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In this work, several neural network function approximations are compared for inter-
polating, storing, and sampling acoustic source spheres with applications to propeller noise
estimation. These methods are compared using an acoustic model of the three-bladed GL-10
propeller at different flight conditions, with training data generated usingNASA’s ANOPP-PAS
module. The source spheres used to train the networks capture the tonal propeller noise due
to both the blade thickness and loading. This tonal noise prediction method allows the vehicle
noise to be estimated for auralization and acoustic control. Three radial basis function neural
network architectures are compared in this work. The first two networks directly estimate
the parameters of the source sphere at different flight conditions but differ in the number of
layers used. The third network estimates the parameters of the source sphere using a weighted
combination of spherical basis functions. These networks are trained on numerically generated
source spheres, with operating points given in terms of the propeller rotation rate, freestream
speed, and propeller angle of attack. The performance of the neural network is determined
using a validation dataset of withheld data points. This performance is quantified in terms of
the approximation error, training time, and sample time. The third network, which estimates
the weights of the spherical basis functions, performs the best in both average and maximum
approximation errors in all cases. This network’s worst case performance is 5.6 % relative dif-
ference of a model parameter associated with acoustic pressure. The direct estimation network
with a single layer has the worst approximation error in all cases. Additionally, the spherically
defined network has the slowest sample time at 0.05 seconds per thousand points. Both direct
estimation methods produce one thousand sample points in approximately 0.001 seconds.

I. Introduction
New air vehicle configurations are being designed to improve transportation options in urban environments. These

vehicles are smaller than those seen in traditional aviation and are eventually expected to be autonomous, allowing
for large scale deployment [1]. Many of these newly designed vehicles employ distributed electric propulsion (DEP)
systems, which use electrical motors to drive propellers. Along with airspace management and contingency management
methods, new vehicle noise reduction methods are expected to overcome barriers to public acceptance [2, 3].

Noise reduction techniques are often aimed at reducing the propulsor noise of these vehicles. Many noise reduction
techniques focus on physical modifications. These methods are associated with the design of the aircraft, such as changes
to the blade geometry. These techniques are considered passive and do not require energy to operate. The limitation
of these design changes is that they are fixed and can have an effect on the vehicle capabilities, such as reducing the
produced thrust [4]. In contrast, active methods use power to change the acoustic profile of the vehicle. Active methods
can be implemented by changing the flight behavior of the aircraft, such as flight speed or altitude [5]. Combining the
benefits of both of these methods, phase control requires little extra power and can be used to dynamically adjust the
acoustic profile of the vehicle. Phase control methods synchronize propeller blades to cause their emitted sound to
destructively interfere [6, 7].
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Noise control methods that can dynamically adjust the sound profile of the vehicle require noise prediction methods
to operate. The simplest models treat the vehicle as a point source without considering the interaction of the many
propeller noise sources [8]. Recent auralization and tonal noise prediction work has focused on the acoustic interaction of
the independently modeled noise sources. This more complicated model treats each of the propellers as a source sphere
with a different pressure amplitude emitted in each direction, rather than a uniform sound source in all directions [9].

The construction of these source spheres is therefore central for tonal noise prediction methods that are used for
auralization and acoustically aware mission planning. These source spheres encode the directional acoustic pressure of
the propeller, allowing vehicle acoustics to be simulated without performing a full numerical simulation of the propeller
acoustics for each vehicle configuration. Instead, the propellers are treated as independent sources that are combined to
determine the sound in the far field. Though the full vehicle does not need to be simulated, the propeller acoustic profile
must be provided for the vehicle operating conditions. To this end, hundreds of source spheres may be simulated to
cover the flight envelope of the vehicle. Then, approximation methods are used to find the sphere values at operating
points that have not been calculated. Natural neighbor and spline interpolation have been used in Refs. [6] and [10] for
interpolation on a single sphere and estimating ground noise, respectively. The purpose of this work is to compare
machine learning methods for interpolating between the source spheres to estimate noise at a new operating point.
Previous related work on quantifying aircraft noise has focused on helicopters, using databases, machine learning, and
semianalytical models [11, 12]. This paper will instead consider a source sphere model for small Unmanned Aerial
Vehicle (UAV) propellers. The proposed method will allow a set of computed or measured source spheres to be used to
analyze a large number of vehicle configurations and flight conditions. This reduction in the number of source spheres
will reduce the computational and experimental burden of propeller source sphere generation for use by auralization and
acoustic control methods.

