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Abstract

Model-based development tools are increasingly being used for system-level
development of safety-critical systems. Architectural and behavioral models pro-
vide important information that can be leveraged to improve the system safety
analysis process. Model-based design artifacts produced in early stage develop-
ment activities can be used to perform system safety analysis, reducing costs and
providing accurate results throughout the system life-cycle. In this report we de-
scribe an extension to the Architecture Analysis and Design Language (AADL)
that supports modeling of system behavior under failure conditions. This Safety
Annex enables the independent modeling of component failures and allows safety
engineers to weave various types of fault behavior into the nominal system model.
The accompanying tool support uses model checking to propagate errors from their
source to their effect on safety properties without the need to add separate propa-
gation specifications. The tool also captures all minimal set of fault combinations
that can cause violation of the safety properties, that can be compared to qualitative
and quantitative objectives as part of the safety assessment process. We describe
the Safety Annex, illustrate its use with a representative example, and discuss and
demonstrate the tool support enabling an analyst to investigate the system behavior
under failure conditions.

1 Introduction
System safety analysis is crucial in the development life cycle of critical systems to
ensure adequate safety as well as demonstrate compliance with applicable standards.
A prerequisite for any safety analysis is a thorough understanding of the system archi-
tecture and the behavior of its components; safety engineers use this understanding to
explore the system behavior to ensure safe operation, assess the effect of failures on
the overall safety objectives, and construct the accompanying safety analysis artifacts.
Developing adequate understanding, especially for software components, is a difficult
and time consuming endeavor. Given the increase in model-based development in crit-
ical systems [12, 41, 44, 47, 52], leveraging the resultant models in the safety analysis
process holds great promise in terms of analysis accuracy as well as efficiency.

In this report we describe the Safety Annex for the system engineering language
AADL (Architecture Analysis and Design Language), a SAE Standard modeling lan-
guage for Model-Based Systems Engineering (MBSE) [2]. The Safety Annex allows
an analyst to model the failure modes of components and then “weave” these failure
modes together with the original models developed as part of MBSE. The safety an-
alyst can then leverage the merged behavioral models to propagate errors through the
system to investigate their effect on the safety requirements. Determining how errors
propagate through software components is currently a costly and time-consuming el-
ement of the safety analysis process. The use of behavioral contracts to capture the
error propagation characteristics of software component without the need to add sep-
arate propagation specifications (implicit error propagation) is a significant benefit for
safety analysts. In addition, the annex allows modeling of dependent faults that are
not captured through the behavioral models (explicit error propagation), for example,
the effect of a single electrical failure on multiple software components or the effect
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hardware failure (e.g., an explosion) on multiple behaviorally unrelated components.
Furthermore, we will describe the tool support enabling engineers to investigate the
correctness of the nominal system behavior (where no failures have occurred) as well
as the system’s resilience to component failures. We illustrate the work with a substan-
tial example drawn from the civil aviation domain.

Our work can be viewed as a continuation of work conducted by Joshi et al. where
they explored model-based safety analysis techniques defined over Simulink/State-
flow [54] models [19, 45–47]. Our current work extends and generalizes this work and
provide new modeling and analysis capabilities not previously available. For example,
the Safety Annex allows modeling explicit error propagation, supports compositional
verification and exploration of the nominal system behavior as well as the system’s
behavior under failure conditions. Our work is also closely related to the existing
safety analysis approaches, in particular, the AADL Error Annex (EMV2) [36], COM-
PASS [14], and AltaRica [9, 60]. Our approach is significantly different from previous
work in that unlike EVM2 we leverage the behavioral modeling for implicit error prop-
agation, we provide compositional analysis capabilities not available in COMPASS,
and in addition, the Safety Annex is fully integrated in a model-based development
process and environment unlike a stand alone language such as AltaRica.

The main contributions of the Safety Annex and this project are:

• close integration of behavioral fault analysis into the Architecture Analysis and
Design Language AADL, which allows close connection between system and
safety analysis and system generation from the model,

• support for behavioral specification of faults and their implicit propagation (both
symmetric and asymmetric) through behavioral relationships in the model, in
contrast to existing AADL-based annexes (HiP-HOPS [26], EMV2 [36]) and
other related toolsets (COMPASS [14], Cecilia [7], etc.),

• additional support to capture binding relationships between hardware and soft-
ware and logical and physical communications,

• compute all minimal set of fault combinations that can cause violation of the
safety properties to be compared to qualitative and quantitative objectives as part
of the safety assessment process, and

• guidance on integration into a traditional safety analysis process.

2 Preliminaries
One of our goals is to transition the tools we have developed into use by the safety
engineers who perform safety assessment of avionics products. Therefore, we need to
understand how the tools and the models will fit into the existing safety assessment and
certification process.
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2.1 Traditional Safety Assessment Process
The traditional safety assessment process at the system level is based on
ARP4754A [65] and ARP4761 [66]. It starts with the System level Functional Haz-
ard Assessment (SFHA) examining the functions of the system to identify potential
functional failures and classifies the potential hazards associated with them.

The next step is the Preliminary System Safety Assessment (PSSA), updated
throughout the system development process. A key element of the PSSA is a system
level Fault Tree Analysis (FTA). The FTA is a deductive failure analysis to determine
the causes of a specific undesired event in a top-down fashion. For an FTA, a safety an-
alyst begins with a failure condition from the SFHA, and systematically examines the
system design (e.g., signal flow diagrams provided by system engineers) to determine
all credible faults and failure combinations that could cause the undesired event.

The lack of precise models of the system architecture and its failure modes often
forces safety analysts to devote significant effort to gathering architectural details about
the system behavior from multiple sources. Furthermore, this investigation typically
stops at system level, leaving software function details largely unexplored.

Typically equipped with the domain knowledge about the system, but not detailed
knowledge of how the software applications are designed, practicing safety engineers
find it a time consuming and involved process to acquire the knowledge about the be-
havior of the software applications hosted in a system and its impact on the overall
system behavior. Industry practitioners have come to realize the benefits of using mod-
els in the safety assessment process, and a revision of the ARP4761 to include Model
Based Safety Analysis (MBSA) is under way. Section 2.4 provides a comparison of
our approach with it.

2.2 Modeling Language for System Design
Figure 1 presents our proposed use of a single unified model to support both system
design and safety analysis. It describes both system design and safety-relevant informa-
tion that are kept distinguishable and yet are able to interact with each other. The shared
model is a living model that captures the current state of the system design as it moves
through the development lifecycle, allowing all participants of the ARP4754A process
to be able to communicate and review the system design. Safety analysis artifacts
can be generated directly from the model, providing the capability to more accurately
analyze complex systems.

We are using the Architectural Analysis and Design Language (AADL) [35] to
construct system architecture models. AADL is an SAE International standard that de-
fines a language and provides a unifying framework for describing the system architec-
ture for “performance-critical, embedded, real-time systems” [2]. From its conception,
AADL has been designed for the design and construction of avionics systems. Rather
than being merely descriptive, AADL models can be made specific enough to support
system-level code generation. Thus, results from analyses conducted, including the
new safety analysis proposed here, correspond to the system that will be built from the
model.

An AADL model describes a system in terms of a hierarchy of components and
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Figure 1: Use of the Shared System/Safety Model in the ARP4754A Safety Assessment
Process

their interconnections, where each component can either represent a logical entity (e.g.,
application software functions, data) or a physical entity (e.g., buses, processors). An
AADL model can be extended with language annexes to provide a richer set of mod-
eling elements for various system design and analysis needs (e.g., performance-related
characteristics, configuration settings, dynamic behaviors). The language definition is
sufficiently rigorous to support formal analysis tools that allow for early phase error/-
fault detection.

The Assume Guarantee Reasoning Environment (AGREE) [29] is a tool for formal
analysis of behaviors in AADL models. AGREE is implemented as an AADL annex
and annotates AADL components with formal behavioral contracts. Each component’s
contracts can include assumptions and guarantees about the component’s inputs and
outputs respectively, as well as predicates describing how the state of the component
evolves over time. AGREE translates an AADL model and the behavioral contracts
into Lustre [42] and then queries a user-selected model checker to conduct the back-
end analysis. The analysis can be performed compositionally following the architecture
hierarchy such that analysis at a higher level is based on the components at the next
lower level. When compared to monolithic analysis (i.e., analysis of the flattened model
composed of all components), the compositional approach allows the analysis to scale
to much larger systems [29].

In our prior work [72], we added an initial failure effect modeling capability to the
AADL/AGREE language and tool set. We are continuing this work so that our tools
and methodology can be used to satisfy system safety objectives of ARP4754A and
ARP4761.
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2.3 Model-Based Safety Assessment Process Supported by Formal
Methods

We propose a model-based safety assessment process backed by formal methods to
help safety engineers with early detection of the design issues. This process uses a
single unified model to support both system design and safety analysis. It is based on
the following steps:

1. System engineers capture the critical information in a shared AADL/AGREE
model: high-level hardware and software architecture, nominal behavior at the
component level, and safety requirements at the system level.

2. System engineers use the backend model checker to check that the safety re-
quirements are satisfied by the nominal design model.

3. Safety engineers use the Safety Annex to augment the nominal model with the
component failure modes. In addition, safety engineers specify the fault hypoth-
esis for the analysis which corresponds to how many simultaneous faults the
system must be able to tolerate.

4. Safety engineers use the backend model checker to analyze if the safety require-
ments and fault tolerance objectives are satisfied by the design in the presence
of faults. If the design does not tolerate the specified number of faults (or prob-
ability threshold of fault occurrence), then the tool produces counterexamples
leading to safety requirement violation in the presence of faults, as well as all
minimal set of fault combinations that can cause the safety requirement to be
violated.

