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Experimental studies of cones at several high-speed facilities have demonstrated that, for
small nosetip bluntness, transition onset over a circular conemoves upstream along the leeward
side and downstream along thewindward side, but this trendmay be reversed at large bluntness
values, where transition onset moves downstream along the leeward side and upstream along
the windward side. A theoretical and numerical investigation is performed to characterize
the effects of nose bluntness on disturbance amplification over the circular cone for several
angles of attack, with the goal of understanding the potential physical mechanisms behind
the experimental observations. The three-dimensional laminar basic states over a 1.5 m long,
7-degree half-angle cone with 9.525 mm nosetip radius are computed for selected angles of
attack values and freestream conditions that are selected to match the Mach 10 experiments
conducted within the Hypervelocity Wind Tunnel 9 at the Arnold Engineering Development
Complex (AEDC). The solutions at a freestream unit Reynolds number of 17.1 million per
meter are used to perform detailed instability analyses for angles of attack equal to 0, 1, 3,
and 5 degrees. Results indicate that the linear amplification of stationary crossflow waves
along inflection lines may begin to influence transition along the acreage of the cone for angles
of attack equal to or larger than 5 degrees. The measured trend in transition front with
respect to increasing angle of attack is found to be consistent with the predicted increase in
the amplification factors for Mack mode disturbances along the streamline trajectories. The
increase in Mack mode amplification along the windward ray for higher angles of attack is
shown to be the result of a progressively earlier entropy-layer swallowing. Computations also
indicate that the transition amplification factor along the windward ray is not constant and
increases with the angle of attack and that the transition #-factors along the leeward ray are
rather small. The nonmodal analysis for zero degrees angle of attack shows that entropy-layer
disturbances with appreciably strong energy growth can coexist with Mack mode instabilities
at the measured transition location.

Nomenclature

�>� = angle of attack, ◦
� = total energy norm
5 = disturbance frequency, s-1
� = energy gain
ℎC = total enthalpy, kg ·m2 · s-2
ℎb = streamwise metric factor
ℎZ = azimuthal metric factor
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< = azimuthal wavenumber, rad-1
" = Mach number
# = Logarithmic amplification factor
q̂ = vector of amplitude variables
q̆ = vector of disturbance function variables
q̄ = vector of base flow variables
q̃ = vector of perturbation variables
'4∞ = freestream unit Reynolds number m-1

'2 = local radius of an axisymmetric body at the axial station of interest, m
'# = nose radius, m
) = temperature, K
)F = wall temperature, K
(D, E, F) = streamwise, wall-normal, and azimuthal velocity components m · s-1
(G, H, I) = Cartesian coordinates
U = streamwise wavenumber, m-1

V = spanwise wavenumber, m-1

Xℎ = boundary-layer thickness, m
X( = entropy-layer thickness, m
^b = streamwise curvature, m-1

^Z = spanwise curvature, m-1

_ = spanwise wavelength, m
l = disturbance angular frequency, s-1
d = density, kg ·m-3

(b, [, Z) = streamwise, wall-normal, and spanwise coordinates, m
q = azimuthal angle, rad
Δ( = entropy increment, kg ·m2 · s -2 ·K-1

M = energy weight matrix
Superscripts
∗ = dimensional value
� = conjugate transpose
Subscript
∞ = freestream value
0 = initial position
1 = final position
) = transition location

I. Introduction
Laminar-turbulent transition of boundary-layer flows can have a strong impact on the performance of hypersonic

vehicles because of their influence on the surface skin friction and aerodynamic heating. Therefore, the prediction
and control of transition onset and the associated variation in aerothermodynamic parameters in high-speed flows are
key issues for optimizing the performance of next-generation aerospace vehicles. Although many practical aerospace
vehicles have blunt, hemispherical and ogival nose-tips, the mechanisms that lead to boundary-layer instability and
transition on such geometries are not fully understood as yet. A detailed review of boundary-layer transition over
sharp and blunt cones in a hypersonic freestream is given by Schneider [1]. As described therein, both experimental
and numerical studies have shown that the modal growth of Mack-mode instabilities (or, equivalently, the so-called
second-mode waves) is responsible for laminar-turbulent transition on sharp, axisymmetric cones at zero degrees angle
of attack. Studies have also shown that increased nose-tip bluntness, e.g., a larger radius of the hemispherical or ogival
nose-tip, leads to the formation of an entropy layer that can extend well beyond the nose-tip region [2]. This entropy
layer has been shown to have a stabilizing effect on the amplification of Mack-mode instabilities, which is consistent
with the observation that the onset of transition is displaced downstream as the nose bluntness is increased gradually
from a sharp cone. However, while the boundary-layer flow continues to become more stable with increasing nose
bluntness, experiments indicate that the downstream movement in transition slows down and eventually reverses when
the nose bluntness exceeds a critical range [2].
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Because of the failure of modal instability theory to predict the transition within the swallowing distance of
the entropy layer [e.g., Refs. 3–6], nonmodal growth was proposed by Paredes et al. [7] as the potential basis for a
physics-based model for the experimentally observed onset of transition. Results indicate that stationary disturbances
that are initiated within the nose-tip vicinity can undergo relatively significant nonmodal amplification that increases
with the nose-tip bluntness. This finding does not provide a definitive link between transient growth and the onset of
transition, but is qualitatively consistent with the experimental observations that transition during the reversal regime on
large bluntness configurations was highly sensitive to wall roughness, and additionally, was dominated by disturbances
originating near the nose tip. However, transition at moderately-large bluntness can occur significantly downstream
from the nose-tip, i.e., over the frustum of the cone [2]. For these moderately blunt conditions, experiments by Stetson
[2] and Jewell et al. [8] indicated that uncontrolled nose-tip roughness did not influence the transition onset location,
suggesting that unsteady freestream disturbances may play a role in initiating frustum transition over moderately-large
bluntness cones. Computational analysis by Refs. [7, 9, 10] has shown significant nonmodal growth of both planar
and oblique traveling disturbances that peak within the entropy layer and above the boundary-layer edge. The linear,
nonmodal amplification of the energy norm associated with the nonstationary disturbances was lower than that for
the three-dimensional stationary disturbances, but increased as the nose-tip bluntness was increased [10]. Therefore,
Paredes et al. [10] suggested that nonstationary nonmodal traveling disturbances that peak within the entropy layer
could lead to transition onset in the absence of appreciable modal instability amplification. Furthermore, Paredes et al.
[11] demonstrated that, even though the linear nonmodal disturbances are primarily concentrated outside the boundary
layer, their nonlinear interaction can generate stationary streaks that penetrate and amplify within the boundary layer,
eventually inducing the onset of transition via the breakdown of these streaks.

