MINERALOGICAL AND AI-Mg ISOTOPIC STUDY OF FINE-GRAINED Ca-AI-RICH INCLUSIONS.

J. Han¹, M.-C. Liu², N. Matsuda², C. Park³, and L. P. Keller⁴, ¹Department of Earth and Atmospheric Sciences, University of Houston, Houston TX, 77204, USA (jhan28@central.uh.edu), ²Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, USA, ³Division of Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea, ⁴ARES, Code XI3, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA.

Introduction: Fine-grained Ca-Al-rich inclusions (FGIs) in carbonaceous chondrites are interpreted as aggregates of nebular gas-solid condensates that escaped significant melting [1]. Thus far, a small number of FGIs from CV3 chondrites have been analyzed, showing a range of $({}^{26}\text{Al}/{}^{27}\text{Al})_0 = \sim 5.4 \times 10^{-5}$ to $\sim 3.4 \times 10^{-5}$ [2-4]. These values are similar to $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ inferred from coarse-grained, igneous CAIs (CGIs) from CV3 chondrites [5]. This observed spread in $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ values indicates the CAI formation over an extended time period. However, more analyses are needed to determine if the FGIs formed continuously over a significant time period or by multiple episodic events of nebular condensation. In this study, we present high-precision Al-Mg isotopic data of FGIs from reduced CV3 chondrites to better constrain their formation timescale relative to CGIs in CV3 chondrites, as well as to smaller FGIs in CO3 chondrites [6]. This isotopic study is coordinated with a FIB/TEM study to elucidate the origin and nature of FGIs in the petrologic and mineralogical context [7,8].

Methods: An initial characterization of FGIs from the reduced CV3 chondrites Efremovka and Thiel Mountains (TIL) 07003 was conducted using a FEI Quanta 3D FEG dual beam SEM/FIB and a JEOL JXA-8530F electron microprobe at NASA JSC. Three FGIs (E-A-01, E-A-02, and E-B-01) from Efremovka and one FGI (TIL 003-02) from TIL 07003 were selected for *in situ* Al-Mg isotope analyses performed in high-precision multicollection mode on the CAMECA ims-1290 ion microprobe at UCLA. Hibonite, spinel, melilite, and diopside in the FGIs were sputtered with a 1-2 nA $^{16}O_2^-$ primary ion beam generated by a Hyperion-II oxygen plasma source, as described in [9].

Results and Discussion: The four FGIs from Efremovka and TIL 07003 are irregularly-shaped, often elongated inclusions (up to ~4 mm in size) that contain numerous nodules [7,8]. The individual nodules consist of a spinel \pm hibonite \pm perovskite core surrounded successively by melilite, anorthite, diopside and \pm forsterite. Al,Ti-rich diopside occurs often as a thin layer surrounding the spinel-rich core and, only in TIL 003-02, as an intergrowth with spinel and perovskite below the anorthite and diopside layers. The observed layered structure and fine-grained nature of the FGIs studied and the decrease in volatility (i.e., condensation temperature) through mineral layers in their individual nodules confirm that they formed by condensation [1]. The fine scale layering preserved in individual nodules is likely the result of evolving, but incomplete gas-solid condensation reactions under non-equilibrium conditions [10].

Our high-precision multicollection data of hibonite, spinel, melilite, and diopside in the four FGIs from Efremovka and TIL 07003 yield well-defined isochrons, which show variation in $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ values among the different inclusions. The inferred initial ${}^{26}\text{Al}/{}^{27}\text{Al}$ ratios are $(5.59\pm0.25)\times10^{-5}$ for E-A-01, $(4.13\pm0.61)\times10^{-5}$ for E-A-02, $(5.18\pm0.19)\times10^{-5}$ for E-B-01, and $(4.83\pm0.50)\times10^{-5}$ for TIL 003-02 (2 σ errors). The FGIs have $\delta^{25}\text{Mg} < 1\%$ and do not show any significant isotopic fractionations, supportive of their condensation origin.

The inferred $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ values of E-A-01, E-B-01, and TIL 003-02 are broadly consistent with the bulk CAI value of $(5.23\pm0.13)\times10^{-5}$ [11]. A consistent $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ value of $\sim 5.2\times10^{-5}$ was also inferred from a majority of FGIs analyzed from Efremovka, Vigarano, Kaba, and Semarkona (LL3.0) [2-4]. This cumulative data set suggests that most pristine, large FGIs condensed over the same short time interval with the canonical value, probably $\sim 40,000$ years after primary condensation of small CO3 FGIs ($<200 \text{ }\mu\text{m}$ in size) characterized by $({}^{26}\text{Al}/{}^{27}\text{Al})_0 = 5.4\times10^{-5}$ [6]. In addition, E-A-02 exhibits the lowest $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ value of $\sim 4.1\times10^{-5}$, distinctly lower than the canonical value. Similarly, a range of $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ values down to $\sim 3.4\times10^{-5}$ was inferred from several FGIs in Efremovka, Vigarano, and TIL 07007 [4]. The observed spread suggests that multiple condensation events occurred over a time span of at least ~ 0.4 Ma to form large FGIs found in CV3 chondrites. Importantly, the $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ values inferred from FGIs [2-4, this study] overlap those obtained from CGIs [5]. This implies that the CAI formation by condensation and melting occurred repeatedly and contemporaneously in the early solar nebula.

High-precision Al-Mg isotopic analyses of additional FGIs from TIL 07003 and 07007 are underway to evaluate the chronological significance of $({}^{26}Al/{}^{27}Al)_0$ values lower than the canonical value.

References: [1] Krot A. N. et al. (2004) MAPS 39:1517-1553. [2] MacPherson G. J. et al. (2010) ApJ 711:L117-L121. [3] MacPherson G. J. et al. (2020) MAPS 55:2519-2538. [4] Kawasaki N. et al. (2020) GCA 2179:1-15. [5] MacPherson G. J. (2017) LPSC, #2719. [6] Liu M.-C. et al. (2019) Sci Adv 5:eaaw3350. [7] Han J. et al. (2019) MetSoc, #6435. [8] Han J. et al. (2020) LPSC, #2895. [9] Liu M.-C. et al. (2018) Int J Mass Spectrom 424:1-9. [10] Petaev M. I. & Wood J. A. (2005) In Chondrites and Protoplanetary Disk, vol.341, pp.373-406. [11] Jacobsen B. et al. (2008) EPSL 272:353-364.