5. The safety engineers examine the results to assess the validity of the fault com-
binations and the fault tolerance level of the system design. If a design change is
warranted, the model will be updated with the latest design change and the above
process is repeated.

There are other tools purpose-built for safety analysis, including AltaRica [60],
smartIFlow [43] and xSAP [10]. These tools and their accompanying notations are sep-
arate from the system development model. Other tools extend existing system models,
such as HiP-HOPS [26] and the AADL Error Model Annex, Version 2 (EMV2) [36].
EMV2 uses enumeration of faults in each component and explicit propagation of faulty
behavior to perform error analysis. The required propagation relationships must be
manually added to the system model and can become complex, leading to mistakes in
the analysis.

In contrast, the Safety Annex supports model checking and quantitative reasoning
by attaching behavioral faults to components and then using the normal behavioral
propagation and proof mechanisms built into the AGREE AADL annex. This allows
users to reason about the evolution of faults over time, and produce counterexamples
demonstrating how component faults lead to failures. Our approach adapts the work
of Joshi et al. [47] to the AADL modeling language. Stewart et al. provide more
information on the approach [72], and the tool and relevant documentation can be found
at: https://github.com/loonwerks/AMASE/.
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2.4 Comparison with Proposed MBSA Appendix to ARP4761A
ARP4754A, the Guidelines for Development of Civil Aircraft and Systems [65],
provides guidance on applying development assurance at each hierarchical level
throughout the development life cycle of highly-integrated/complex aircraft systems.
ARP4761, the Guidelines and Methods for Conducting Safety Assessment Process on
Civil Airborne Systems and Equipment [66], identifies a systematic means to show
compliance. A Model Based Safety Analysis (MBSA) appendix has been drafted to
the upcoming revision of ARP4761 to provide concepts and processes with Model
Based Safety Analysis.

We have reviewed the draft appendix and found that our approach is consistent with
the MBSA appendix in the following ways:

• The common goal is to use MBSA for an equivalent analysis to the traditional
safety analysis methods (e.g., Fault Trees) to support safety assessment pro-
cesses.

• Both use an analytical model of the system to capture failure propagation. In
the model, system architecture, nominal and faulty functional behaviors are cap-
tured. The model evolves as the system design evolves.

• Both use software application/tools to perform analysis on the model and gener-
ate outputs (e.g., failure sequences, minimal cut sets that result in the failure con-
dition under analysis). The MBSA appendix also mentioned that model checking
can be used to perform an exhaustive exploration of the state space of the model.

• Outputs generated from the analysis are to be compared to qualitative and/or
quantitative objectives and requirements as part of the safety assessment process.
Furthermore, the outputs drive evolution of system design.

Our approach goes beyond what is envisioned in the MBSA appendix in the fol-
lowing ways:

• The MBSA Appendix is not advocating a single unified model used by both sys-
tem development and safety assessment activities. The model is safety specific
and driven by the types of safety assessment to be conducted. However, the ini-
tial safety model may be derived from the system design model, and may be
closer to the design at the lower levels of the design process.

• In the MBSA Appendix, the failure propagation modeling focuses on the inside
internal flows in the components, which is similar to the bottom-up method in
Failure Modes and Effects Analysis. Different components are connected by
inputs and outputs, and no behavioral constraints are specified on data entering
and exiting components. This leaves inter-component propagation to be explored
by the analysis.

In summary, our approach provides a new way to do safety analysis. It uses an
unified model that is shared by system development and safety assessment. The model
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captures architecture and behavioral information for propagation within components
and between components. It is a property driven approach that is consistent between
system verification and safety analysis.

3 Fault Modeling with the Safety Annex
To demonstrate the fault modeling capabilities of the Safety Annex we will use the
Wheel Brake System (WBS) described in AIR6110 [1]. This system is a well-known
example that has been used as a case study for safety analysis, formal verification,
and contract based design [12, 18, 19, 45]. The preliminary work for the safety annex
was based on a simple model of the WBS [72]. To demonstrate a more complex fault
modeling process, we constructed a functionally and structurally equivalent AADL
version of the more complex WBS NuSMV/xSAP models [19].

Figure 2: Wheel Brake System

The WBS is composed of two main parts: the Line Replaceable Unit control system
and the electro-mechanical physical system. The control system electronically controls
the physical system and contains a redundant channel of the Braking System Control
Unit (BSCU) in case a detectable fault occurs in the active channel. It also commands
antiskid braking. The physical system consists of the hydraulic circuits running from
hydraulic pumps to wheel brakes as well as valves that control the hydraulic fluid flow.
This system provides braking force to each of the eight wheels of the aircraft. The
wheels are all mechanically braked in pairs (one pair per landing gear). For simplicity,
Figure 2 displays only two of the eight wheels.

There are three operating modes in the WBS model:

• In normal mode, the system is composed of a green hydraulic pump and one
meter valve per each of the eight wheels. Each of the meter valves are con-
trolled through electronic commands coming from the active channel of the
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BSCU. These signals provide braking and antiskid commands for each wheel.
The braking command is determined through a sensor on the pedal and the anti-
skid command is determined by the Wheel Sensors.

• In alternate mode, the system is composed of a blue hydraulic pump, four meter
valves, and four antiskid shutoff valves, one for each landing gear. The meter
valves are mechanically commanded through the pilot pedal corresponding to
each landing gear. If the selector detects lack of pressure in the green circuit, it
switches to the blue circuit.

• In emergency mode, the system mode is entered if the blue hydraulic pump fails.
The accumulator pump has a reserve of pressurized hydraulic fluid and will sup-
ply this to the blue circuit in emergency mode.

The WBS architecture model in AADL contains 30 different kinds of components,
169 component instances, and a model depth of 5 hierarchical levels.

The behavioral model is encoded using the AGREE annex and the behavior is based
on descriptions found in AIR6110. The top level system properties are given by the re-
quirements and safety objectives in AIR6110. All of the subcomponent contracts sup-
port these system safety objectives through the use of assumptions on component input
and guarantees on the output. The WBS behavioral model in AGREE annex includes
one top-level assumption and 11 top-level system properties, with 113 guarantees allo-
cated to subsystems.

An example system safety property is to ensure that there is no inadvertent braking
of any of the wheels. This is based on a failure condition described in AIR6110 is
Inadvertent wheel braking on one wheel during takeoff shall be less than 1E-9 per
takeoff. Inadvertent braking means that braking force is applied at the wheel but the
pilot has not pressed the brake pedal. In addition, the inadvertent braking requires
that power and hydraulic pressure are both present, the plane is not stopped, and the
wheel is rolling (not skidding). The property is stated in AGREE such that inadvertent
braking does not occur, as shown in Figure 3.

Figure 3: AGREE Contract for Top Level Property: Inadvertent Braking

3.1 Component Fault Modeling
The usage of the terms error, failure, and fault are defined in ARP4754A and are de-
scribed here for ease of understanding [65]. An error is a mistake made in implementa-
tion, design, or requirements. A fault is the manifestation of an error and a failure is an
event that occurs when the delivered service of a system deviates from correct behavior.
If a fault is activated under the right circumstances, that fault can lead to a failure. The
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terminology used in EMV2 differs slightly for an error: an error is a corrupted state
caused by a fault. The error propagates through a system and can manifest as a failure.
In this report, we use the ARP4754A terminology with the added definition of error
propagation as used in EMV2. An error is a mistake made in design or code and an
error propagation is the propagation of the corrupted state caused by an active fault.

The Safety Annex is used to add possible faulty behaviors to a component model.
Within the AADL component instance model, an annex is added which contain the fault
definitions for the given component. The flexibility of the fault definitions allows the
user to define numerous types of fault nodes by utilizing the AGREE node syntax. A
library of common fault nodes has been written and is available in the project GitHub
repository [69]. Examples of such faults include valves being stuck open or closed,
output of a software component being nondeterministic, or power being cut off. When
the fault analysis requires fault definitions that are more complex, these nodes can
easily be written and used in the model.

When a fault is activated by its specified triggering conditions, it modifies the out-
put of the component. This faulty behavior may violate the contracts of other compo-
nents in the system, including assumptions of downstream components. The impact of
a fault is computed by the AGREE model checker when the safety analysis is run on
the fault model.

The majority of faults that are connected to outputs of components are known as
symmetric. That is, whatever components receive this faulty output will receive the
same faulty output value. Thus, this output is seen symmetrically. An alternative fault
type is asymmetric. This pertains to a component with a 1-n output: one output which
is sent to many receiving components. This fault can present itself differently to the
receiving components. For instance, in a boolean setting, one component might see a
true value and the rest may see false. This is also possible to model using the keyword
asymmetric. For more information on fault definitions and modeling possibilities, we
refer readers to the Safety Annex Users Guide [69].

As an illustration of fault modeling using the Safety Annex, we look at one of the
components important to the inadvertent braking property: the brake pedal. When the
mechanical pedal is pressed, a sensor reads this information and passes an electronic
signal to the BSCU which then commands hydraulic pressure to the wheels.

Figure 4 shows the AADL pedal sensor component with a contract for its nominal
behavior. The sensor has only one input, the mechanical pedal position, and one output,
the electrical pedal position. A property that governs the behavior of the component is
that the mechanical position should always equal the electronic position. (The expres-
sion true→ property in AGREE is true in the initial state and then afterwards it is only
true if property holds.)

One possible failure for this sensor is inversion of its output value. This fault can
be triggered with probability 5.0× 10−6 as described in AIR6110 (in reality, the com-
ponent failure probability is collected from hardware specification sheets). The Safety
Annex definition for this fault is shown in Figure 5. Fault behavior is defined through
the use of a fault node called inverted fail. When the fault is triggered, the nominal out-
put of the component (elec pedal position) is replaced with its failure value (val out).