This paper is structured in four additional sections. In Section II, the dataset is introduced, and the interpolation
performance metrics are presented. The methods of processing and interpolating between flight conditions are presented
in Section III. The performance of each of the methods is then demonstrated in Section IV. Finally, concluding remarks
are provided in Section V.

II. Background

A. Dataset Generation
To demonstrate propeller source noise sphere estimation, we use a dataset generated using the method found in

Ref. [6]. The propeller considered has three blades, as found on the GL-10 50% scale vehicle concept developed
by NASA to combine long endurance with vertical takeoff and landing technology. The propellers are composed of
AeroNaut 16x8 blades, which results in a propeller diameter of 0.4064 m. The spherical coordinate frame in which
we consider the noise generated by these propellers is centered on the propeller hub, as shown in Figure 1. The
propeller rotates about the I-axis, and the freestream is aligned with the positive I axis at zero degrees angle of attack.

Propeller
Hub

Vf

x

y

z

θ

φ

Figure 1 Spherical coordinate
system showing propeller hub
and freestream alignment.

The source sphere dataset is generated using the Propeller Analysis System (PAS)
module of the NASA Aircraft NOise Prediction Program (ANOPP) [13, 14] to
estimate the tonal acoustic signature, at a range of emission angles, of a single
propeller under different flight conditions. An emission vector is shown as a red
vector in Figure 1. This vector is defined in terms of azimuth and polar angles,
\ and q, respectively. The tonal noise estimate is predicted using Farassat’s F1A
full blade formulation of the Ffowcs Williams-Hawkings equation [15]. The
thickness and loading noise are the deterministic components of the tonal noise.
Thickness noise is computed given the blade’s geometry and motion relative to
each observer on the sphere. Loading noise is estimated by projecting the surface
pressure, derived from Blade Element Momentum Theory (BEMT) [14], to the
farfield. The freestream velocity vector is adjusted for any nonzero propeller angle
of attack, but the induced velocity is unchanged. The thickness and loading noise
components are combined, and the magnitude and phase of the resulting sinusoid
are stored for a set of directions around the center of the propeller. While the
GL-10 is a tiltwing vehicle, we only focus on forward flight conditions, though
a similar method could include the hover mode. The amplitude and phase, along
with the set of emission angles, are called source spheres for each operating
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condition. The radius of this sphere is taken to be twelve times the propeller radius and centered on the rotor hub. In
this paper, only the blade passage frequency is considered. However, extensions to additional harmonics can either be
achieved by training additional, independent neural networks or adding outputs and training data to the networks used
here.

B. Dataset Description
A notional source sphere, from which samples could be drawn, is shown in Figure 2. In Figures 2a and 2b, the

source sphere is represented in terms of amplitude and phase, respectively. The amplitude of noise generated is greatest
near the equator, which is in the propeller plane. The amplitude is near zero at the poles. Figure 2b shows the phase of
the generated noise relative to a fixed reference. The phase shift is dominated by rotation of the propeller blades and, for
this three-bladed propeller, a full shaft rotation leads to three blade passages. For this reason, the phase changes 1080◦
on the surface of the sphere, indicating three full blade passages. Figure 2c shows a time domain representation of a
sphere for a single instant in time. Here, we can see the three pressure peaks associated with the three propeller blades.
As time progresses, this representation would rotate about the vertical axis. This work focuses on estimating these
source spheres. Note that each flight condition would lead to a different distribution of pressures on the sphere.

