 

mechanisms for when nocturnal turbulence can be enhanced, particularly by non-861 

local flows (e.g., low-level jets, Karipot et al., 2006; El-Madany et al., 2014; Wharton 862 

et al., 2017). Wharton et al. (2017) used wind-profiling lidar to identify two different 863 

non-local motions (downslope flow and intermittent turbulence) and applied different 864 

turbulent parameters for estimating canopy mixing during those periods at two flux 865 

tower sites. They found that nocturnal canopy turbulence was the result of a complex 866 

interaction of non-local flows and atmospheric stability, which could not be assessed 867 

solely by u*. For the case of nocturnal low-level jets, Prabha et al. (2008) invoked a 868 

shear-sheltering hypothesis, requiring vertical wind profiles, to identify cases when 869 

the low-level jet enhanced turbulent mixing. Without more (and continuous) ABL 870 

observations at eddy covariance flux towers, nighttime fluxes may become biased 871 

through over-filtering (e.g., application of u* thresholds). However, relying on 872 

overstory u* can also lead to overestimation of periods of adequate turbulence 873 

mixing in the canopy at some sites. For example, at the Tonzi AmeriFlux site, 874 
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nighttime katabatic flows produced shear at heights near the top of the flux tower 875 

(Wharton et al., 2017) resulting in elevated turbulence seen in the relatively high 876 

overstory u* values. At the same time, u* at the bottom of the “open” canopy was low 877 

and indicating low canopy mixing. In this case, a finer resolution temperature and 878 

wind profile is needed to adequately quantify canopy mixing strength. 879 

Continuous measurements of ABLH dynamics co-located with eddy 880 

covariance flux measurements could reduce uncertainties in current flux 881 

footprint estimates and thereby help identifying source and sink hotspots. Flux 882 

footprint models provide an important tool to determine the location and extent of the 883 

source area of impact to eddy covariance flux measurements, to identify greenhouse 884 

gas sources and sinks within the source area, and to improve interpretation of the 885 

measured fluxes (Vesala et al., 2008; Barcza et al., 2009; Griebel et al., 2016; Xu et 886 

al., 2017). Footprint estimates either directly (via input parameter) or indirectly (via 887 

mixing volume) depend on the ABLH (Kljun et al., 2015). This dependence is critical 888 

especially for the case of stable atmospheric conditions due to a shallow ABL that 889 

can act as a “lid” for sources-sinks, and because nighttime stable footprints typically 890 

extend much longer than the typical convective daytime footprints, thus opening 891 

opportunities to interpret greenhouse gas and energy fluxes originating from more 892 

distant sources (Kljun et al., 2002; Baldocchi et al., 2012). In the absence of direct 893 

measurements, ABLH is usually estimated using various modeling approaches (see 894 

Yi et al., 2001; Kljun et al., 2015). The ABLH is also essential for footprint modeling 895 

when measurement height is greater than 10% of ABLH, which occurs during early 896 

mornings or with very tall towers (Kljun et al., 2015; Wang et al., 2006). 897 

5.3 Regional scale modeling 898 
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Atmospheric boundary layer height measurements can be used with 899 

additional concentration measurements to infer budgets of conserved scalars 900 

such as CO2 or methane beyond the flux tower footprint scale (Wofsy et al., 901 

1988; Styles et al., 2002; Bakwin et al, 2004; Betts et al., 2004; Helliker et al, 2004; 902 

Yi et al., 2004; Wang et al., 2007; Pino et al., 2012). Raupach et al. (1992) describe 903 

the CBL budget approach that assumes the bulk of the ABL is well mixed, the 904 

surface layer (affected by surface fluxes) is thin, and that the ABLH growth is rapid in 905 

comparison to subsidence from the atmosphere above (see also Betts, 1992). These 906 

conditions may occur during the middle of sunny clear days when high pressure 907 

systems are dominant. Under these circumstances, 908 

𝑑𝐶𝑚
𝑑𝑡

= 𝐹𝑐
ℎ

+ (𝐶+ − 𝐶𝑚
ℎ

) 𝑑ℎ
𝑑𝑡

                                  (2) 909 

Where Cm is the average concentration of the scalar C throughout the well-mixed 910 