The effect of the angle of attack on blunt cones at hypersonic speeds has been predominantly studied in experimental
measurements [e.g., Refs. 5, 12–14]. A detailed review of the experimental measurements is presented by Schneider
[1]. The experiments agree that the transition location experiences a different trend between small or negligible and
large bluntness values. While the transition onset always moves upstream on the leeward side and downstream on
the windward side for sharp cones with increasing angle of attack, the transition onset movement reverses for large
bluntness values, becoming downstream on the leeward side and upstream on the windward side. The transition onset
movement along the leeward side depends on the bluntness and is not always monotonic with angle of attack. The
experiments conducted by Marineau et al. [5] and Moraru [15] in the Arnold Engineering Development Complex
(AEDC) Hypervelocity Wind Tunnel 9 at Mach 10 with 1.5 m long, 7-degree half-angle, sharp and blunted cones agree
with the trends of the previous data. Furthermore, the TSP and heat transfer measurements along the acreage show a
monotonous transition front as a function of the azimuthal angle, which is not observed in the small-bluntness, cold-wall
experiments at Mach 6 by Stetson [16] and Swanson and Schneider [17] or at Mach 7 by Willems et al. [18]. This might
indicate a stabilizing effect of the entropy layer on the crossflow instability along the side of the cone.

The present paper investigates the effect of the bluntness on the modal and nonmodal instability characteristics of the
boundary layer over a 7-degree half-angle cone with 9.525 mm nose radius that was tested in the AEDC Hypervelocity
Wind Tunnel 9. The methodologies used to investigate the modal and nonmodal disturbances are summarized in Section
II. Then, the laminar basic states at angles of attack equal to 0, 1, 3, and 5 degrees and the respective predictions from
detailed instability analyses are presented in Section III. A summary and the concluding remarks are presented in
Section IV.

II. Theory
In this section, we outline the methodology used for the analysis of disturbance amplification over the blunt cone

configurations of interest. Following the work of Refs. [7, 10], we use the harmonic linearized Navier-Stokes equations
(HLNSE) and the linear parabolized stability equations (PSE) frameworks to investigate both modal and nonmodal
disturbances.

A. Governing Equations for Modal and Nonmodal Disturbances
The present work is focused on the boundary layers over axisymmetric bodies in a hypersonic flow. The freestream

conditions and geometries are selected to match selected configurations from the AEDC experiments [5, 15] with
variable bluntness, 7-degree half-angle cones. For this problem, the computational coordinates are defined as an
orthogonal, body-fitted coordinate system, with (b, [, Z) denoting the streamwise, wall-normal, and spanwise coordinates,
respectively, and (D, E, F) representing the corresponding velocity components. Density and temperature are denoted
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by d and ) . The metric factors are defined as

ℎb = 1 + ^b[, (1)

ℎZ = (1 + ^Z [)
_

_0
, (2)

where ^b denotes the streamwise curvature, ^Z denotes the spanwise curvature, and _/_0 denotes the prescribed
evolution of the spanwise disturbance wavelength, normalized by the wavelength at a reference position.