The dataset is composed of approximately 400 source hemispheres taken at different vehicle conditions. Each
hemisphere is sampled fewer than 200 times, with samples spaced at 15◦ intervals around the sphere. The propeller
operating condition varies in terms of the rotation rate, freestream speed, and propeller angle of attack. Rotation rate, l,
is given in units of RPM, the freestream speed, + 5 , with units of </B, and the angle of attack, U, with units of degrees.
The shaft rotation rate is varied from 3000 to 9000 RPM in increments of 500 RPM; freestream speed is varied from 15
to 30 m/s in increments of 5 m/s; and the angle of attack is varied from -8◦ to 8◦, in increments of 2◦. The distribution
of operating conditions is shown in Figure 3. These operating conditions cover the advance ratios that yield positive
thrust in the flight direction. Previous work, such as Ref. [9], has interpolated between samples on the surface of spheres
but has not interpolated between operating conditions, which will be necessary for simulating propellers attached to a
moving vehicle with changing flight conditions.

(a) Source sphere pressure ampli-
tude.

(b) Phase shift of source sphere. (c) Time domain source sphere
pressure at fixed time.

Figure 2 Source sphere representations for l=5000 RPM, + 5 =15 m/s, and U = 0◦.

Figure 4 shows the variation in the pressure amplitude at a single emission angle. The emission direction is chosen
to be \ = −c/2 and q = c/2. This equatorial emission angle demonstrates the change in pressure level with respect to
the freestream speed and rotation rate. The strongest relationship is between rotation rate and the pressure amplitude
and scales exponentially. We can also note that for a given rotation rate, increasing the freestream speed reduces the
pressure amplitude slightly due to a reduction in aerodynamic loading on the blade surface.

While Figure 4 shows the change in pressure amplitude for a single observation location, we can also consider the
full sphere, with all emission angles, as shown in Figure 5. Each plot in Figure 5 shows a different flight condition. The
first is a low rotation rate condition and produces the least noise, as shown by the color scale. Note that in this case,
the pressure is uniform across azimuth angles for a fixed polar angle because of the aerodynamic axis of symmetry.
However, when the propeller angle of attack changes, this uniformity no longer holds. In the other two plots, the pressure
amplitude is increased on one side of the propeller disk and decreases on the other. We can see that this effect is a result
of the propeller angle of attack but is also affected by the freestream speed, with higher speeds leading to a greater
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Figure 3 Flight conditions sampling space. Each
point is a generated sphere. The lines and grey faces
show the boundary where interpolation can occur. Red
points are boundary points.
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Figure 4 Scatter plot of pressure amplitudes in a
single emission direction.

nonuniformity. Finally, we can note that the increase in rotation rate changes the polar angle where the maximum noise
is emitted. In the first case, with a rotation rate of 5000 RPM, the maximum occurs just below the plane of the propeller,
with a polar angle greater than c/2. In the 8000 RPM case, the maximum occurs at a greater polar angle. To observe the
effect of a phase shift on the radiated sound, we consider the quantity � sin q, where � is the sound pressure amplitude,
and q is a phase shift. This quantity can be seen in Figure 6, which shows the effect of the phase shift in each emission
direction. We can see in this figure that the pressure peaks become more crescent shaped as the rotation rate increases.

Figure 5 Source pressure amplitude for three different flight conditions. The air flows from the bottom of the
plot to the top.

C. Relative Difference
The relative percent difference is used to compare a true value, H, to an estimate, Ĥ, and is used to determine the

effectiveness of estimation methods. This difference is given by the equation:

� (H, Ĥ) =
���� H − Ĥmax(H)

���� · 100%. (1)

This form of the relative difference ensures that the errors can be compared between spheres. The maximum of H is used
in the denominator rather than |H | to prevent sensitivity to small errors when H ≈ 0. The maximum value is taken from
the set of true values given on the sphere for the given operating point.
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Figure 6 Effect of source phase in three different flight conditions. The air flows from the bottom of the plot
to the top.