CBL, h is the CBL height, C+ is the concentration of the scalar in the free atmosphere 911 

just above the CBL, and FC is the surface flux of the scalar. For example, Denmead 912 

et al. (1996) used this equation 2 in both differential and integral form to estimate 913 

regional water vapor and CO2 flux over agricultural land. Furthermore, the convective 914 

budgeting approach was used in other regional budget studies such as FIFE (Betts & 915 

Ball, 1994), BOREAS (Barr & Betts, 1997), and at tall tower sites (Desai et al., 2010; 916 

Helliker et al., 2004). Cleugh & Grimmond (2001) tested and refined this approach 917 

over a mixed (rural to urban) landscape, while Baldocchi et al. (2012) used 918 

atmospheric budgeting to better understand anomalies in methane fluxes. However, 919 

this approach fails if advection contributes to changes in scalar concentrations. For 920 

example, the passage of frontal systems is accompanied by substantial changes in 921 

CO2 concentrations in the ABL (Pal et al., 2020).  922 
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Denmead et al. (1996) also discussed the potentially simpler issue of NBL 923 

budgeting. During nights with strong temperature inversions, the ABL collapses to 924 

heights of only tens of meters, trapping surface emissions in a shallow layer. 925 

Monitoring the time rate of change of a scalar (C) through the inversion to height h 926 

yields a flux (FC), 927 

𝐹𝑐 = ∫ 𝑑𝐶
𝑑𝑡

ℎ
0 𝑑ℎ                                                        (3) 928 

Note that it is during strongly stable, nocturnal periods characterized by an 929 

absence of turbulence, when the eddy covariance method fails. The NBL budget 930 

method (equation 3) was first used with tethered balloons carrying sampling tubes 931 

leading to a ground-based analyzer (e.g., Choularton et al., 1995). The rapid 932 

advance of small unmanned aerial vehicles and their use in carrying CO2 and other 933 

equipment for atmospheric measurement (e.g., Brady et al., 2016) suggest many 934 

new opportunities for the NBL budget method. 935 

Continuous ABL measurements would help to bridge the gap between flux 936 

towers and atmospheric inverse flux estimates. In contrast to the CBL budget 937 

approach, atmospheric inverse analyses (e.g. Ciais et al, 2010) integrate 938 

atmospheric greenhouse gas concentration measurements from tower networks 939 

(Andrews et al, 2014; Miles et al, 2012), satellites (Kuze et al, 2016; Crisp et al, 940 

2017) and aircraft (Sweeney et al, 2015) with atmospheric transport models to 941 

estimate regional (Lauvaux et al, 2012; 2016; Barkley et al, 2019; Hartery et al., 942 

2018) to global (Crowell et al, 2019; Peylin et al, 2013) surface fluxes. These 943 

methods simulate atmospheric advection, ABL winds, and ABL mixing, and in most 944 

cases should supersede the simple ABL budget methods (see above). Inverse 945 
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analyses, however, are often limited in their temporal and spatial resolution, and in 946 

their regional accuracy and precision, and are sensitive to transport model errors 947 

including ABL winds and ABLH (Basu et al., 2018; Lauvaux & Davis, 2014; McGrath-948 

Spangler et al., 2015; Díaz-Isaac et al, 2018; Feng et al, 2019; 2020). ABL 949 

measurements at FLUXNET tower sites can enhance atmospheric inversion 950 

techniques in at least two ways. 951 

First, atmospheric inverse flux estimates can in principle be compared to tower 952 

flux estimates. The different spatial and temporal resolutions of these methods make 953 

this challenging. Remote sensing, ecosystem models, and biomass data can be 954 

used to upscale flux measurements to bridge this gap (Davis, 2008; Xiao et al, 955 

2014a; 2014b; Hilton et al, 2014; Jung et al, 2011). Flux towers are now being used 956 

to calibrate ecosystem model ensembles (Zhou et al, 2020), which can serve as 957 

probabilistic prior flux estimates for atmospheric inversion systems (Wesloh et al, 958 

2020). Higher-resolution atmospheric inverse analyses (Lauvaux et al, 2012; Hu et 959 

al, 2019) also provide more opportunities for cross-evaluation of our understanding 960 

of the carbon cycle with the flux tower network. 961 

Second, a network of co-located, continuous measurements of ABLH, mean wind 962 

profiles, and atmospheric turbulence profiles, all of which can be obtained with 963 

stationary profiling instruments such as Doppler lidars (Tucker et al, 2009), could be 964 

used to evaluate, improve, and calibrate these atmospheric inversion systems. 965 