The WBS fault model expressed in the Safety Annex contains a total of 33 different

12



system SensorPedalPosition  
  features  
       -- Input ports for subcomponent 

mech_pedal_pos : in data port Base_Types::Boolean;  
elec_pedal_pos : in data port Base_Types::Boolean;  
 

  -- Behavioral contracts for subcomponent 
  annex agree {**  
 
     guarantee "Mechanical and electrical pedal position is equivalent" :  
 true -> (mech_pedal_position = elec_pedal_position; 
  }; 
 
end SensorPedalPosition;  
 
 

 

Figure 4: An AADL System Type: The Pedal Sensor

annex safety {**  
  fault SensorPedalPosition_ErroneousData "Inverted boolean fault" : faults.inverted_fail { 
 inputs: val_in <- elec_pedal_position; 

outputs: elec_pedal_position <- val_out; 
 probability: 5.0E-6 ; 
 duration: permanent;   
  } 
}; 
 

 
Figure 5: The Safety Annex for the Pedal Sensor

fault types and 141 fault instances. The large number of fault instances is due to the
redundancy in the system design and its replication to control 8 wheels.

3.2 Implicit Error Propagation
In the Safety Annex approach, faults are captured as faulty behaviors that augment the
system behavioral model in AGREE contracts. No explicit error propagation is neces-
sary since the faulty behavior itself propagates through the system just as in the nominal
system model. The effects of any triggered fault are manifested through analysis of the
AGREE contracts.

On the contrary, in the AADL Error Model Annex, Version 2 (EMV2) [36] ap-
proach, all errors must be explicitly propagated through each component (by applying
fault types on each of the output ports) in order for a component to have an impact on
the rest of the system. To illustrate the key differences between implicit error propaga-
tion provided in the Safety Annex and the explicit error propagation provided in EMV2,
we use a simplified behavioral flow from the WBS example using code fragments from
EMV2, AGREE, and the Safety Annex.

In this simplified WBS system, the physical signal from the Pedal component is
detected by the Sensor and the pedal position value is passed to the Braking System
Control Unit (BSCU) components. The BSCU generates a pressure command to the
Valve component which applies hydraulic brake pressure to the Wheels.

In the EMV2 approach (top half of Figure 6), the “NoService” fault is explicitly
propagated through all of the components. These fault types are essentially tokens that
do not capture any analyzable behavior. At the system level, analysis tools supporting
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Pedal BSCU Valve WheelsSensor

Safety Annex Approach

signal.val 
>= 0.0;

pedal_out.val = 
pedal_in.val;

signal pedal_
in

pedal_
out

pedal cmd

Simplified WBS

in_pressure out_pressure

pedal : in propagation 
{NoService};
cmd : out 
propagation{NoValue};

in_pressure : in 
propagation {Novalue};
out_pressure : out 
propagation{NoValue};

pedal_out : out 
propagation{NoService
};

EMV2 Approach

Nominal Behavior 
in AGREE

Faulty Behavior in 
Safety Annex

Error 
Propagation
through 

Component

Error Flow

System safety 
property in AGREE 

pedal_out = if 
fault_trigger then 
0.0 else pedal_in;

error source 
signal{NoService};

error path 
pedal{NoService} 
‐> cmd{NoValue};

error path 
in_pressure{NoValue} ‐> 
out_pressure{NoValue};

(pedal.val > 0.0) 
=> (cmd.val > 0.0)

out_pressure.val = 
in_pressure.val;

(Pedal.signal.val > 0.0) => 
(Valve.out_pressure.val > 0.0)

"sensor output stuck at zero"

"pedal pressed implies valve pressure"

Figure 6: Differences between Safety Annex and EMV2

the EMV2 annex can aggregate the propagation information from different components
to compose an overall fault flow diagram or fault tree.

When a fault is triggered in the Safety Annex (bottom half of Figure 6), the output
behavior of the Sensor component is modified. In this case the result is a “stuck at
zero” error. The behavior of the BSCU receives a zero input and proceeds as if the
pedal has not been pressed. This will cause the top level system contract to fail: pedal
pressed implies brake pressure output is positive.

3.3 Explicit Error Propagation
Failures in hardware (HW) components can trigger behavioral faults in the system
components that depend on them. For example, a CPU Failure may trigger faulty
behavior in the threads bound to that CPU. In addition, a failure in one HW component
may trigger failure in other HW components located nearby, such as overheating, fire,
or explosion in the containment location. The Safety Annex provides the capability
to explicitly model the impact of hardware failures on other faults, behavioral or non
behavioral. The explicit propagation to non behavioral faults is similar to that provided
in EMV2.

To better model faults at the system level dependent on HW failures, a fault model
element is introduced called a hardware fault. Users are not required to specify behav-
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ioral effects for the HW faults, nor are data ports necessary on which to apply the fault
definition. An example of a model component fault declaration is shown below:

Users specify dependencies between the HW component faults and faults that are
defined in other components, either HW or SW. The hardware fault then acts as a
trigger for dependent faults. This allows a simple propagation from the faulty HW
component to the SW components that rely on it, affecting the behavior on the outputs
of the affected SW components.

In the WBS example, assume that both the green and blue hydraulic pumps are
located in the same compartment in the aircraft and an explosion in this compartment
rendered both pumps inoperable. The HW fault definition can be modeled first in
the green hydraulic pump component as shown in the HW fault code snippet shown
above. The activation of this fault triggers the activation of related faults as seen in the
propagate to statement shown below. Notice that these pumps need not be connected
through a data port in order to specify this propagation.

The fault dependencies are specified in the system implementation where the sys-
tem configuration that causes the dependencies becomes clear (e.g., binding between
SW and HW components, co-location of HW components).

3.4 Fault Analysis Statements
The fault analysis statement (also referred to as the fault hypothesis) resides in the
AADL system implementation that is selected for verification. This may specify either
a maximum number of faults that can be active at any point in execution:

or that the only faults to be considered are those whose probability of simultaneous
occurrence is above some probability threshold:

Tying back to the fault tree analysis in traditional safety analysis, the former is anal-
ogous to restricting the cutsets to a specified maximum number of terms, and the latter
is analogous to restricting the cutsets to only those whose probability is above some
set value. In the former case, we assert that the sum of the true fault trigger variables
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is at or below some integer threshold. In the latter, we determine all combinations of
faults whose probabilities are above the specified probability threshold, and describe
this as a proposition over fault trigger variables. With the introduction of dependent
faults, active faults are divided into two categories: independently active (activated by
its own triggering event) and dependently active (activated when the faults they depend
on become active). The top level fault hypothesis applies to independently active faults.
Faulty behaviors augment nominal behaviors whenever their corresponding faults are
active (either independently active or dependently active).

4 Byzantine Fault Modeling
A Byzantine or asymmetric fault is a fault that presents different symptoms to differ-
ent observers [31]. In our modeling environment, asymmetric faults may be associated
with a component that has a 1-n output to multiple other components. In this configura-
tion, a symmetric fault will result in all destination components seeing the same faulty
value from the source component. To capture the behavior of asymmetric faults (“dif-
ferent symptoms to different observers”), it was necessary to extend our fault modeling
mechanism in AADL.

4.1 Implementation of Asymmetric Faults
To illustrate our implementation of asymmetric faults, assume a source component A
has a 1-n output connected to four destination components (B-E) as shown in Figure 7
under “Nominal System.” If a symmetric fault was present on this output, all four
connected components would see the same faulty behavior. An asymmetric fault should
be able to present arbitrarily different values to the connected components.

To this end, “communication nodes” are inserted on each connection from compo-
nent A to components B, C, D, and E (shown in Figure 7 under “Fault Model Archi-
tecture.” From the users perspective, the asymmetric fault definition is associated with
component A’s output and the architecture of the model is unchanged from the nom-
inal model architecture. Behind the scenes, these communication nodes are created
to facilitate potentially different fault activations on each of these connections. The
fault definition used on the output of component A will be inserted into each of these
communication nodes as shown by the red circles at the communication node output in
Figure 7.

An asymmetric fault is defined for Component A as in Figure 8. This fault defines
an asymmetric failure on Component A that when active, is stuck at a previous value
(prev(Output, 0)). This can be interpreted as the following: some connected compo-
nents may only see the previous value of Comp A output and others may see the correct
(current) value when the fault is active. This fault definition is injected into the com-
munication nodes and which of the connected components see an incorrect value is
completely nondeterministic. Any number of the communication node faults (0. . . all)
may be active upon activation of the main asymmetric fault.
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Figure 7: Communication Nodes in Asymmetric Fault Implementation

Figure 8: Asymmetric Fault Definition in the Safety Annex

4.2 Process ID Example
The illustration of asymmetric fault implementation can be seen through a simple ex-
ample where 4 nodes report to each other their own process ID (PID). Each node has a
1-3 connection and thus each node is a candidate for an asymmetric fault. Given this
architecture, a top level contract of the system is simply that all nodes report and see
the correct PID of all other nodes. Naturally in the absence of faults, this holds. But
when one asymmetric fault is introduced on any of the nodes, this contract cannot be
verified. What is desired is a protocol in which all nodes agree on a value (correct or
arbitrary) for all PIDs.
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4.3 The Agreement Protocol Implementation in AGREE
In order to mitigate this problem, special attention must be given to the behavioral
model. Using the strategies outlined in previous research [24, 31], the agreement pro-
tocol is specified in AGREE to create a model resilient to one active Byzantine fault.