III. Method
To estimate the pressure amplitude and phase of the source sphere, we take the following steps. First, the hemispheres

are combined to form complete spheres. Second, a local approximation is generated for each sphere, which is used to
augment the dataset before learning the full model. Finally, the machine learning techniques are described for use on the
augmented dataset.

A. Data Preprocessing
The data generated according to Section II is given as hemispheres rather than full source spheres. In Figure 7, we

can further note the sparsity of the data in certain locations. We propose a data augmentation procedure to resample
individual source spheres. Note that the methods used in Section II.A could be used to generate additional source sphere
samples, producing a pressure amplitude and phase at any operating point and any emission angle. These calculations
would take additional computational time but could be used to increase the amount of data and reduce error. However,
experiments are limited during data acquisition, and the limitations may prevent collecting data at specific operating
points or emission angles. For example, in both wind tunnel and flight tests, constraints on the number of experiments,
measurement channel count, and measurement locations can limit the dataset. For this reason, we consider a data
augmentation procedure that operates directly on a given dataset without requiring additional modeling or measurement.

To generate full spheres from hemispheres, we first note that the given hemispheres are symmetric around the
polar axis when the angle of attack is 0◦. When the angle of attack is nonzero, the positive angle of attack for the top
hemisphere results in a negative angle of attack with respect to the lower hemisphere. By combining the appropriate
hemispheres, we can construct full source spheres, as shown in Figure 7. The sphere is parameterized in terms of
azimuth and polar angles. The pressure is higher for negative azimuth angles because the air inflow is angled, so one
hemisphere of the propeller is experiencing additional loading.

As shown in Figure 2b, the phase source sphere is discontinuous due to the angle wrapping when \ = c. For
this reason, we reparameterize the source sphere with the following trigonometric relationship: � cos (E1 − E2) =
� cos E1 cos E2 + � sin E1 sin E2 and let E2 = k, and E1 = ΩC, in which � is the sphere amplitude, k is the sphere phase,
and ΩC is the product of the blade passage frequency and the current time. With this parameterization, the goal of sphere
estimation is equivalent to estimating the quantities W = � cosk and X = � sink. By using the sine and cosine of the
phase to parameterize the sphere, the estimation procedure does not need to account for jumps due to the angle wrapping.
Furthermore, by multiplying these values by the amplitude, the amplitude at the poles is appropriately attenuated. Note
that X is shown in Figure 6 for several flight conditions. The metric given by Equation (1) is used for both the W and the
X parameters of the source spheres. The predicted parameter values at each emission angle are compared to the actual
values at that emission angle.

While the given data are well distributed on a sphere, the interpolation methods considered here will compute the
distances between points in terms of the Euclidean distance. The circular markers in Figure 7 indicate the emission
angles where pressure and phase values are provided. The spacing between the points is no longer uniform when they
are projected onto the plane. For this reason, we propose a data augmentation procedure to increase the number of
points and improve the distribution of the data used for training. The augmentation is applied to both the W and the X
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source spheres. The procedure has two key features. The first is that it is defined on a sphere. This feature ensures that
the model correctly calculates the distances between points, taking into account the wrapping phenomenon that occurs
on the boundary. The second feature is that we will fit each sphere individually. This restriction will improve the fit. The
proposed method for interpolation on a single sphere is a regression method, with basis functions defined on a sphere.

Figure 7 Samples and approximated function. For operating point of l=5000 RPM, + 5 =20 m/s and U = 8◦.

To choose the basis for regression, consider points on a sphere G, I ∈ S2. The set of points x are the given data
locations, and z is the set of interpolation points. Let our unknown function be denoted 5 : S2 → R. Then our sampled
output can be written y = 5 (x), where x is a vector of input points. For any kernel function,  defined on S2 × S2,
we can then write a best linear unbiased predictor for y∗ = 5 (z) as y∗ ≈ ŷ =  (z, x) (x, x)−1y [16]. In this work, we
choose to use the Abel-Poisson Kernel and its associated Mercer series [17] given by the equation:

 (G, I) = 1 − [2

(1 + [2 − 2[G>I)3/2
,

≈
"∑
==0

4c[=
2=+1∑
;=1

.=,; (G).=,; (I) (2)

for [ ∈ (−1, 1), and .=,; is a spherical harmonic of degree = and order ;. Notice that the matrix  (x, x), required for
interpolation, will grow in size with the number of data points given. For large amounts of data, inverting this matrix
can lead to slow computation. The series expansion of the function  is approximate, with equality holding in the limit
when " →∞. By Theorem 12.2 in Ref [16], the truncated Mercer series provides the best "-term approximation of
the kernel  . This spherically defined interpolation procedure is performed using Program 15.6 in Ref. [16], modified
to use the series given in Equation (2). The program implements the solution to estimate Ĥ using a truncated series with
a numerically stable Hilbert-Schmidt singular value decomposition. Across all spheres, this interpolation procedure
leads to an average relative percent difference of less than 1% for the pressure amplitude, using parameter values [ = 0.1
and " = 50. This model is used to augment the dataset, creating a uniform grid of data points for each sphere. The
augmented input and output data pairs are denoted x̄ and ȳ. In this work, we increase the number of points per sphere to
625. For this dataset, it takes approximately 25 seconds to train the model on all source spheres. Once the model is
trained, sampling the data only requires approximately 0.05 seconds per 1000 data points.

B. Neural Network Direct Approximation
To perform our function approximation task, we use a feedforward network model [18]. In this model, the neurons

of the network are organized into layers, with the output of each layer being combined using an affine function and then
transformed by a nonlinear function and passed through to the following layer. For an input vector, G with � elements,
we have that

0 9 =

�∑
8=1

F
(1)
98
G8 + F (0)90 , (3)
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in which 9 is the index of the neuron in the layer and the superscript indicates that this is the first layer of the network.
The weights are denoted F. The input to the second layer is then given by I 9 = ℎ(0 9 ), where ℎ is a nonlinear activation
function. The activation function used in this work is the squared exponential function, commonly used in function
approximation applications. The function is a radial basis function given by the equation I 9 = ℎ(0 9 ) = exp [−(0 9 )2].
The network is trained by optimizing the weights to minimize the error between the model and the data. The cost function
used for training is the mean squared error between the model output and the training data. The Levenberg-Marquardt
algorithm is used to train the networks used in this work [19]. By increasing the number of neurons in a layer or
the number of layers combined, the number of functions that can be represented increases since the network will be
combining more shifted and scaled basis functions. However, this increase leads to a larger number of weights to adjust
during the training process.

In this work, we consider two neural network models that directly estimate the quantities W and X of a source sphere.
These networks produce a source sphere estimate for a single location on the sphere, given the operating condition.
Furthermore, the outputs used for training are scaled by a factor of 2(l) = 1/500 · exp (l/1500) to normalize the
data for training. The first network is a single layer network with 50 neurons and a linear output layer. The second
architecture has two hidden layers with 13 neurons and a linear output layer. The two layer network architecture can
be seen in Figure 8a. These two networks are compared to investigate the benefits of additional network layers. As
described in Section 6.4 of Ref. [20], a single layer network may be able to approximate a large class of unknown
functions, but the number of neurons necessary may be prohibitive. The addition of subsequent layers may reduce the
total number of neurons needed in the network.

C. Spherically Defined Source Approximation
The presented neural network architecture is trained on data points given in a Euclidean coordinate system that

does not fully reflect the spherical distribution of the data. This choice of coordinates leads to approximation errors
near the boundaries of the embedding, where the Euclidean distance between points diverges from the true distance
calculated on the sphere. In Section III.A, we considered a kernel regression method that is defined on a sphere. The
method appropriately approximates the function output on the entire domain of the function. This method works
well for the local fit used in data augmentation; however, scaling the regression across multiple operating conditions
leads to two problems. The first is that the operating condition variables are not defined on a sphere and would need
additional basis functions to be included. The second is that the weights of the regression are computed using the
equation, =  (G, G)−1H, where, is the weight vector, G is the training input, and H is the training output. This matrix
inversion scales almost cubically in computation time and quadratically in memory use with the number of training
samples. Rather than directly computing the weights of this regression, the spherically defined approximation uses a
neural network to estimate the weights needed to predict the function output. The function output prediction is then
performed using Program 15.6 in Ref. [16], which is modified to use the series given in Equation (2). The parameters of
this program are the same as defined in Section III.A. The architecture for the spherically defined approximation is
shown in Figure 8b.