Assimilation of Doppler lidar wind measurements has been demonstrated to improve 966 

atmospheric inverse flux estimates for an urban landscape (Deng et al, 2017). For 967 

example, ABLH and wind profiles from radiosondes have been used to evaluate 968 

(Díaz-Isaac et al, 2018) and calibrate (Díaz-Isaac et al, 2019; Feng et al, 2020) the 969 
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mesoscale models that are used for regional flux inversion systems, but radiosonde 970 

observations have limited temporal resolution, and do not measure atmospheric 971 

turbulence, a key element of ABL mixing. Additionally, the numerical weather models 972 

used in atmospheric inversion systems are highly sensitive to land surface energy 973 

fluxes (Díaz-Isaac et al, 2018). Surface flux observation sites are thus an obvious 974 

choice for joint evaluation and improvement of ABL parameterizations in these 975 

numerical weather models and of the underlying land surface models. 976 

5.4 Land-atmosphere coupling and model validation  977 

Combining continuous and distributed observations of ABLH with turbulent 978 

fluxes would help to better validate local- to continental-scale land-atmosphere 979 

modeling efforts. Models of various complexity and scales (including slab, single-980 

column, large-eddy simulation (LES), regional, and Earth system models) have been 981 

used to increase our understanding of land-atmosphere coupling and feedback. 982 

While ABL observations at individual flux tower sites can be used to validate single-983 

column models, distributed networks of ABL observations are needed to validate 984 

spatially explicit atmospheric models (such as mesoscale models used for 985 

atmospheric flux inversion techniques or coupled Earth system models). Validation 986 

of both types of models will increase capabilities to better understand the role of land 987 

cover, use, and management in ABL dynamics (e.g., Luyssaert et al., 2014; Helbig et 988 

al., 2016; Vick et al., 2016; Chen et al., 2017). 989 

Slab-type column models, which only require estimates of the diurnal cycle of 990 

sensible and latent heat fluxes as well as atmospheric temperature and moisture 991 

lapse rates, have been commonly used to understand timing and onset conditions of 992 

ABL clouds or local convective precipitation (e.g., Juang et al., 2007a; Juang et al., 993 
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2007b; Gentine et al., 2013a; Gentine et al., 2013b; Manoli et al., 2016; Gerken et 994 

al., 2018a; Gerken et al., 2018b), to quantify the impact of land cover change on 995 

near-surface climates (e.g., Baldocchi & Ma, 2013; Luyssaert et al., 2014; Helbig et 996 

al., 2016; Helbig et al., 2020a), and have also been extended to include carbon and 997 

other atmospheric trace gas processes (e.g., Vila-Guerau de Arellano et al., 2015). 998 

In the absence of direct ABL observations, numerical models, diagnostic equations, 999 

and empirical ABLH estimates can be useful for practical applications (e.g., Yi et al., 1000 

2001; Zilitinkevich & Baklanov, 2002) and can provide insights into land-atmosphere 1001 

interactions (e.g., van Heerwaarden & Teuling, 2013). However, CBL models and 1002 

diagnostic equations for SBL are not universally applicable (e.g., Vickers & Mahrt, 1003 

2004), often require calibration of parameters, may introduce biases to ABLH 1004 

estimates (e.g., Denning et al., 2008; Hu et al., 2010; Banks et al., 2015), and some 1005 

ABL models require atmospheric profile measurements for initialisation (Seibert et 1006 

al., 2000). Direct ABL observations at flux tower sites are crucial to design and 1007 

constrain numerical experiments for large-eddy simulations that can be used to 1008 

improve or propose new parameterizations for existing CBL/SBL models and to 1009 

validate the performance of surface exchange and turbulence parameterizations in 1010 

weather, air quality, and climate models across a range of land cover types 1011 

(Edwards et al., 2020). Single-site surface flux, ABLH, and atmospheric profiling 1012 

measurements in relatively homogeneous regions would therefore provide a 1013 

powerful tool for validating and improving ABL models and for evaluating local-scale 1014 

land-atmosphere coupling. 1015 

Heterogeneous landscapes, and regional to continental scale simulations, 1016 

however, require explicit consideration of the four-dimensional nature of the 1017 

atmosphere and its interaction with the Earth’s surface. Observations of surface 1018 