The objective of the agreement protocol is for all correct (non-failed) nodes to
eventually reach agreement on the PID values of the other nodes. There are n nodes,
possibly f failed nodes. The protocol requires n > 3f nodes to handle a single fault.
The point is to achieve distributed agreement and coordinated decisions. The properties
that must be verified in order to prove the protocol works as desired are as follows:

• All correct (non-failed) nodes eventually reach a decision regarding the value
they have been given. In this solution, nodes will agree in f + 1 time steps or
rounds of communication.

• If the source node is correct, all other correct nodes agree on the value that was
originally sent by the source.

• If the source node is failed, all other nodes must agree on some predetermined
default value.

The updated architecture of the PID example is shown in Figure 9.

Figure 9: Updated PID Example Architecture

Each node reports its own PID to all other nodes in the first round of communi-
cation. In the second round, each node informs the others what they saw in terms of
everyone’s PIDs. The outputs from a node are described in Figure 10. These outputs

Figure 10: Description of the Outputs of Each Node in the PID Example

are modeled as a nested data implementation in AADL and each field corresponds to
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a PID from a node. The AADL code fragment defining this data implementation is
shown in Figure 11.

Figure 11: Data Implementation in AADL for Node Outputs

The fault definition for each node’s output can arbitrarily affect the data fields. This
is a nondeterministic fault in two ways. It is nondeterministic how many receiving
nodes see incorrect values and it is nondeterministic how many of the data fields are
affected by this fault. This can be accomplished through the fault definition shown in
Figure 12 and the fault node definition in Figure 13.

Figure 12: Fault Definition on Node Outputs for PID Example

Figure 13: Fault Node Definition for PID Example
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Once the fault model is in place, the implementation in AGREE of the agreement
protocol is developed. As stated previously, there are two cases that must be considered
in the contracts of this system.

• In the case of no active faults, all nodes must agree on the correct PID of all other
nodes.

• In the case of an active fault on a node, all non-failed nodes must agree on a PID
for all other nodes.

These requirements are encoded in AGREE through the use of the following con-
tracts. Figure 14 and Figure 15 show example contracts regarding Node 1 PID. There
are similar contracts for each node’s PID.

Figure 14: Agreement Protocol Contract in AGREE for No Active Faults

Figure 15: Agreement Protocol Contract in AGREE Regarding Non-failed Nodes

Referencing Fault Activation Status To fully implement the agreement protocol,
it must be possible to describe whether or not a subcomponent is failed by specifying if
any faults defined for the subcomponents is activated. In the Safety Annex, this is made
possible through the use of a fault activation statement. Users can declare boolean eq
variables in the AGREE annex of the AADL system where the AGREE verification
applies to that system’s implementation. Users can then assign the activation status of
specific faults to those eq variables in Safety Annex of the AADL system implementa-
tion (the same place where the fault analysis statement resides). This assignment links
each specified AGREE boolean variable with the activation status of the specified fault
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activation literal. The AGREE boolean variable is true when and only when the fault is
active. An example of this for the PID example is shown in Figure 16. Each of the eq
variables declared in AGREE (i.e., n1 failed, n2 failed, n3 failed, n4 failed) is linked
to the fault activation status of the Asym Fail Any PID To Any Value fault defined in a
node subcomponent instance of the AADL system implementation (i.e., node1, node2,
node3, node4).

Figure 16: Fault Activation Statement in PID Example

4.4 PID Example Analysis Results
The nominal model verification shows that all properties are valid. Upon running verifi-
cation of the fault model (Verify in the Presence of Faults) with one active fault, the first
four properties stating that all nodes agree on the correct value (Figure 14) fail. This
is expected since this property is specific to the case when no faults are present in the
model. The remaining 4 top level properties (Figure 15) state that all non-failed nodes
reach agreement in two rounds of communication. These are verified valid when any
one asymmetric fault is present. This shows that the agreement protocol was success-
ful in eliminating a single point of asymmetric failure from the model. Furthermore,
when changing the number of allowed faults to two, these properties do not hold. This
is expected given the theoretical result that 3f + 1 nodes are required in order to be
resilient to f faults and that f + 1 rounds of communication are needed for successful
protocol implementation. A summary of the results follows.

• Nominal model: All top level guarantees are verified. All nodes output the cor-
rect value and all agree.

• Fault model with one active fault: The first four guarantees fail (when no fault
is present, all nodes agree: shown in Figure 14). This is expected if faults are
present. The last four guarantees (all non-failed nodes agree) are verified as true
with one active fault.

• Fault model with two active faults: All 8 guarantees fail. This is expected since
in order to be resilient up to two active faults (f = 2), we would need 3f+1 = 7
nodes and f + 1 = 3 rounds of communication.

This model is in Github and is called PIDByzantineAgreement [69].
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Figure 17: Safety Annex Plug-in Architecture

5 Tool Architecture and Implementation
The Safety Annex is written in Java as a plug-in for the OSATE AADL toolset, which
is built on Eclipse. It is not designed as a stand-alone extension of the language, but
works with behavioral contracts specified using the AGREE AADL annex [29]. The
architecture of the Safety Annex is shown in Figure 17.

AGREE contracts are used to define the nominal behaviors of system components
as guarantees that hold when assumptions about the values the component’s environ-
ment are met. When an AADL model is annotated with AGREE contracts and the fault
model is created using the Safety Annex, the model is transformed through AGREE
into a Lustre model [42] containing the behavioral extensions defined in the AGREE
contracts for each system component.

When performing fault analysis, the Safety Annex extends the AGREE contracts to
allow faults to modify the behavior of component inputs and outputs. An example of a
portion of an initial AGREE node and its extended contract is shown in Figure 18. The
left column of the figure shows the nominal Lustre pump definition is shown with an
AGREE contract on the output; and the right column shows the additional local vari-
ables for the fault (boxes 1 and 2), the assertion binding the fault value to the nominal
value (boxes 3 and 4), and the fault node definition (box 5). Once augmented with fault
information, the AGREE model (translated into the Lustre dataflow language [42]) fol-
lows the standard translation path to the model checker JKind [37], an infinite-state
model checker for safety properties.

Figure 18: Nominal AGREE Node and Extension with Faults
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There are two different types of fault analysis that can be performed on a fault
model. The Safety Annex plugin intercepts the AGREE program and add fault model
information to the model depending on which form of fault analysis is being run.

Verification in the Presence of Faults: This analysis returns one counterexample
when fault activation per the fault hypothesis can cause violation of a property. The
augmentation from Safety Annex to the AGREE program includes traceability infor-
mation so that when counterexamples are displayed to users, the active faults for each
component are visualized.

Generate Minimal Cut Sets: This analysis collects all minimal set of fault combi-
nations that can cause violation of a property. Given a complex model, it is often useful
to extract traceability information related to the proof, in other words, which portions
of the model were necessary to construct the proof. An algorithm was introduced by
Ghassabani, et. al. to provide Inductive Validity Cores (IVCs) as a way to determine
which model elements are necessary for the inductive proofs of the safety properties
for sequential systems [39]. Given a safety property of the system, a model checker can
be invoked in order to construct a proof of the property. The IVC generation algorithm
extracts traceability information from the proof process and returns a minimal set of
the model elements required in order to prove the property. Later research extended
this algorithm in order to produce all Minimal Inductive Validity Cores (All-MIVCs)
to provide a full enumeration of all minimal set of model elements necessary for the
inductive proofs of a safety property [40].

In this approach, we use the all MIVCs algorithm to consider a constraint system
consisting of the negation of the top level safety property, the contracts of system com-
ponents, as well as the faults in each layer constrained to false. It then collects what are
called Minimal Unsatisfiable Subsets (MUSs) of this constraint system; these are the
minimal explanations of the constraint systems infeasibility in terms of the negation
of the safety property. Equivalently, these are the minimal model elements necessary
to proof the safety property. In Section 7, we show the formal definitions in detail.
The leaf nodes contribute only constrained faults to the IVC elements as shown in
Figure 19.

In the non-leaf layers of the program, both contracts and constrained faults are
considered as shown in Figure 20. The reason for this is that the contracts are used to
prove the properties at the next highest level and are necessary for the verification of
the properties.

The all MIVCs algorithm returns the minimal set of these elements necessary to
prove the properties. This equates to any contracts or inactive faults that must be
present in order for the verification of properties in the model. From here, we per-
form a number of algorithms to transform all MIVCs into minimal cut sets.

6 Analysis of the Model
In this section we describe results from the nominal model analysis and the fault anal-
ysis.
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Figure 19: IVC Elements used for Consideration in a Leaf Layer of a System

Figure 20: IVC Elements used for Consideration in a Middle Layer of a System

6.1 Nominal Model Analysis
Before performing fault analysis, users should first check that the safety properties are
satisfied by the nominal design model. This analysis can be performed monolithically
or compositionally in AGREE. Using monolithic analysis, the contracts at the lower
levels of the architecture are flattened and used in the proof of the top level safety
properties of the system. Compositional analysis, on the other hand, will perform the
proof layer by layer top down, essentially breaking the larger proof into subsets of
smaller problems. For a more comprehensive description of these types of proofs and
analyses, see additional publications related to AGREE [3, 28]

The WBS has a total of 13 safety properties at the top level that are supported by
subcomponent assumptions and guarantees. These are shown in Table 1. Given that
there are 8 wheels, contract S18-WBS-0325-wheelX is repeated 8 times, one for each
wheel. The behavioral model in total consists of 36 assumptions and 246 supporting
guarantees.
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S18-WBS-R-0321
Loss of all wheel braking during landing or RTO shall be less than 5.0× 10−7 per flight.