D. Training Evaluation
To evaluate the performance of the trained model, we separate the data samples into training and validation datasets.

Typically, these datasets are constructed through random assignment. However, in this work, we are concerned with
interpolation between source spheres at different operating conditions rather than interpolation on the surface of a
particular sphere. For this reason, it is important to not randomly assign data samples but instead assign entire source
spheres to the training and validation sets. The validation spheres are randomly selected from operating conditions on
the interior of the polytope shown in Figure 3. The model’s accuracy is assessed on randomly selected spheres from
the interior of the polytope. This process is performed five times for a 5-fold cross-validation demonstration. The
cross-validation procedure is performed with respect to both the original dataset and the augmented dataset. Since
the original data are sparse near the borders of the planar embedding, neither the training data nor the validation data
will indicate performance in this region. To overcome this limitation, we will also perform validation checks using the
augmented dataset. While the augmented dataset may have some approximation error, the approximation is performed
in S2 and will provide a reasonable estimate in the entire domain. In addition to the validation demonstration, the model
fitting time and model evaluation time are recorded for the models.
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(a) Two layer network used to directly estimate the source
sphere parameters.
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(b) Two layer network for estimating the weights used
for spherical regression.

Figure 8 Example architectures for direct output approximation and spherically defined approximation.

IV. Results
Each of the machine learning structures presented in Section III is evaluated to estimate W and X of the source sphere.

The neural networks are implemented using the MATLAB® Deep Learning Toolbox. The networks are trained in
parallel on a four core computer, with each core running at 3.4 GHz.

The performance of each network configuration is given in terms of the maximum percent relative difference across
all validation sets, the average percent relative difference across all validation sets, the training time for the network,
and the sample time required to evaluate the function after training. The method is described as being either direct, as
described in Section III.B, or spherical, as described in Section III.C. The layers are described by their widths, with the
set {50} indicating a single layer network with 50 neurons and {13, 13} indicating a two layer network with 13 neurons
in each. The training data are described as either the given data, produced through the numerical method described in
Section II.A, or as the augmented data, generated using the method in Section III.A. The percent relative differences are
calculated according to Section II.C for all validation data points in the 5-fold cross-validation procedure. The training
time is given in seconds, and the sample times are given in units of seconds per 1000 samples.

The performance metrics are shown for the W estimation procedure in Table 1. The direct method performs well, with
less than 3% relative difference on average, when operating only on the given data for both the single and double layer
networks. However, as expected, it does not generalize well to estimate points where the given measurements are sparse.
This degraded performance can be seen in Lines 2 and 4 of Table 1 where the relative difference increases when the
validation data is far from the training data. The increase in error can be mitigated by training on the larger augmented
dataset at the expense of computational time, as shown in Line 5, where the original performance is recovered. The
spherical method has the best performance for both maximum and average case errors. However, this performance
comes at the cost of sampling time, as shown in Lines 6 and 7. Similar performance can be seen in Table 2, where the X
performance is shown. Due to the nature of these quantities, the performance is expected to be similar. Again, the best
performance, in terms of both average and maximum percent relative difference, is achieved by the spherical estimation
procedure.

In Figures 9 and 10, error surfaces are shown for the X estimation procedure in the validation training set. Recall
that the values of W and X will be similar in both distribution and magnitude due to their definitions in Section III.A. In
these figures, the spheres are shown in terms of azimuth and polar angles, with color indicating the percent relative
difference between the true and estimated value of X. Since these flight conditions are from the validation dataset, no
point on any of these surfaces was used for training the model. In Figure 9, the performance of the two-layer direct
estimation method, trained on the augmented dataset, is shown. The goal of data augmentation was to improve fitting
along the boundaries of the planar representation of the spheres. We can see that no one region of the spheres appears to
have a significant portion of the error. However, there is a correlation between the flight condition and the amount of
error observed. The highest error flight conditions are those operating at the lowest rotation rate. This distribution of

8



Table 1 Table demonstrating the performance of the estimation methods
applied to W on the cross-validation datasets.