Helbig et al.   Atmospheric boundary layer measurements 

60 

fluxes and ABLH and winds have played an integral role in studies of mesoscale 1019 

flows, in improving our understanding of ABL development over heterogeneous 1020 

surfaces, and in the evaluation of numerical weather models. Many of the studies of 1021 

mesoscale flows have relied upon airborne flux and ABL observations (e.g., Sun et 1022 

al, 1997; Kang et al, 2007), or airborne ABL observations paired with regional flux 1023 

tower networks (Desai et al, 2005; Reen et al, 2006; Reen et al, 2014). Evaluations 1024 

of numerical weather models have not typically made extensive use of flux tower 1025 

networks. The inclusion of ABL profiling measurements at FLUXNET sites would 1026 

provide invaluable long-term grounding points for studies of mesoscale to 1027 

continental-scale land-atmosphere interactions. No comparable data source 1028 

currently exists. 1029 

The combination of ground-based observations of surface fluxes and of 1030 

ABLH allow for closure of ABL energy, water, and gas budgets and can help to 1031 

quantify land-atmosphere coupling across biomes. Land-atmosphere coupling 1032 

mediates important feedback processes in weather and climate (e.g., Santanello et 1033 

al., 2018). For example, lower soil moisture during compound drought and 1034 

heatwaves is associated with higher sensible and lower latent heat fluxes and thus 1035 

enhanced ABL growth and further warming (e.g., Sanchez-Mejia & Papuga, 2014, 1036 

2017). Such feedbacks - highly variable in space and time - are difficult to observe 1037 

without extensive, continuous ABL and surface flux observations (Gerken et al., 1038 

2019; Koster et al., 2009) thus limiting our understanding of atmospheric processes 1039 

(e.g., Betts, 2009; Ek & Holtslag, 2004; Santanello et al., 2018). 1040 

To facilitate validation of land-atmosphere coupling in models, the local land-1041 

atmosphere coupling (LoCo; Santanello et al. 2018) initiative under the Global 1042 

Energy and Water Exchanges project has developed quantitative metrics to better 1043 
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understand land-atmosphere coupling in models and observations over the last 1044 

decade. A key limitation to the application of these metrics is the lack of consistent 1045 

and continuous (in time or space) measurements of ABL thermodynamics and 1046 

ABLH. The ‘process chain’ connecting soil moisture-surface fluxes-ABL evolution-1047 

entrainment-clouds-precipitation relies on consistent, co-located observations of 1048 

these variables, and to date most soil moisture or surface flux networks lack the 1049 

corresponding ABL observations that are necessary to validate numerical weather 1050 

models. 1051 

The short and long-term responses of vegetation to the dynamics of 1052 

boundary layer cloud development are still an open issue. Tackling this land-1053 

atmosphere interaction with continuous, long-term ABL observations could 1054 

help to reduce uncertainties related to the coupling of terrestrial uptake of CO2 and 1055 

ABL clouds, including their transitions. At sub-diurnal and sub-kilometer scales, it is 1056 

necessary to further quantify how vegetation controls the partitioning between 1057 

sensible and latent heat flux (Vilà-Guerau de Arellano et al., 2012) and the impact on 1058 

the cloud cycle (Sikma & Arellano, 2019). Flux tower clusters with multiple surface 1059 

flux and ABL observation systems are uniquely poised to provide important 1060 

information on the effect of spatio-temporal variability of surface fluxes, cloud cover, 1061 

and ABLHs on regional land-atmosphere interactions (e.g., Beyrich et al., 2006; Xu 1062 

et al., 2020). These observational studies will require dedicated observations of ABL 1063 

growth dynamics, of stable isotopologues (Griffis et al., 2007), of the partitioning of 1064 

direct and diffuse radiation (Pedruzo-Bagazgoitia et al., 2017), and of leaf-level 1065 

stomatal conductance (Vilà-Guerau de Arellano et al., 2020) to identify complex 1066 

coupling between photosynthesis, evapotranspiration, and cloud cover dynamics. 1067 
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Flux tower sites with continuous ABL observations could expand on the 1068 

idea of test-bed sites such as the U.S. Department of Energy (DOE) Atmospheric 1069 

Radiation Measurement (ARM) user facility sites with the LASSO (Large-Eddy 1070 

Simulation ARM Symbiotic Simulation and Observation) project (Gustafson et al., 1071 

2020) or the Royal Netherlands Meteorological Institute Parameterization Testbed 1072 