Linear perturbations that are assumed to be harmonic in time can be written as

q̃(b, [, Z , C) = q̆(b, [, Z) exp [−ilC] + c.c., (3)

where c.c. denotes complex conjugate. The streamwise wavenumber is U and l is the angular frequency of the
perturbation. The Cartesian coordinates are represented by (G, H, I). The vector of perturbation variables is denoted
by q̃(b, [, Z , C) = ( d̃, D̃, Ẽ, F̃, )̃)) and the vector of disturbance functions is q̆(b, [, Z) = ( d̆, D̆, Ĕ, F̆, )̆)) . The vector
of basic state variables is q̄(b, [, Z) = ( d̄, D̄, Ē, F̄, )̄)) . The disturbance functions q̆(b, [, Z) satisfy the HLNSE. For
two-dimensional or axisymmetric geometries at zero degrees angle of attack, or under the assumption of spanwise
homogeneous flow, the basic state variables are independent of the spanwise or azimuthal coordinate and the perturbations
can be assumed to be harmonic also in the spanwise direction, which lead to the following expression for the perturbation
of Eq. (3),

q̃(b, [, Z , C) = q̆(b, [) exp [i (VZ − lC)] + c.c., (4)

where V is the spanwise wavenumber. For axisymmetric geometries at zero degrees angle of attack, the coordinate Z
denotes the azimuthal direction and the azimuthal wavenumber < is used. The spanwise homogeneous assumption has
been found to provide approximate predictions of the amplification of crossflow and Mack mode disturbances along
inflection lines and streamlines over a three-dimensional configuration [19–24].

The PSE approximation to the HLNSE is based on isolating the rapid phase variations in the streamwise direction
via the disturbance ansatz

q̆(b, [) = q̂(b, [) exp
[
i
∫ b

b0

U(b ′) db ′
]
, (5)

where the unknown, streamwise varying wavenumber U(b) is determined in the course of the solution by imposing an
additional constraint ∫

[

q̂∗
mq̂
mb

ℎb ℎZ d[ dZ = 0, (6)

where the amplitude functions q̂(b, [) = ( d̂, D̂, Ê, F̂, )̂)) vary slowly in the streamwise direction in comparison with
the phase term exp

[
i
∫ b

b0
U(b ′) db ′

]
. Substituting Eq. (5) into the HLNSE and invoking scale separation between the

streamwise coordinate and the other two directions to neglect the viscous terms with streamwise derivatives, the PSE are
obtained. The assumption of homogeneous spanwise direction fails in regions where the spanwise gradients of the basic
state variables are comparable to the wall-normal gradients. In these cases, the plane-marching PSE can be used to
predict the linear amplification of the instability waves. In the plane-marching PSE approach the disturbance amplitude
function of Eq. (5) depends on the three spatial directions, q̂(b, [, Z), and the parabolic integration of the disturbance
equations involves the solution of a two-dimensional partial differential equation system. A description of the theoretical
and numerical details of the conventional PSE and plane-marching PSE methodologies are given by Refs. [25–27].

The onset of laminar-turbulent transition is estimated using the logarithmic amplification ratio, the so-called #-factor,
relative to the lower bound location b;1 where the disturbance first becomes unstable,

#� = −
∫ b

b;1

U8 (b ′) db ′ + 1/2 ln
[
�̂ (b)/�̂ (b;1)

]
, (7)

where �̂ denotes the energy norm of q̂. The energy norm is defined as

�̂ (b) = 1
!Z

∫
[

q̂(b, [, Z)�M� q̂(b, [, Z) ℎb ℎZ d[, (8)
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where M� is the energy weight matrix and the superscript � denotes conjugate transpose. The positive-definite energy
norm used here was derived by Chu [28] and used by Mack [29] and Hanifi et al. [30] for linear stability theory. This
energy norm is defined as

M� = diag
[

)̄ (b, [)
Wd̄(b, [)"2 , d̄(b, [), d̄(b, [), d̄(b, [),

d̄(b, [)
W(W − 1))̄ (b, [)"2

]
. (9)

B. Optimal Growth Theory
The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at b0 that maximizes the objective

function, �, which is defined as a measure of disturbance growth over a specified interval [b0, b1]. The definition used
in the present study corresponds to the energy gain � = �� that is defined as

�� =
� (b1)
� (b0)

, (10)

where � denotes the energy norm of q̃.
The variational formulation of the problem to determine the maximum of the objective functional � leads to an

optimality system [10, 31], which is solved in an iterative manner, starting from a random solution at b0 that must
satisfy the boundary conditions. The HLNSE are used to integrate q̃ up to b1, where the final optimality condition is
used to obtain the initial condition for the backward adjoint equations integration. At b0, the adjoint solution is used
to calculate the new initial condition for the forward integration with the initial optimality condition. The iterative
procedure continues until the value of � has converged within a specified tolerance, which was set to 10−4 during the
present computations.

C. Discretization and Boundary Conditions
Stable high-order finite-difference schemes [32, 33] of sixth order are used for discretization of the stability equations

on the nonuniform grid along the the wall-normal direction. For the HLNSE, PSE, and plane-marching PSE results
presented here, the wall-normal direction is discretized with #[ = 201, with the nodes being clustered toward the wall.
The spanwise direction is also discretized with #Z = 201 for the plane-marching PSE analysis of the leeward side of the
cone at angle of attack. The discretized PSE and plane-marching PSE are integrated along the streamwise coordinate
by using second-order backward differentiation. The HLNSE are discretized along the streamwise coordinate with
centered, fourth-order finite differences. The number of discretization points in both directions was varied in selected
cases to ensure the numerical convergence of the results.