Method Layer
Width

Training
Data

Validation
Data

Max
%RD

Avg.
%RD

Training
Time [s]

Sample
Time [s]

1 Direct {50} Given Given 30 2.7 125 0.01
2 Direct {50} Given Aug. >100 3.9 125 0.01
3 Direct {13,13} Given Given 24 2.4 40 0.01
4 Direct {13,13} Given Aug. 95 3.4 40 0.01
5 Direct {13,13} Aug. Aug. 23 2.5 60 0.01
6 Spherical {25,25} Given Given 5.5 0.4 183 0.05
7 Spherical {25,25} Given Aug. 5.6 0.2 183 0.05

Table 2 Table demonstrating the performance of the estimation methods
applied to X on the cross-validation datasets.

Method Layer
Width

Training
Data

Validation
Data

Max
%RD

Avg.
%RD

Training
Time [s]

Sample
Time [s]

1 Direct {50} Given Given 29 2.7 133 0.01
2 Direct {50} Given Aug. >100 3.9 133 0.01
3 Direct {13,13} Given Given 19 2.5 44 0.01
4 Direct {13,13} Given Aug. >100 3.4 44 0.01
5 Direct {13,13} Aug. Aug. 26 2.3 51 0.01
6 Spherical {25,25} Given Given 3.5 0.3 163 0.05
7 Spherical {25,25} Given Aug. 3.6 0.2 165 0.05

error occurs for two reasons. The first is due to the scale of the high speed spheres. Recall that the amplitude of the
propeller noise scales exponentially with the rotation rate of the propeller. Even using the normalizing factor, 2(l),
the high rotation rate spheres will drive the learning process. The second reason is due to the sensitivity of the error
metric. This error metric normalizes the error, making it possible to compare performance across operating points. The
percent relative difference is normalized by the maximum observed value at each flight condition. However, when the
maximum observed value is small, this division can amplify small errors. In Figure 10, the performance of the spherical
estimation method is shown. For this method, the errors are much smaller, less than 3%, and are concentrated around
the equator of the sphere. While the direct method has uniformly spread errors, since it is tuning weights for each
measurement point on the spheres, the errors in the spherical method are due to the limited number of basis functions
used. Additionally, this method does not show a strong correlation between performance and propeller rotation rate,
making it more applicable at lower speeds.

V. Conclusion
In this work, we presented and compared three machine learning architectures for estimating propeller source

noise given a sparse set of given values. This work compares single layer networks to double layer networks. Both
architectures are used to directly estimate the source noise parameters. Additionally, a double layer network is used in a
spherically defined architecture to learn the weighting factors of spherical basis functions. The learned weights, when
combined with the basis functions, are used to estimate source noise. These architectures are compared in terms of
relative difference to a known value, training time, and sample time. The direct methods are slower to train and result in
poor performance but can be sampled quickly. To improve performance, at the expense of training time, we present a
method for augmenting the dataset. The spherical basis function method trains faster and yields the best performance but
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Figure 9 Error surfaces of X at flight conditions in the validation dataset for direct estimation. Estimates
generated using a {13, 13} network, trained on the augmented dataset.

requires more time to sample. Furthermore, this function does not need the dataset to be augmented for interpolation on
the sphere. Any of these methods may be used to interpolate between source spheres to make the appropriate trade-off
between sampling time and accuracy for the given application. Future work will incorporate these noise models and
their uncertainty into an acoustically aware UAV framework to demonstrate path planning with acoustic constraints.
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Figure 10 Error surfaces of X at flight conditions in the validation dataset for spherical estimation, trained on
the given dataset.
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