S18-WBS-R/L-0322
Asymmetrical loss of wheel braking (Left/Right) shall be less than 5.0× 10−7 per flight.

S18-WBS-0323
Never inadvertent braking with all wheels locked shall be less than 1.0× 10−9 per takeoff.

S18-WBS-0324
Never inadvertent braking with all wheels shall be less than 1.0× 10−9 per takeoff.

S18-WBS-0325-wheelX
Never inadvertent braking of wheel X shall be less than 1.0× 10−9 per takeoff. .

Table 1: Safety Properties of WBS

6.2 Fault Model Analysis
There are two main options for fault model analysis using the Safety Annex. The first
option injects faulty behavior allowed by faulty hypothesis into the AGREE model and
returns this model to JKind for analysis. This allows for the activity of faults within the
model and traceability information provides a way for users to view a counterexample
to a violated contract in the presence of faults. The second option is used to generate
minimal cut sets for the model. The model is annotated with fault activation that are
constrained to false as well as intermediate level guarantees as model elements for
consideration for the all Minimal Inductive Validity Cores (All-MIVCs) algorithm. The
All-MIVCs traces the minimal set of model elements used to produce minimal cut sets
and is described in Section 7. This subsection presents these options and discusses the
analytical results obtained.

6.2.1 Verification in the Presence of Faults: Max N Analysis

Using a max number of faults for the hypothesis, the user can constrain the number of
simultaneously active faults in the model. The faults are added to the AGREE model
for the verification. Given the constraint on the number of possible simultaneously
active faults, the model checker attempts to prove the top level properties given these
constraints. If this cannot be done, the counterexample provided will show which of
the faults (N or less) are active and which contracts are violated.

The user can choose to perform either compositional or monolithic analysis using
a max N fault hypothesis. In compositional analysis, the analysis proceeds in a top
down fashion. To prove the top level properties, the properties in the layer directly
beneath the top level are used to perform the proof. The analysis proceeds in this
manner. Users constrain the maximum number of faults within each layer of the model
by specifying the maximum fault hypothesis statement to that layer. If any lower level
property failed due to activation of faults, the property verification at the higher level
can no longer be trusted because the higher level properties were proved based on the
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assumption that the direct sub-level contracts are valid. This form of analysis is helpful
to see weaknesses in a given layer of the system.

In monolithic analysis the layers of the model are flattened, which allows a direct
correspondence between all faults in the model and their effects on the top level prop-
erties. As with compositional analysis, a counterexample shows these N or less active
faults.

6.2.2 Verification in the Presence of Faults: Probabilistic Analysis

Given a probabilistic fault hypothesis, this corresponds to performing analysis with the
combinations of faults whose occurrence probability is less than the probability thresh-
old. This is done by inserting assertions that allow those combinations in the Lustre
code. If the model checker proves that the safety properties can be violated with any of
those combinations, one of such combination will be shown in the counterexample.

Probabilistic analysis done in this way must utilize the monolithic AGREE option.
For compositional probabilistic analysis, see Section 6.2.4.

To perform this analysis, it is assumed that the non-hardware faults occur inde-
pendently and possible combinations of faults are computed and passed to the Lustre
model to be checked by the model checker. As seen in Algorithm 1, the computation
first removes all faults from consideration that are too unlikely given the probability
threshold. The remaining faults are arranged in a priority queue Q from high to low.
Assuming independence in the set of faults, we take a fault with highest probability
from the queue (step 5) and attempt to combine the remainder of the faults in R (step
7). If this combination is lower than the threshold (step 8), then we do not take into
consideration this set of faults and instead remove the tail of the remaining faults inR.

Algorithm 1: Monolithic Probability Analysis

1 F = {} : fault combinations above threshold ;
2 Q : faults, qi, arranged with probability high to low ;
3 R = Q , with r ∈ R;
4 while Q 6= {} ∧ R 6= {} do
5 q = removeTopElement(Q) ;
6 for i = 0 : |R| do
7 prob = q × ri ;
8 if prob < threshold then
9 removeTail(R, j = i : |R|);

10 else
11 add({q, ri},Q);
12 add({q, ri},F);

In this calculation, we assume independence among the faults, but in the Safety
Annex it is possible to define dependence between faults using a fault propagation
statement. After fault combinations are computed using Algorithm 1, the triggered
dependent HW faults are added to the combination as appropriate. The dependencies
are implemented in the Verify in the Presence of Faults options for analysis, but not yet
implemented in the Generate Minimal Cut Sets analysis options.
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6.2.3 Generate Minimal Cut Sets: Max N Analysis

As described in Section 5, Generate Minimal Cut Sets analysis uses the All-MIVCs
algorithm to provide a full enumeration of all minimal set of model elements necessary
for the proof of each top-level safety property in the model, and then transforms all
MIVCs into all minimal cut sets. In Max N analysis, the minimal cut sets are pruned
to include only those with at cardinality less or equal to the max N number specified in
the fault hypothesis and displayed to the user.

Generation of minimal cut sets was performed on the Wheel Brake System and
results are shown in Table 2. Notice in Table 2, the label across the top row refers to the
cardinality (n) and the corresponding column shows how many cut sets are generated
of that cardinality. When the analysis is run, the user specifies the value n. This gives
cut sets of cardinality less than or equal to n. Table 2 shows the total number of cut
sets of cardinality n. The total number of cut sets computed at the given threshold is
the sum across a row. (For the full text of the properties, see Table 1.)

Table 2: WBS Minimal Cut Set Results for Max n Hypothesis
Property n = 1 n = 2 n = 3 n = 4 n = 5

0321 7 0 0 256 57,600
0322-R 75 0 0 0 0
0322-L 75 0 0 0 0
0323 182 0 0 0 0
0324 8 3,665 28,694 883,981 -
0325-WX 33 0 0 0 0

As can be seen in Table 2, the number of cut sets increases proportional to the car-
dinality of the cut sets. Intuitively, this can be understood as simple combinations of
faults that can violate the hazard; if more things go wrong in a system at the same time,
the more likely a property will be violated. Property S18-WBS-0324 with a max fault
hypothesis of 5 was unable to finish due to an out of memory error. At the time that the
error was thrown, the number of cut sets exceeded 1.5 million. In practice, it is impos-
sible to manually sift through multiple thousands of cut sets, but an analyst will instead
filter out the combinations that are sufficiently unlikely to occur based on a truncation
limit. In the next subsection (Generate Minimal Cut Sets: Probabilistic Analysis), we
discuss the use of a truncation limit through probabilistic analysis. The probabilistic
approach presents more realistic and useful number of cut sets for consideration.

6.2.4 Generate Minimal Cut Sets: Probabilistic Analysis

Both probabilistic analysis and max N analysis use the same minimal cut set genera-
tion algorithm, except that in probabilistic analysis, the minimal cut sets are pruned to
include only those fault combinations whose probability of simultaneous occurrence
exceed the given threshold in the probability hypothesis. Note that with probabilistic
hypothesis, Verify in the Presence of Faults is performed using only monolithic analy-
sis, but generating minimal cut sets is performed using compositional analysis.
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The probabilistic analysis for the WBS was given a top level threshold of 1.0×10−9
as stated in AIR6110. The faults associated with various components were all given
probability of occurrence compatible with the discussion in this same document.

As shown in Table 3, the number of allowable combinations drops considerably
when given probabilistic threshold as compared to just fault combinations of certain
cardinalities. For example, one contract (inadvertent wheel braking of all wheels) had
over a million minimal cut sets produced when looking at it in terms of max N analysis,
but after taking probabilities into account, it is seen on Table 3 that the likely contrib-
utors to a hazard are minimal cut sets of cardinality one. The probabilistic analysis
eliminated many thousands of cut sets from consideration.

Table 3: WBS Minimal Cut Set Results for Probabilistic Hypotheses
Property n = 1 n = 2 n = 3 n = 4 n = 5

0321: 5.0× 10−7 7 0 0 256 0
0322-R: 5.0× 10−7 75 0 0 0 0
0322-L: 5.0× 10−7 75 0 0 0 0
0323: 1.0× 10−9 182 0 0 0 0
0324: 1.0× 10−9 8 3665 0 0 0
0325-W1: 1.0× 10−9 33 0 0 0 0

In Table 3, the property 0321 has a truncation limit of 1.0 × 10−9 with 8 single
points of failure. If this property has a catastrophic classification, these single points
of failure must be eliminated. Likewise with cut sets of cardinality n = 2, there are a
total of 3665 combinations that a safety analyst must manually examine. Within this
analysis framework, there are multiple ways to address the number of cut sets. One is
to re-examine how the faults are modeled (e.g., consolidate a valve’s two failure modes
into one as fail-open and fail-closed cannot occur the same time) and another is to re-
evaluate the design of the model which is discussed in detail in an upcoming subsection
(Use of Analysis Results to Drive Design Change).

6.2.5 Results from Generate Minimal Cut Sets

Results from Generate Minimal Cut Sets analysis can be represented in one of the
following forms.

1. The minimal cut sets can be presented in text form with the total number per
property, cardinality of each, and description strings showing the property and
fault information. A sample of this output is shown in Figure 21.

2. The minimal cut set information can be presented in tally form. This does not
contain the fault information in detail, but instead gives only the tally of cut sets
per property. This is useful in large models with many cut sets as it reduces the
size of the text file. An example of this output type is seen in Figure 22.