No-slip, isothermal boundary conditions are used at the wall, i.e., D̂ = Ê = F̂ = )̂ = 0. The farfield boundary is set
just below the shock layer and, unless indicated otherwise, the amplitude functions are forced to decay at the farfield
boundary by imposing the Dirichlet conditions d̂ = D̂ = F̂ = )̂ = 0. The plane-marching PSE analysis of the leeward
side uses symmetric and antisymmetric boundary conditions at the leeward ray [34] and the amplitude functions are
allowed to decay far from the leeward side by imposing a sponge region and Dirichlet conditions. The wall-normal and
spanwise domain sizes were varied in selected cases to ensure the convergence of the results.

III. Results
This section begins with the presentation of the laminar Navier-Stokes solutions for the three-dimensional boundary-

layer flows over a blunt '∗
#
= 9.525 mm, 7◦ half-angle cone at angles of attack of 0◦, 1◦, 3◦, and 5◦, respectively, in a

hypersonic freestream. Next, we present the modal instability analysis for stationary crossflow vortices developing along
inflection lines spanning the surface of the cone, Mack mode instabilities along streamline trajectories, and the instability
modes of the azimuthally localized vortex structure centered along the leeward ray of the selected configurations. Finally,
the nonmodal, optimal growth characteristics of the boundary-layer flow are investigated for the single case of the zero
degrees angle of attack configuration.

A. Laminar Boundary-Layer Flow
The flow configurations are selected to match the experiments in the Air Force AEDC Hypervelocity Wind Tunnel

No. 9 (Tunnel 9) as described by Marineau et al. [5]. This facility is a hypersonic, nitrogen gas, blowdown wind tunnel
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(a) (b) (c)

Fig. 1 Three-dimensional view of Mach number contours of the laminar boundary layer over a 7◦ cone with
'∗
#
= 9.525 mm at an angle of attack of (a) 1◦, (b) 3◦, and (c) 5◦. The contours are shown at selected axial

locations from G = 0.2 m to G = 1.4 m with constant increments of 0.2 m. The black solid and dashed lines
correspond to the streamlines and inflection lines, respectively.

with interchangeable nozzles that allow for testing at Mach numbers of 7, 8, 10, and 14 over a 0.177 × 106 m−1 to
158.8 × 106 m−1 unit Reynolds number range. A detailed description of the facility can be found in Ref. [5]. The blunt
cones used in the experiments had a base diameter of 15 in. (0.381 m) and interchangeable nose tips with radius of
0.152 mm to 50.80 mm. The working fluid is nitrogen at a relatively low temperature and pressure. Thus, the effects of
chemistry and molecular vibration are omitted from the calculations.

The basic states corresponding to the laminar basic states over the selected configurations are computed by
using a second-order accurate algorithm as implemented in the finite-volume compressible Navier-Stokes flow solver
VULCAN-CFD∗ [35]. The VULCAN-CFD solution is based on the full Navier-Stokes equations and uses the solver’s
built-in capability to iteratively adapt the computational grid to the shock. The Keyes’ law for diatomic Nitrogen [36] is
used to calculate the viscosity as a function of temperature. The freestream conditions are selected to replicate those
of the experiments, i.e., Mach 9.79 flow with a unit Reynolds number of 17.1 × 106 m−1, freestream temperature of
)∗∞ = 51.0 K and an isothermal wall temperature of )∗F = 300 K. The computational grid solves half of the geometry
and imposes symmetry conditions along the windward and leeward planes. The grid is composed of a nosetip block and
a frustum block to avoid the nosetip axis singularity. Sufficient clustering of points next to the cone surface allowed
adequate resolution for the thickness of the boundary layer. Solutions were calculated for a medium grid with block
sizes of 65 × 129 × 353 and 961 × 257 × 353 nodes, i.e., total number of nodes equal to =C ≈ 906, and fine grid with
97 × 193 × 529 and 1441 × 385 × 529 nodes, i.e., =C ≈ 3036. The following results correspond to the medium grid for
the �>� = 1◦ case and fine grid for the �>� = 3◦ and 5◦ cases. Selected results with the medium grid for the �>� = 3◦
case are used to demonstrate the results are insensitive to the grid resolution.

The Mach number distributions corresponding to the three-dimensional laminar boundary-layer flow solutions for
angles of attack of 1◦, 3◦, and 5◦ are shown in Fig. 1. A total of 32 streamlines and 32 inflection lines based on the
velocity field at the generalized inflection points of the crossflow velocity profile [22] are also shown. The divergence
of the streamlines from the windward side to the leeward side leads to the thickening of the boundary layer along the
acreage of the cone. Figure 1 shows how a vortical structure is formed along the leeward side. As the angle of attack is
increased, a detached three-dimensional shear layer forms and can sustain the growth of streak instabilities [34, 37, 38].
Furthermore, the angle between the inflection lines and the streamlines also increases with the angle of attack, which
suggests the higher amplification of crossflow waves.