(Neggers et al., 2012) that integrate observations with LES, slab models, and 1073 

operational weather forecasting models. In this context, ABL observations could be 1074 

used to diagnose entrainment fluxes of water, energy, and atmospheric trace gases 1075 

at the ABL top (Santanello et al., 2009, 2011) or to elucidate the surface and 1076 

atmospheric controls on convective precipitation over wet and dry soils (e.g., Findell 1077 

& Eltahir, 2003a, 2003b; Ford et al., 2015; Yin et al., 2015). Recently, the role of 1078 

land-atmosphere feedbacks in expansion and intensification of droughts and 1079 

heatwaves has been highlighted (Miralles et al., 2014, 2019). Given the importance 1080 

of droughts and heatwaves for the carbon cycle (Wolf et al., 2016), water resource 1081 

and wildfire management, agriculture, and human health, the combined surface flux 1082 

and ABLH observations across the FLUXNET network have the potential to 1083 

contribute to better quantification of these feedback processes, arising from 1084 

cumulative drying of soils, increased surface flux partitioning toward sensible heat 1085 

flux, and subsequent heat accumulation in the ABL (Miralles et al., 2014). 1086 

Future spaceborne missions have the potential to provide improved spatial 1087 

coverage of ABL observations and to connect local (i.e., flux tower) to regional 1088 

scales, but require ground-based observations for validation. An improved 1089 

spatial and temporal coverage of ABL observations at flux tower sites would enable 1090 

enhanced calibration and validation efforts, process understanding, and retrieval 1091 

constraints for such spaceborne ABL missions. The 2017 ESAS Decadal Survey 1092 
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(NAS, 2018) has recommended ABL thermodynamic profiles and ABLH as most 1093 

critical measurements from space for a range of scientific applications, such as those 1094 

discussed above. NASA is devoting the next decade to ‘incubate’ new approaches 1095 

and technologies that can lead to future ABL missions and provide globally 1096 

continuous measurements of ABL properties. This incubation will rely heavily on 1097 

knowledge and technology developments demonstrated by ground-based networks. 1098 

The improved coverage and co-location of ground-based ABL observations at 1099 

FLUXNET sites would provide crucial information for developing a strategy for ABL 1100 

observations from space, in addition to ongoing ground-validation of remote 1101 

measurements.  1102 
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6 Conclusions 1103 

Atmospheric boundary layer measurements provide important observations to 1104 

address pressing research questions. Many land-atmosphere studies at eddy 1105 

covariance flux tower sites have relied on modeling approaches due to the lack of 1106 

direct ABL observations (e.g., Baldocchi & Ma, 2013; Helbig et al., 2016; Lansu et 1107 

al., 2020) or have made use of radiosonde observations that are restricted by limited 1108 

temporal resolution or by proximity to the site (e.g., Juang et al., 2007). New 1109 

measurement technologies have become available recently enabling continuous, 1110 

high-frequency ABL observations across the FLUXNET network, opening new 1111 

perspectives on the complex feedbacks between the land surface and the 1112 

atmosphere. 1113 

Our review demonstrates that efforts to expand the availability of ABL 1114 

observations across the FLUXNET network, either through new instrument 1115 

deployments or campaigns to make previously collected data available, would allow 1116 

the Earth science community to address new emerging research questions. Joint 1117 

ABL and surface flux observations would also increase the usability of flux tower 1118 

observations by the broader research communities (e.g., remote sensing, Earth 1119 

system modelling, atmospheric science). Adding ABL measurements to more sites 1120 

within the FLUXNET network, spanning a range of ecosystem types, climate zones 1121 

and terrain, and systematic efforts to make new and existing ABL measurements 1122 

available from network platforms, would 1123 

(1) lead to better understanding of complex feedbacks between surface flux and 1124 

ABL dynamics, 1125 
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(2) support flux footprint modelling, the interpretation of surface fluxes in 1126 

heterogeneous and mountainous terrain, and quality control of eddy 1127 

covariance flux measurements 1128 

(3) support efforts to upscale surface fluxes from local to regional scales, and 1129 

(4) provide essential data for the validation of land-atmosphere coupling in Earth 1130 

system models and of spaceborne ABL missions, 1131 

There is an urgent need to develop the observational infrastructure, to share best 1132 

practices among flux tower site teams, and to develop protocols and standardized 1133 

data formats to enable efficient sharing of ABL data (i.e., ABLH, air temperature, 1134 

humidity, wind, and flux profiles, cloud cover and cloud base height). Combining ABL 1135 

observations with eddy covariance-based surface flux measurements would produce 1136 

unique observational datasets for studies of land-atmosphere interactions and would 1137 

thus add substantial value to ongoing flux tower measurements. 1138 

   1139 
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Wavelength Pulse Freq Power Vertical Range Temporal Res. Vertical Res. Weight Basic Information