3. The tool can also generate fault tree and minimal cut set information format-
ted as input to the SOTERIA tool [53] to produce hierarchical fault trees that
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Figure 21: Detailed Output of MinCutSets

Figure 22: Tally Output of MinCutSets

are consistent with the system architecture/component verification layers, or flat
fault trees consist of minimal cut sets only, both in graphical form. A sample
graphical fault tree output from the SOTERIA tool is shown in Figure 23. The
SOTERIA tool is also able to compute the probabilities for the top level event
from a given fault tree. However, based on experience with the WBS example,
our tool was a more scalable solution as it produces minimal cut sets for more
complex systems, also in shorter amount of time. The text format of the minimal
cut sets seemed anecdotally easier to read than the graphical format for larger
systems.
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Figure 23: Example SOTERIA Fault Tree

6.2.6 Use of Analysis Results to Drive Design Change

We use a single top level requirement of the WBS: S18-WBS-0323 (Never inadvertent
braking with all wheels locked to illustrate how Safety Annex can be used to detect
design flaws and how faults can affect the behavior of the system). This safety property
description can be found in detail in Section 3. Upon running max n compositional
fault analysis with n = 1, this particular fault was shown to be a single point of failure
for this safety property. A counterexample is shown in Figure 24 showing the active
fault on the pedal sensor.

Figure 24: AGREE counterexample for inadvertent braking safety property

Depending on the goals of the system, the architecture currently modeled, and the
mitigation strategies that are desired, various strategies are possible to mitigate the
problem.

• Possible mitigation strategy 1: Monitor system can be added for the sensor: A
monitor sub-component can be modeled in which it accesses the mechanical
pedal as well as the signal from the sensor. If the monitor finds discrepancies
between these values, it can send an indication of invalid sensor value to the top
level of the system. In terms of the modeling, this would require a change to the
behavioral contracts which use the sensor value. This validity would be taken
into account through the means of valid ∧ pedal sensor value.
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• Possible mitigation strategy 2: Redundancy can be added to the sensor: A sensor
subsystem can be modeled which contains 3 or more sensors. The overall output
from the sensor system may utilize a voting scheme to determine validity of
sensor reading. There are multiple voting schemes that are possible, one of which
is a majority voting (e.g. one sensor fails, the other two take majority vote and
the correct value is passed). When three sensors are present, this mitigates the
single point of failure problem. New behavioral contracts are added to the sensor
system to model the behavior of redundancy and voting.

In the case of the pedal sensor in the WBS, the latter of the two strategies outlined
above was implemented. A sensor system was added to the model which held three
pedal sensors. The output of this subsystem was constrained using a majority voting
scheme. Upon subsequent runs of the analysis (regardless which type of run was used),
resilience was confirmed in the system regarding the failure of a single pedal sensor.
Figure 25 outlines these architectural changes that were made in the model.

Figure 25: Changes in the architectural model for fault mitigation

As can be seen through this single example, a system as large as the WBS would
benefit from many iterations of this process. Furthermore, if the model is changed
even slightly on the system development side, it would automatically be seen from the
safety analysis perspective and any negative outcomes would be shown upon subse-
quent analysis runs. This effectively eliminates any miscommunications between the
system development and analysis teams and creates a new safeguard regarding model
changes.

For more information on types of fault models that can be created as well as details
on analysis results, see the users guide located in the GitHub repository [69]. This
repository also contains all models used in this project.

7 Theoretical Foundations
There are two different types of fault analysis that can be performed on a fault model,
Verification in the Presence of Faults, and Generate Minimal Cut Sets, as introduced in
Section 5. The theoretical foundations used to verify a model in the presence of faults
relies on AGREE and the theory underlying the assume guarantee environment [28];
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this theory will not be discussed further in this report. The underlying theoretical
framework used in the generation of minimal cut sets is described in detail in this
section.

7.1 Introduction
Risk and safety analyses are important activities used to ensure that critical systems
operate in an expected way. From nuclear power plants and airplanes to heart monitors
and automobiles, critical systems are ubiquitous in our society. These systems are re-
quired to operate safely under nominal and faulty conditions. Proving that the system
operates within some level of safety when failures are present is an important aspect of
critical systems development and falls under the discipline of safety analysis. Safety
analysis produces various safety related artifacts that are used during development and
certification of critical systems [65]. Examples include minimal cut sets – each set rep-
resents the minimal set of faults that must all occur in order to violate a safety property
and fault trees – the evaluation that determines all credible failure combinations which
could cause an undesired top level hazard event. The fault tree can be transformed to
an equivalent Boolean formula whose literals appear in the minimal cut sets. Since the
introduction of minimal cut sets in the field of safety analysis, much research has been
performed to address the generation of these sets and associated formulae [34, 64, 73].
As critical systems get larger, more minimal cut sets are possible with increasing car-
dinality. In recent years, symbolic model checking has been used to address scaling the
analysis of systems with millions of minimal cut sets [8, 21, 67].

The state space explosion is a challenge when performing formal verification on
industrial sized systems. This problem can arise from combining parallel processes
together and attempting to reason monolithically over them. Compositional reasoning
takes advantage of the hierarchical organization of a system model. A compositional
approach verifies each component of the system in isolation and allows global prop-
erties to be inferred about the entire system [5]. The assume-guarantee paradigm is
commonly used in compositional reasoning where the assumed behavior of the envi-
ronment implies the guaranteed behavior of the component [29].

Using an assume-guarantee reasoning framework, we extend the definition of the
nominal transition system to allow for unconstrained guarantees. We use this idea to
reason about all possible violations of a safety property per layer of analysis and then
compose the results.

After we provide the formalization, we describe the implementation in the OSATE
tool for the Architecture Analysis and Design Language (AADL) [35]. AADL has
two annexes that are of interest to us: the Assume-Guarantee Reasoning Environment
(AGREE) [29] and the safety annex [68]. AGREE provides the assume-guarantee rea-
soning required for the transition system extension, and the safety annex allows us to
define faults on component outputs. To implement the formalization, we look to recent
work in formal verification. Ghassabani et al. developed an algorithm that traces a
safety property to a minimal set of model elements necessary for proof; this is called
the all minimal inductive validity core algorithm (All MIVCs) [39, 40]. Inductive va-
lidity cores produce the minimal sets of model elements necessary to prove a property.
Each set contains the behavioral contracts – the requirement specifications of compo-
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nents – used in a proof. We collect all MIVCs per layer to generate the minimal cut
sets and thus the fault trees to be composed.

This section presents a compositional approach to generating fault forests (sets of
fault trees) and associated minimal cut sets, allowing us to reason uniformly about
faults in various types of system components and their impact on system properties.
The main contributions of this research include the formalization of the composition
of fault forests and its implementation. Our objective in creating this compositional
analysis approach is to provide safety engineers with better tools so that they do not
lose sight of the fault forest for the trees.

7.2 Running Example
In a typical Pressurized Water Reactor (PWR), the core inside of the reactor vessel pro-
duces heat. Pressurized water in the primary coolant loop carries the heat to the steam
generator. Within the steam generator, heat from the primary coolant loop vaporizes
the water in a secondary loop, producing steam. The steam line directs the steam to the
main turbine causing it to turn the turbine generator, which in turn produces electricity.
There are a few important factors that must be considered during safety assessment and
system design. An unsafe climb in temperature can cause high pressure and hence pipe
rupture, and high levels of radiation could indicate a leak of primary coolant. The fol-
lowing sensor system can be thought of as a simplified version of a subsystem within
a PWR that monitors these factors. Each subsystem contain three sensors that monitor
pressure, temperature, and radiation. If any of these conditions are too high, a shut
down command is sent from the sensors to the parent components. The temperature,
pressure, and radiation sensor subsystems each contain three associated sensors for re-
dundancy. Each sensor reports the associated environmental condition to a majority
voter component. If the majority of the sensors reports high, a shut down command
is sent to the subsystem. If any subsystem reports a shut down command, the top
level system will shut down. Pressure, radiation, and temperature all have associated
thresholds for high values which we refer to as Tp, Tr, and Tt respectively. The safety
property P of interest in this system is: shut down if and only if any of the thresholds
are surpassed and is reflected by the shut down command at the top level::

shutdown = (Env Temp > Tt)∨(Env Pressure > Tp)∨(Env Radiation > Tr)

For reference throughout this paper, we provide Figure 26 which shows the guarantees
and faults of interest for this running example. We do not show all guarantees and
assumptions that are in the model, but only the ones of interest for the illustration.

7.3 Formalization
Given a state space U , a transition system (I, T ) consists of an initial state predicate
I : U → bool and a transition step predicate T : U × U → bool . We define the notion
of reachability for (I, T ) as the smallest predicate R : U → bool which satisfies the
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Figure 26: Sensor System Nominal and Fault Model Details

following formulas:

∀u ∈ U. I(u)⇒ R(u)

∀u, u′ ∈ U. R(u) ∧ T (u, u′)⇒ R(u′)

A safety property P : U → bool is a state predicate. A safety property P holds on
a transition system (I, T ) if it holds on all reachable states, i.e., ∀u. R(u) ⇒ P (u),
written as R ⇒ P for short. When this is the case, we write (I, T ) ` P . We assume
the transition relation has the structure of a top level conjunction. Given T (u, u′) =
T1(u, u

′) ∧ · · · ∧ Tn(u, u′) we will write T = ∧i=1..nTi for short. By further abuse of
notation, T is identified with the set of its top-level conjuncts ∧i=1..nTi. Thus, Ti ∈ T
means that Ti is a top-level conjunct of T , and S ⊆ T means all top level conjuncts of
S are top-level conjuncts of T .