The evolution of the boundary-layer and entropy-layer thicknesses along the windward and leeward rays is plotted
in Figs. 2(a) and 2(b), respectively, for the selected configurations. The boundary-layer edge, Xℎ, is defined as the
wall-normal position where ℎC/ℎC ,∞ = 0.995, with ℎC denoting the total enthalpy, i.e., ℎC = ℎ + 0.5(D̄2 + Ē2 + F̄2),
where ℎ = 2?)̄ is the static enthalpy. An increase in the angle of attack reduces the boundary-layer thickness and
the entropy-layer height along the windward ray. An upstream movement of the entropy-layer swallowing location is
observed as the angle of attack is increased, which is expected to result in an earlier onset of Mack mode amplification.
Due to the formation of the vortical structure along the leeward side, the boundary layer thickness along the leeward ray
is substantially higher as seen in Fig. 2(b).

∗visit http://vulcan-cfd.larc.nasa.gov for further information about the VULCAN-CFD solver
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Fig. 2 Streamwise evolution of boundary-layer thickness (Xℎ , solid lines) and entropy-layer thickness (X( ,
dashed lines) of the laminar boundary-layer flows over the selected configurations along the (a) windward and
(b) leeward rays. The vertical arrows under the horizontal axis indicate the transition locations measured with
thermocouples [5].

B. Linear Modal Analysis
Experimental measurements and theoretical predictions based on PSE have confirmed that laminar-turbulent

transition for the sharp cone at zero degrees angle of attack and the same freestream conditions is driven by the modal
growth of planar Mack-mode instabilities [5, 15]. For the selected nose radius of '∗

#
= 9.525 mm and freestream

conditions of "∞ = 9.79 and '4∞ = 17.1 m-1, the wall-pressure disturbance measurements and PSE results show
the incipient growth of Mack mode disturbances just upstream of the measured transition location. The predicted
#-factor at the measured transition location is approximately # = 1.5, which appears to be too low to cause transition
onset even within a conventional, i.e., noisy facility. The measurements of transition location via temperature sensitive
paint (TSP) and thermocouples (TC) at the selected angles of attack showed upstream movements of the transition
location along both windward and leeward sides for the present geometry. However, the transition front presented by
Marineau et al. [5] up to �>� = 3◦ do not indicate the influence of crossflow disturbances along the side of the cone
between the windward and leeward sides. To establish the instability characteristics of the selected configurations, the
linear amplification of stationary crossflow and Mack mode disturbances is calculated with PSE along the inflection
lines and streamlines, respectively, as shown in Fig. 1. Because of the strong crossplane gradients associated with the
three-dimensional vortical structure along the leeward ray, the instability characteristics in that region are studied by
using the plane-marching PSE.

1. Stationary Crossflow
The linear amplification characteristics of stationary crossflow disturbances in the boundary-layer flow over the

selected configurations at angles of attack have been computed with linear PSE that accounts for the leading-order
nonparallel and surface curvature effects. The PSE are integrated along 32 inflection lines along the surface of the
cone. The local streamwise direction of the inflection lines are defined such that the generalized inflection point of the
crossflow velocity profile coincides with a zero of the same profile. Furthermore, similar to Ref. [22], the variation of
spanwise wavelength based on the diffluence of the inflection lines is included in the PSE analysis.

Figure 3 shows the amplification of stationary crossflow instability in terms of the #-factor envelope along the
surface of the cone at �>� = 3◦ and �>� = 5◦. Although not shown here, the maximum crossflow #-factor for the
�>� = 1◦ is predicted to be lower than #� = 3 by the end of the cone, which is deemed to be small enough to rule out
the stationary crossflow vortices as the dominant cause for boundary layer transition. The vertical axis in the figure
corresponds to the circumferential distance computed on the basis of the local radius '2 and angle q with respect to the
windward ray. The comparison of the #-factor results based on the medium and fine grids, respectively, as shown in
Fig. 3(a) for the �>� = 3◦ case confirms the convergence of the results with the selected grids. The #-factor values
increase from the windward symmetry plane, where the crossflow velocity is zero, maximize at an azimuthal angle that
increases with axial location, and decrease toward the leeward side. The measured transition locations do not show
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(a) (b)

Fig. 3 #-factor contours of stationary crossflow instability computed with PSE along inflection lines for (a)
�>� = 3◦ and (b) 5◦. The open symbols denote the measured transition locations with TC (�) and TSP (�). The
dashed lines of subfigure (a) denote the #-factor isolines corresponding to the medium grid while the colors
correspond to the fine grid.

correlation with the #-factor contours for �>� = 3◦. However, the maximum crossflow #-factor values at the transition
locations are found to be lower than #� = 5, and, therefore, are deemed too low to affect natural transition. The increase
of the angle of attack from 3◦ to 5◦ leads to a notable increase in the crossflow #-factor values up to #� = 16 by the end
of the cone. Therefore, crossflow instability could potentially affect transition for �>� ≥ 5◦. However, the measured
transition front across the azimuthal direction is not available for the �>� = 5◦ condition. The crossflow results near the
leeward side are not included in Fig. 3 because the complex vortical structure that forms over the leeward side prevents
the accurate integration of the inflection lines and PSE. The plane-marching PSE is used instead to study the instability
characteristics over the leeward side.