905 nm 10,000 Hz 470 W (max) 10 km 2 - 600 s 5 m 33 kg High signal-to-noise ratio, high detector sensitivity, and single-lense design helps ceilometer detect 4 cloud layers and 3 mixed layer heights. System tilt angle improves 
performance during precipitation events.

1064 nm 5,000 - 7,000 Hz 250 W (standard) 
800 W (max, with heating)

15 km 2 - 600 sec 5 m 70 kg Rugged ceilometer with heating and cooling system, able to withstand extreme conditions and remain reliable in all weather conditions. Able to detect up to 9 cloud layers, cloud 
penetration depths, and aerosol and boundary layers.

1550 nm -- 20 W (typical) 7 km 30 s 30 m 10 kg Compact ceilometer requiring minimal power, operable across a wide temperature range, with the ability to be mounted on flux towers for concurrent measurements.

532 nm 2,500 Hz 100 W (typical) 15 km 1 - 900 s 5 m 13 kg Compact (mini) but delicate instrument requiring extreme care, designed to operate in controlled environments. High signal-to-noise ratio and dual polarization backscatter 
measurements for better aerosol determination.

910 nm 6,5000 Hz 310 W (typical) 15 km 6 - 120 s 10 m 46 kg Designed to measure high-range cirrus clouds (up to 13 km and 3 cloud layers) without surpassing low and middle cloud layers even in harsh conditions. Includes extensive self 
diagnostics with little to no maintenance required.

910 nm 10,000 Hz 310 W (typical) 7.5 km 2 - 120 s 10 m 31 kg Previous generation to the CL51 and not as capable but still used as a standard at NWS ASOS sites.  Measures clouds to 7.5 km

- - 100 mW (max) 8 km 1 s depends onascent speed 13 g
Small, recoverable, and reusable sondes reporting real-time wind, temperature, and humidity profiles. 

KIT2 Ground Station: Includes hard case GC1, radio receiver RR2, Software license WS-250, 4 radiosondes S1H3-R (extra accuracy temperature and humidity), antennas and 
battery charger. Sondes come with balloons BA9 and batteries BL75.

- - 60 mW (min) ~30 - 40 km 1 s depends onascent speed 109 g Replacement for venable RS92 sonde. Radionsonde works to streamline launch preparations, reduces human errors, while lowering operational costs.
- - depends onascent speed Used at universities and various labs. At least two flavors of ground station depending on the range required.
- - depends onascent speed Used at universities and various labs. At least three flavors of ground station depending on the range required.

SODAR: 1,598 Hz 
RASS: 2,897 Hz

100 – 250 W 400 - 600 m 10 - 20 s 5 - 50 m
Used for continuous measurements of the vertical profiles of wind and (virtual) temperature between the surface and roughly 600 m, the Sodar (Sonic Detection and 

Ranging)/RASS (Radio Acoustic Sounding System) system transmits acoustic pulses upward, capable of providing reference PBL heights and/or the profiles of turbulent fluxes 
resulting from reflected pulses.

1,500 - 2,300 Hz 60-170 W 15-300 m 600 - 1800 s >5 m 50 kg (without enclosure)
140 W 40-1000 m 100 kg (including antenna) Add on to DSDPA.90-24 or PCS2000 to profile virtual temperature

300m / 600m 7 kg / 20 kg Compact sodar, comes in various formats, can add RASS
20 - 100 W 400 m / 800 m 1 - 60 m 5 - 20 m 12 kg / 32 kg Sodar in various formats, can add RASS

0.33 m - 100 W (average) - 600 W (max) 2 - 5 km   - 2 minHor: 15 - 3  Low: 60 & 100 m 
High: 250 & 500 m

- Fixed ultra high frequency radars designed to measures wind and precipitation profiles (and virtual temp through RASS) through the boundary layer. Cheaper and smaller to build 
and operate than a 404 MHz (NPN) profiler, but lack height coverage above the boundary layer. 