The set of all nominal guarantees of the system G consists of conjunctive con-
straints g ∈ G. Given no faults (i.e., nominal system) and a transition relation T
consisting of conjunctive constraints Ti, each g is one of the transition constraints Ti
where:

T = g1 ∧ g2 ∧ · · · ∧ gn (1)

We consider an arbitrary layer of analysis of the architecture and assume the prop-
erty holds of the nominal relation (I, T ) ` P . Let the set of all faults in the system be
denoted as F . A fault f ∈ F is a modification of the nominal constraint imposed by
a guarantee. Without loss of generality, we associate a single fault and an associated
fault probability with a guarantee. Each fault fi is associated with an activation literal,
afi , that determines whether the fault is active or inactive.

We extend the transition system so that we can view the system behavior in the
presence of faults—or equivalently the absence of nominal constraints. To consider the
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system under the presence of faults, consider a set GF of modified guarantees in the
presence of faults and let a mapping be defined from activation literals afi ∈ AF to
these modified guarantees gfi ∈ GF .

gfi = if afi then fi else gi

The transition system is composed of the set of modified guarantees GF and a set
of conjunctions assigning each of the activation literals afi ∈ AF to false:

T ′ = gf1 ∧ gf2 ∧ · · · ∧ gfn ∧ ¬af1 ∧ ¬af2 ∧ · · · ∧ ¬afn (2)

Theorem 1. If (I, T ) ` P for T defined in equation 1, then (I, T ′) ` P for T ′ defined
in equation 2.

Proof. By the mapping of each constrained activation literal ¬afi to the associated
guarantee gi and the constraint of the activation literals to be false, the result is imme-
diate.

Consider the elements of T ′ as a set GF ∪ AF , where GF are the potentially
faulty guarantees and AF consists of the activation literals that determine whether a
guarantee is faulty. This is a set that is considered by an SMT solver for satisfiability
during the model checking engine procedures.

If the afi ∈ AF defined in T ′ are unconstrained, this allows more behaviors to the
transition system and could cause a violation of P . If so, a counterexample may be
produced. For each counterexample, we can partition AF into two sets that we call
non-faulty variables (NFV) and faulty variables (FV). The set NFV consists of a set of
activation literals that are constrained to be false throughout the counterexample, and
FV contains those that can be non-deterministically assigned any valuation at some
point in the trace. By mapping some of the variables in AF to false, we know that their
associated guarantees in GF are non-faulty for all considered executions. We define
T ′(NFV ) as a relaxation of T ′ (2):

T ′(NFV ) = gf1 ∧ gf2 ∧ · · · ∧ gfn ∧
∧
{¬afi |afi ∈ NFV }

The activation literals constrained to be false in T ′(NFV ) indicate that their as-
sociated guarantees to be valid. In the remainder of this section, we assume that all
afi ∈ AF are unconstrained and when given a true valuation will lead to a violation of
the associated guarantee. This violation causes the output that the guarantee constrains
to become non-deterministic. The Boolean variables in FV correspond to Boolean
variables in the fault tree.

Definition 1. A fault tree FT is a pair (r,L) where:

r: the root r is a negated desirable property,

L: a Boolean equation whose literals are faulty variables.
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All literals af of the Boolean equation L are elements of the set FV . A fault
tree may correspond to a single layer of the system architecture where the root r is a
violated guarantee or a violated safety property depending on the parent component
under analysis. The tree may also describe the relationship between faults and multiple
layers of the system architecture. The root r still corresponds to a violated guarantee
or property, but the structure of the Boolean formula L will reflect the layers of the
system architecture. If r is a violated safety property, then r ∈ P . If r is a violated
guarantee for some lower level parent component, then r ∈ π, where π is the set of
parent component guarantees.

Definition 2. A fault tree FT = (r,L) is valid if and only if a true valuation for r and
for all af ∈ L is satisfiable given the respective transition system constraints.

The hierarchy of the fault tree is dependent on the associated Boolean formula. A
more intuitive structure is that of disjunctive normal form (DNF) as seen in both fault
trees depicted in Figure 27, but DNF is not required under our definition of a fault tree.

Traditionally, a safety property is a property of the system and in the assume-
guarantee reasoning environment is a top level guarantee. In the following formalism,
each layer of analysis is viewed as distinct from the system hierarchy as the proof is
being constructed, and the properties we wish to prove are guarantees of a component.
We use the notation P to refer to the set of all parent properties at a given layer of anal-
ysis. If the analysis is being performed at the top level, these are all safety properties
of the system. If the analysis is being performed at an intermediate level, these are all
guarantees of the parent component.

A goal of compositional safety analysis is to reflect failures of leaf and intermediate
components at the top level. Not all guarantees must be valid to prove a parent level
guarantee. To this end, we wish to make a distinction between all guarantees of a
component and those that are required to prove parent guarantees. The subset π of P
are the guarantees that must be valid to prove the guarantees of a parent component.
These are the critical guarantees of a component.

Given that there may be multiple safety properties and multiple intermediate level
guarantees, we do not compose single fault trees per layer, but rather forests of trees.

Definition 3. A fault forest FF is a set of fault trees.

Definition 4. A fault forest FF is valid if and only if for all FT ∈ FF , the fault tree
FT is valid as per Definition 2.

The goal of this formalization is to show that the composition of fault forests results
in a valid fault forest. First, we assume we can derive all minimal counterexamples to
the proof of a property (or guarantee) at any layer of compositional assume-guarantee
analysis. Then we prove that after composition, the tree we obtain is a fault tree describ-
ing the system in the presence of faults. In Section 7.4, we discharge the assumption
and show how we derive a valid fault forest for each layer of analysis. Since a fault
forest is only valid with respect to the transition system from whence it came, we will
now iteratively extend the model with each composition step.

To prove each parent component guarantee πi ∈ π, a certain subset of child guar-
antees are required to be non-faulty, i.e., the associated activation literals are given a
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false valuation. We use the set NFV to denote the non-faulty variables of the children
components that are required to prove parent guarantees π. These non-faulty variables
are used in the relaxation of T ′ (Equation 2). This can be stated as (I, T ′(NFV )) ` π.

The violation of certain child guarantees may lead to the violation of a parent guar-
antee πi. The activation literals of the child are given a true valuation and are denoted
as FV : faulty variables. A set of faulty variables of the children components contain
the activation literals that correspond to leaves of a fault tree L with the root r = ¬πi
for parent guarantee πi. In other words, the fault tree FTi ∈ FF is associated with a
property πi. The non-faulty variables NFV contain the valid child guarantees that are
required to prove πi, and the fault tree FTi reflects the child guarantee violations that
may lead to the violation of πi.

Definition 5. A component is the tuple Comp(M,FF ,NFV , π) where:

• M : the model consisting of the set of all children properties Pc extended with
non-deterministic faults: gfi ∈ Pc where gfi = if afi then fi else gi,

• FF : the ordered set of fault trees for this component,

• NFV : the set of non-faulty variables, NFV ⊆ Pc,

• π: the ordered set of properties π ⊆ P such that (I, T ′(NFV )) ` π, i.e., all
properties π hold if the variables in NFV are given a true valuation.

and FT i ∈ FF corresponds to πi ∈ π for each of the i properties: the root of FTi is
¬πi.

Given the definition of a component, we now discuss what it means to compose
components. Each layer of composition moves iteratively closer to a monolithic model
by the enlargement of each set described in a component. To begin this iterative pro-
cess, we define the composition of fault forests.

To show that the composition of fault trees results in a valid fault tree, let φ be a
function φ : B ×B → B for Boolean equations B. We use this mapping to define the
composition of parent component fault tree FTp and child component fault tree FTc ,
where FT c = (rc,Lc) and FT p = (rp,Lp).

FT c ◦ FT p = φ(FT c,FT p) =

{
(rp,Lp(rc,Lc)) rc ∈ Lp

(rp,Lp) rc 6∈ Lp

(3)

where Lp(rc,Lc) is the replacement of afrc in Lp with (rc,Lc). Intuitively, each
of the violated guarantees has an associated activation literal. If an activation literal
is found in the parent leaf equation Lp, replace that activation literal (afrc ) with the
associated violated child guarantee (rc).

Let n be the number of properties for some parent component p and let m be the
number of properties for some child component c. Then the parent fault forest FF p is
a mapping FF p : S1 → B for S1 = {1, 2, . . . ,m} and the set of Boolean equations B
and FF c : S2 → B for S2 = {1, 2, . . . n}.
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Let φF be a function φF : seq(B) × seq(B) → seq(B) for finite sequences of
Boolean equations seq(B). We use this function to define the composition of parent
and child component fault forests FF p = {(rp1,Lp1), . . . , (rpm,Lpm)} and FF c =
{(rc1,Lc1), . . . , (rcn,Lcn)}. φF is a mapping such that for all i ∈ S1 and for all
j ∈ S2:

FF c ◦ FF p = φF (FF c,FF p) =

{
(rpi,Lpi(rcj ,Lcj)) rcj ∈ Lpi

(rpi,Lpi) rcj 6∈ Lpi

(4)

where Lpi(rcj ,Lcj) is the replacement of afrcij in Lpi with (rcj,Lcj).
Each literal in the formula Lp is a fault activation literal afi . If afi has its associated

guarantee gfi in the set of child roots rc, then the mapping φF will extend afi inLp with
the leaf formula of the child root gfi . The resulting fault forest is a sequence of fault
trees FF = {(rpk,Lk) : k = 1, . . . ,m}. The roots of the resulting forest are the same
roots as the parent forest while the leaf formulae may change based on replacement.

Figure 27: Sensor System Composition of Fault Trees

We return to the sensor system example to illustrate this mapping. Graphically,
this is represented in Figure 27. The top level (parent) component is defined as:
Compp(Mp,FF p,NFV p, πp) and FF p = {(¬P, af p ∨ af t ∨ af r)} where each ac-
tivation literal is associated with the unconstrained guarantees Gp, Gt, and Gr. The
child layer has a fault forest consisting of three fault trees, one for each subsystem.