2. Mack Mode
The Mack mode instability amplification is calculated with linear PSE along 32 streamlines that cover the surface of

the selected configurations from the windward to the leeward sides. Figure 4 shows the #-factor envelope of planar
Mack mode waves along the streamlines over the surface of the cone at the selected angles of attack. The corresponding
disturbance frequency of the Mack mode waves is shown in Fig. 5. Similar to the crossflow #-factor results of Fig. 3(a),
the comparison of the #-factor and corresponding disturbance frequency results with the medium and fine grids shown
in Figs. 4(c) and 5(c) for �>� = 3◦ confirms the convergence of the results with the selected grids. The Mack mode
waves are destabilized along the windward side as a consequence of the upstream movement of the entropy-layer
swallowing location with an increase in the angle of attack as shown in Fig. 2. Figure 4 also shows how the #-factor
at transition location monotonically increases with the angle of attack from #� = 1.5 for �>� = 0◦ to #� = 7 for
�>� = 5◦. As one moves from the windward to the leeward symmetry plane, the accompanying shift in transition
location approximately follows the locus of a constant Mack mode #-factor up to a certain distance from the leeward
side, where a significantly earlier onset of transition within the localized vortical structure leads to the formation of a
narrow turbulent wedge centered on the leeward ray. Figure 5 shows the increase of the leading Mack mode frequencies
along the windward side as the angle of attack increases due to the boundary layer thickness reduction (Fig. 2). The
gradual increase in boundary layer thickness toward the leeward side leads to a decrease in the disturbance frequency
values. Similar to the crossflow results, the Mack mode results near the leeward side are not included for the �>� = 3◦
and 5◦ in Figs. 4-5(c) and 4-5(d), respectively, because the complex vortical structure that forms over the leeward side
prevent the accurate integration of the streamlines and PSE. The plane-marching PSE is used in the following subsection
to study the instability characteristics over the leeward side.

3. Leeward Side
The vortical structure that forms over the leeward side as the angle of attack is increased (Fig. 1) leads to

strong azimuthal gradients that prevents the accurate prediction of the instability characteristics with conventional
PSE. Therefore, the plane-marching PSE are used to study the linear modal instabilities supported by the vortical
structure, because they do not invoke the homogeneous spanwise assumption and are able to fully account for the
three-dimensionality of the flow solution and disturbances.

The stability analysis for the selected configurations showed that the symmetric Mack mode waves that begin to
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(a) (b)

(c) (d)

Fig. 4 #-factor envelope contours of Mack mode instability computed with PSE along streamlines for (a)
�>� = 0◦, (b) 1◦, (c) 3◦, and (d) 5◦. The open symbols denote the measured transition locations with TC (�) and
TSP (�). The dashed lines of subfigure (c) denote the #-factor isolines corresponding to the medium grid while
the colors correspond to the fine grid.

(a) (b)

(c) (d)

Fig. 5 Disturbance frequency contours of Mack mode instability computed with PSE along streamlines for (a)
�>� = 0◦, (b) 1◦, (c) 3◦, and (d) 5◦. The open symbols denote the measured transition locations with TC (�)
and TSP (�). The dashed lines of subfigure (c) denote the disturbance frequency isolines corresponding to the
medium grid while the colors correspond to the fine grid.
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amplify at the upstream locations, where a benign local thickening of the boundary layer develops, becomes the most
amplified disturbances along the length of the cone. They morph into the streak instabilities as the shear layer of the
vortical structure forms and strengthens. The same scenario was found for the secondary instability of crossflow vortices
over a circular cone at angle of attack [39, 40], the streak instability of the vortical structure over the minor axis plane of
an elliptic cone [38], or the streak instability of the BOLT geometry at flight conditions [41].