0.67 m - 2,000 W (max) 8 - 10 km 30 s - 5 min 150 - 500 m - All-weather moduler wind profiler can observe winds and turbulence profiles in the lower atmosphere even under clear skies with little or no water vapor (moisture) present. The 
so-called 1/4 scale profiler combines the best sampling attributes of other systems.

0.33 m 800 W - 2 kW (peak) 1 - 20 km 5 - 30 minutes 60 - 500 m Various models ranging from boundary layer to full troposphere coverage.

1,617/2,023 nm 500 - 700 Hz 10,000 W 300 m - 15 km 1 s 45-80 m 1,630 - 2,250 kg Measurement technique is based on Doppler effect, which allows tracking of moving objects (e.g., aerosols) and a characterization of the wind field
1,500 nm 15,000 Hz 130 W, up to 490 W with cooling up to 12 km 1.67 s 18-120 m 85 kg Compact 12km scanning Doppler LiDAR system. Low power consumption, light weight and portable operation.
1540 nm 10,000 Hz 500 W to 1600 W up to 14 km 0.1 to 10s 25 - 200 m 232 kg Compact scanning lidars with ranges 3 / 6 / 10 km for the 3 models 100S / 200S / 400S. Portable operation. 
1540 nm - 45 W 40 to 200 m 1 s 10 - 20 m 45 kg Profiling lidar for observing wind components above the canopy, within open canopies, and in the surface layer or SBL
1560 nm - 70 W, up to 150W with cooling 10 to 300 m 1 s  0.07 to 7.7m 55 kg Profiling lidar for observing wind components above the canopy, within open canopies, and in the surface layer or SBL

35 - 100W 10 - 200 m
36 W 10 - 100 m 1s 40 kg Very compact. Scout only measures at one level,Wind Ranger measures up to 10 levels

2,022 nm 200 Hz - 20 m - 9 km 0.02 s 30 m - Capable of measuring and mapping atmospheric velocities and backscatter with the high precision and sampling rate necessary for boundary layer studies
355 nm 20 Hz 800 - 2500 W 11-14 km 1 - 10 s 7.5 m 250 kg Allows continuous observations of humidity profiles between sunset and sunrise (due to sunlight masking signal)
355 nm 200 Hz 20 W 3-5 km 1-10 s 7.5 m 900 kg Allows continuous observations of humidity and temperature profiles at turbulenceresolution (~10 s). Enables detection ofturbulent fluctuations
910 nm up to 3 km 100 - 500 m 130 kg Allows continuous observations of humidity profiles

~ 1cm 200 W ~ 5 km 5 minutes ~ 1 km in ABL 27 kg Multichannel (profiling) Microwave Radiometer. Continuous passive profiling of water vapor, liquid water and temperature depending on model. Very low resolution (~1km in 
3 - 25 µm 3000 W ~3 km 8 minutes ~ 200 - 500 m in ABL 200 kg Atmospheric Emitted Radiance Interferometer, passive infrared device. Cannot penetrate clouds or rain. Resolution degrades with altitude.

Passive Infrared and Microwave
Radiometrics MP-1500A / 2500A / 3000A

AERI

Radar Wind Profiler
915 or 1290 MHz Radar Wind Profiler 

(Scintec LAP3000)

Purple Pulse Raman Lidar
Vaisala DIAL

Leosphere WindCube 100S/200S/400S
Leosphere WindCube v2 profiling lidar

ZX300 profiling lidar
NRG SpiDAR lidar

Metek Wind Scout and Wind Ranger

Raymetrics Raman Lidar
NOAA coherent High-Resolution Doppler lidar

449 MHz Radar Wind Profiler 
(Scintec LAP8000)

Radiometrics RAPTOR

Vaisala CL51 Ceilometer

Vaisala CL31 Ceilometer

Balloon Soundings

Windsond

InterMet iMet-1 Radiosonde

Ceilometers

Campbell CS135

Lufft CHM 15k NIMBUS

PSI Compact Ceilometer

MiniMPL-532-C (Micro Pulse)

Lidar Wind Profiler & other Lidars

HALO Photonics XR Streamline
Lockheed Martin WindTracer

Scintec SFAS & MFAS

Vaisala RS41 Radiosonde

Metek RASS 915 or 1290 MHz
Remtek PA-XS and PA-0

Graw DFM-09 & DFM-17
Doppler Sodar

Mini-Doppler Sodar-RASSDSDPA.90-24

Metek PCS2000
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