To illustrate how the Mack mode evolution along the leeward side changes with angle of attack, Fig. 6 shows the
#-factor curves for the leading frequencies and the #-factor envelopes for �>� = 0◦ and the selected angles of attack.
The comparison of the Mack mode curves for �>� = 0◦ and 1◦ shown in Figs. 6(a) and 6(b), respectively, shows a
significant effect on the instability properties. The boundary layer over the leeward side becomes unstable to Mack
mode disturbances upstream of G = 0.4 m, while the first unstable Mack mode is found at G = 0.62 m for the �>� = 0◦
case. The measured transition location correlates with #� = 1.5 as it moves upstream with the angle of attack increase.
However, the #-factor values for the �>� = 1◦ case becomes lower than those of the �>� = 0◦ case for G > 1.1 m.
Furthermore, Fig. 6(b) shows the #-factor envelope of planar Mack modes computed with conventional PSE along the
leeward ray. The PSE overpredicts the amplification of Mack modes with respect to the plane-marching PSE, due to the
assumption of azimuthal homogeneity. Figure 7(a) shows the evolution of the Mack mode disturbance with 5 = 80
kHz over the leeward side for �>� = 1◦. The contours of normalized streamwise velocity perturbation show that the
Mack mode is localized around the leeward ray. The #-factor curves for �>� = 3◦ and �>� = 5◦ shown in Figs. 6(c)
and 6(d) also initially correspond to Mack mode disturbances localized around the leeward ray, but they morph into
streak instabilities as the detached three-dimensional shear layers of the vortical structures strengthen, leading to a
large amplification of the disturbances that reach #� = 10 and #� = 14 for �>� = 3◦ and 5◦. Furthermore, Fig. 6(c)
shows the #-factor envelope based on the conventional (line marching) PSE along the leeward ray of the �>� = 3◦
case. Similar to the �>� = 1◦ case of Fig. 6(b), the PSE overpredicts the amplification of the Mack mode, but for the
�>� = 3◦ case, it fails to predict the continuous amplification of the disturbance along the length of the cone. The
reason for this difference is that the peak of the disturbances moves away from the leeward ray for G > 0.7 m as seen in
the evolution of the streamwise velocity disturbance with 5 = 45:�I for the �>� = 3◦ case shown in Fig. 7(b). The
disturbance peak gradually moves from the inside of the boundary layer at G = 0.4 m toward the top of the vortical
structure where the strong shear layer forms.

C. Linear Nonmodal Analysis
The previous results have shown that the modal amplification of the Mack mode waves yields a low #-factor value

of #� = 1.5 at the measured transition location for �>� = 0◦, which is deemed rather small to lead to transition onset
even in a noisy facility. Therefore, the nonmodal instability characteristics of stationary and traveling, planar and oblique
disturbances are investigated with HLNSE.

Figure 8 shows the contours of the energy gain as a function of the disturbance frequency and azimuthal wavenumber
for the zero degrees angle of attack configuration. Results are presented for two different transient growth intervals with
inflow locations of b0 = 0.2 m (Figs. 8(a)) and b0 = 0.8 m (8(b)), respectively, and a fixed outflow station corresponding
to the measured transition location of b1 = 1.037 m. Similar to the earlier results for blunt cones at Mach 6 and zero
degrees angle of attack [10] for an optimization interval that begins near the nose, the maximum energy gain in Fig. 8(a)
is achieved by a stationary ( 5 = 0 kHz), three-dimensional perturbation. This stationary disturbance corresponds to the
three-dimensional streaks studied by Paredes et al. [7]. There is an additional peak in the energy gain contours that
corresponds to planar waves (< = 0) with a frequency of 5 = 150 kHz and an energy gain of #� = 3.9. A significant
range of planar and oblique traveling disturbances across the ( 5 , <) spectrum are found to support appreciably large
amplification factors of #� = 3.5 − 5. These disturbances were also found for a Mach 6 configuration in Ref. [10] and
were shown to amplify within the entropy layer region beyond the boundary-layer edge. They are initially tilted against
the flow direction and increase in magnitude while their structure rotates downstream. The energy amplification is
mainly attributed to the temperature perturbation within the entropy layer, where there exists a gradient in the mean flow
temperature.

The spectrum of the optimal energy gain corresponding to the downstream inflow location of b0 = 0.8 m in Fig. 8(b)
shows the signature of the Mack mode disturbances in the form of a distinct amplification lobe for planar disturbances
with a peak at 5 = 180 kHz and #� = 4. Therefore, the nonmodal energy amplification reached by optimal disturbances
is significantly larger than the purely modal amplification that yields #� = 1.5 at the same location of b = 1.037 m. To
illustrate the effect of the initial optimization location on the disturbance evolution, Fig. 9(a) shows the evolution of the
energy gain in terms of #� = 0.5 log(�� ) with selected b0 and fixed b1 = 1.037 m for a planar wave with 5 = 180
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Fig. 6 N-factor contours of Mack mode instability for the (a) �>� = 0◦ and along the leeward side for (b)
�>� = 1◦, (c) 3◦, (d) 5◦. The arrows denote the measured transition locations with TC. PMPSE refers to
plane-marching PSE

(a) (b)

Fig. 7 Contours of streamwise velocity magnitude perturbation normalized with the local maximum and
isolines of basic state streamwise velocity. (a) �>� = 1◦ and 5 = 80 kHz, and (b)�>� = 3◦ and 5 = 45 kHz.
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(a) (b)

Fig. 8 Contours of 0.5 log(�� ) computed with HLNSE in the azimuthal wavenumber versus frequency plane
for the cone at zero degrees angle of attack. The initial optimization location is selected at (a) b0 = 0.2 m and (b)
b0 = 0.8 m. The final optimization location is selected at the measured transition location b1 = 1.037 m.
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Fig. 9 (a) Evolution of #� = 0.5 log(�� ) computed with HLNSE for 5 = 180 kHz and < = 0 for selected initial
optimization locations for the cone at zero degrees angle of attack. (b) Normalized contours of temperature
perturbation for b0 = 0.6 mand b0 = 0.7 m. The final optimization location is selected at the measured transition
location b1 = 1.037 m.

kHz, as well as the #-factor of the planar Mack mode with 5 = 180 kHz. The peak amplitude gain is seen to decrease
slightly when the initial location b0 is increased from b = 0.2 m to b = 0.6 m. For b0 = 0.65 m, the #� curve has a
nonmonotonic behavior and the curve shape matches that of the modal amplification of Mack mode instabilities but has
higher values of amplification in comparison with the purely modal growth. As b0 approaches the neutral location
for the Mack mode waves, the optimal energy gain reaches a maximum of #� ≈ 4. Figure 9(b) shows the evolution
of the disturbance temperature for b0 = 0.6 m and b0 = 0.7 m. The disturbance shape changes from an entropy layer
disturbance that is confined to the band between the edges of the boundary layer and the entropy layer for b0 = 0.6 m to a
Mack mode disturbance that is located inside the boundary layer for b0 = 0.7 m. Therefore, the nonmodal analysis shows
that nonmodal entropy-layer disturbances and Mack mode disturbances can coexist at the measured transition location.

IV. Summary and Concluding Remarks
The present work investigated the modal and nonmodal instability characteristics of a 1.5 m long, 7◦ half-angle

cone with a relatively blunt nosetip radius of 9.525 mm for selected angles of attack and freestream conditions from
the experiments conducted by Marineau et al. [5] and Moraru [15] in the Air Force Arnold Engineering Development
Complex (AEDC) Hypervelocity Wind Tunnel 9 at Mach 10.

Results are presented for a freestreamMach number of 9.79 and a freestream unit Reynolds number of 17.1×106 m−1,
for angles of attack equal to 0◦, 1◦, 3◦ and 5◦, respectively. The laminar basic states are calculated by solving the
full Navier-Stokes equations. The blunted nosetip results in a thick entropy layer that appreciably modifies the
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three-dimensional boundary layer with respect to that over a sharp cone. The divergence of the streamlines from the
windward side to the leeward side leads to a thickening of the boundary layer along the side of the cone and the formation
of a vortical structure along the leeward side. As the angle of attack increases, the entropy-layer swallowing location
along the windward ray is found to move upstream.

The modal instability analysis is performed by using PSE marching along inflection lines for stationary crossflow
instabilities and along streamlines to study the amplification of traveling, planar, Mack-mode disturbances. In addition,
plane-marching PSE are used along the leeward side to study the amplification of disturbances supported by the vortical
structure. Results indicate that the maximum crossflow #-factors along the measured transition fronts at 1◦ and 3◦
angles of attack are less than 2 and less than 5, respectively. Thus, stationary crossflow instability is not likely to be the
dominant transition mechanism at these conditions. However, stationary crossflow amplification is predicted to become
more significant at angles of attack equal to or larger than 5 degrees. The predicted effect of the angle of attack on the
Mack mode amplification agrees with the trend of the measured transition front. An important finding is that the Mack
mode waves are destabilized along the windward side as a consequence of the upstream movement of the entropy-layer
swallowing location with an increase in the angle of attack. Computations also indicate that the Mack mode #-factor at
the measured transition locations increases with an increasing angle of attack. As a result of the boundary-layer thinning
at the higher angles of attack, the frequency of the most amplified Mack mode disturbance at the transition location is
also predicted to increase in relation to the dominant frequencies at the lower angles of attack. As one moves from the
windward to the leeward symmetry plane, the accompanying shift in transition location approximately follows the locus
of a constant Mack mode #-factor up to a certain distance from the leeward side, where a significantly earlier onset of
transition within the localized vortical structure leads to the formation of a narrow turbulent wedge centered on the
leeward ray. The plane-marching PSE analysis along the leeward side confirmed that, similar to earlier computations
for centerline transition on the HIFiRE-5b elliptic cone, the dominant disturbances are initiated as localized Mack
modes within the narrow azimuthal region of increased boundary-layer thickness near the leeward ray and that these
disturbances morph into streak instabilities as the detached three-dimensional shear layer becomes stronger at angles of
attack equal to 3 and 5 degrees. However, the #-factor values at the measured transition locations along the leeward
side remain lower than # = 2 for the current configurations. A reduction in the transition #-factor is anticipated for the
AEDC experiments because of the higher amplitudes of freestream disturbances relative to those expected during the
HIFiRE-5b flight; however, such strikingly low values of the #-factor along the leeward ray were not anticipated and
further work is necessary to determine their significance.

The nonmodal analysis for the blunt cone at zero degrees angle of attack showed a significant amplification of
nonmodal disturbances across the frequency and azimuthal wavenumber spectrum that peak within the entropy layer
and above the boundary-layer edge. The effect of the initial optimization location was investigated with a fixed final
optimization location at the measured transition location. The nature of the optimal disturbances is found to change
from entropy-layer disturbances to Mack mode disturbances as the inflow location from the spatial interval used for
optimization approaches the neutral location of the Mack mode waves. Therefore, the analysis indicates that both
nonmodal entropy-layer disturbances and modal Mack mode waves can coexist at the measured transition location.
Furthermore, the optimal growth analysis indicates peak #-factor values of # ≈ 4 at the measured transition location,
i.e., more than twice the #-factor values based on modal growth alone.
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