The pressure subsystem fault tree is FT p = (¬Gp, (af p1∧af p2)∨(af p1∧af p3)∨
(af p2 ∧ af p3). The leaf formulae for each subsystem tree corresponds to pairwise
combinations of active sensor faults. We now show the composition of the pressure
subsystem child and top level parent fault trees.

The mapping φF iterates through each tree in the parent forest – in this case, we
have only one. Then for each parent tree it iterates through the Boolean literals in L.
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If there is a match between a child root and a parent leaf, the replacement is made.
We represent the unconstrained (violated) guarantee as ¬Gp and it is associated with
the fault activation literal af p. Thus, af p will be extended with {¬Gp, (af p1 ∧ af p2)∨
(af p1∧af p3)∨(af p2∧af p3)}. This extension is done for each leaf formula in Lp from
the parent fault forest. The end result of the replacement is easy to see in Figure 27.

We have provided the foundational definitions necessary to discuss what it means
to compose components. The composition of child component Compc and parent
component Compp is defined as:

Definition 6. Compc(Mc,FF c,NFV c, πc) ◦ Compp(Mp,FT p,NFV p, πp)
= Comp◦(M

′,FF ′,NFV ′, π′) where:

• M ′ =Mc ∪Mp is the iterative enlargement of the model by combining children
guarantees with parent guarantees,

• FF c ◦ FF p is the composed fault forest,

• NFV ′ = NFV c ∪NFV p is the set of non-faulty variables,

• π′ = πc ∪ πp are valid properties such that (I, T ′(NFV ′)) ` π′.

The enlargement of the model, M ′, iteratively flattens the composed layers by tak-
ing the union of children guarantees and parent guarantees. The fault forests are com-
posed into a set of fault trees describing the enlarged model. The non-faulty variables
from child and parent are combined into a set NFV ′ such that (I, T ′(NFV ′)) ` π′.

Given that in child and parent components, the properties π can be derived from the
non-faulty variables, we show that this relationship holds after composition. To state
(I, T ′(NFV )) ` π, we use the shorthand NFV ` π.

Theorem 2. If NFV c ` πc and NFV p ` πp, then NFV ′ ` π′

Proof. Assume antecedent. Let p′ ∈ π′. If p′ ∈ πc then NFV c ` p′ and likewise if
p′ ∈ πp, then NFV p ` p′. In either case, NFV c ∪NFV p = NFV ′ ` π′.

We work under the monotonicity assumption, commonly adopted in safety analysis,
that an additional fault cannot cancel the effect of existing faults. Given Definition 2,
we show that the composition of two fault trees results in a valid fault tree. We will
then extend this to show that the composition of two fault forests results in a valid fault
forest.

Lemma 1. If FT c and FT p are valid fault trees, then their composition φ(FT c,FT p)
is also a valid fault tree.

Proof. Assume the antecedent. Then (rc,Lc) is satisfiable with regard to the child
component transition system and all af ∈ Lc and rc are given true valuations.

Case 1: If the child root ¬gi does not have an associated afi ∈ Lp, then
φ(FT c,FT p) = FT p and the inclusion of the additional constraints from the child
transition system in Mc does not negate the effects of the faults in FTp. Thus, it is a
valid fault tree.
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Case 2: If the child root ¬gi has an associated afi ∈ Lp, then afi has a true valu-
ation. Given the mapping defined between guarantees and activation literals, replace-
ment of afi ∈ Lp with ¬gi preserves satisfiability. Furthermore, by the monotonicity
assumption, the addition of more constraints (af ∈ Lc) to the Boolean formula does
not change satisfiability in the extended transition system.

In all cases, φ(FT c,FT p) is a valid fault tree.

Lemma 2. If FFc and FFp are valid fault forests, then their composition φ(FFc ,FFp)
is also a valid fault forest.

Proof. Assume the antecedent. Then for all FTj ∈ FFp and FTi ∈ FFc , FTi and
FTj are valid fault trees as per Definition 4. For each iteration defined in the mapping
φF , apply Lemma 1 and the monotonicity assumption.

We have shown that a single layer of composition produces valid fault forests. To
perform this analysis across n layers of architecture we use induction to show that the
resulting fault forest is valid.

The notation φnF indicates the iterated function φF which is a successive application
of φF with itself n times. Assume the fault forest FF0 is obtained at the leaf level of
the architecture.

Theorem 3. If φnF (FFn−1 ,FFn) is a valid fault forest, then φn+1(FFn ,FFn+1 ) is a
valid fault forest.

Proof. Base case: Each fault forest per layer is valid by construction. By Lemma 2,
φF (FF0 ,FF1 ) is a valid fault forest.

Inductive assumption: Assume φnF (FFn−1 ,FFn) is a valid fault forest.

φn+1
F (FFn ,FFn+1 ) = ((FF0 ◦ FF1 ) ◦ FF 2) ◦ · · · ◦ FFn) ◦ FFn+1 ))

= φnF (FFn−1 ,FFn) ◦ FFn+1

By inductive assumption and Lemma 2, φn+1
F (FFn ,FFn+1 ) is a valid fault forest.

In this section, we have formalized the idea that fault trees (and forests) can be
composed without losing the validity of each composed tree. We proved that this can
be performed iteratively across an arbitrary number of layers. Now that we have the
formal foundations laid, we proceed towards the implementation.
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7.4 Implementation of the Formalism
To implement the formalism described in Section 7.3, we must compute minimal cut
sets per layer of analysis, transform them into their related Boolean formula, and com-
pose them. As previously described, Ghassabani et al. developed the all minimal in-
ductive validity core algorithm (All MIVCs) [39,40]. The All MIVCs algorithm gives
the minimal set of contracts required for proof of a safety property. If all of these sets
are obtained, we have insight into every proof for the property. Thus, if we violate at
least one contract from every MIVC set, we have in essence “broken” every proof. The
idea is that the hitting sets of all MIVCs produces the minimal cut sets.

Next we outline the formal background and toolsuite used in the implementation
and then describe the algorithm that is implemented in the safety annex for AADL.

7.5 Formal Background
JKind is an open-source industrial infinite-state inductive model checker for safety
properties [37]. Models and properties in JKind are specified in Lustre [42], a syn-
chronous dataflow language, using the theories of linear real and integer arithmetic.
JKind uses SMT-solvers to prove and falsify multiple properties in parallel. The JKind
model checker uses k-induction which unrolls the property P over k steps of the tran-
sition system.

Each step of induction is sent to an SMT (Satisfiability Modulo Theory)-solver to
check for satisfiability, i.e., there exists a total truth assignment to a given formula that
evaluates to true. If there does not exist such an assignment, the formula is consid-
ered unsatisfiable. A k -induction model checker utilizes parallel SMT-solving engines
at each induction step to glean information about the proof of a safety property. The
transition formula is translated into clauses such that satisfiability is preserved [33].
Expression of the base and induction steps of a temporal induction proof as SAT prob-
lems is straightforward and is shown below for step k:

I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk)

When proving correctness it is shown that the formulas are unsatisfiable, i.e., the
property P is provable. The idea behind finding an inductive validity core (IVC) for
a given property P is based on inductive proof methods used in SMT-based model
checking, such as k -induction and IC3/PDR [32, 48]. Generally, an IVC computation
technique aims to determine, for any subset S ⊆ T , whether P is provable by S . A
minimal subset that satisfies P is seen as a minimal proof explanation and called a
minimal inductive validity core.

Definition 7. Inductive Validity Core (IVC) [39]: S ⊆ T for (I, T ) ` P is an Inductive
Validity Core, denoted by IVC (P ,S ), iff (I ,S ) ` P .

Definition 8. Minimal Inductive Validity Core (MIVC) [40]: S ⊆ T is a minimal
Inductive Validity Core, denoted by MIVC (P ,S ), iff IVC (P ,S ) ∧ ∀Ti ∈ S. (I, S \
{Ti}) 6` P .

41



The constraint system consists of the constrained formulas of the transition system
and the negation of the property. The All MIVCs algorithm collects all minimal un-
satisfiable subsets (MUSs) of a constraint system generated from a transition system at
each induction step [4, 40].

Definition 9. A Minimal Unsatisfiable Subset (MUS) M of a constraint system C is a
set M ⊆ C such that M is unsatisfiable and ∀c ∈M : M \ {c} is satisfiable.

The MUSs are the minimal explanation of the infeasibility of this constraint system;
equivalently, these are the minimal sets of model elements necessary for proof of the
safety property.

Returning to our running example, this can be illustrated by the following. Given
the constraint system C = {Gp, Gt, Gr,¬P}, a minimal explanation of the infeasibil-
ity of this system is the set {Gp, Gt, Gr, }. If all three guarantees hold, then P (the
disjunction of these guarantees) is provable.

In the case of an UNSAT system, we may ask: what will correct this unsatisfiabil-
ity? A related set answers this question:

Definition 10. A Minimal Correction Set (MCS)M of a constraint systemC is a subset
M ⊆ C such that C \M is satisfiable and ∀M ′ ⊂M : C \M ′ is unsatisfiable.

An MCS can be seen to “correct” the infeasibility of the constraint system by the
removal from C the constraints found in an MCS. Returning to the PWR example, the
MCSs of the constraint system C are MCS 1 = {Gt}, MCS2 = {Gp}, MCS3 =
{Gr}. If any single guarantee is violated, a shut down from that subsystem may not
get sent when it should and the safety property P will be violated. This corresponds
exactly to the definition of a minimal cut set.

For the following definitions, we remind readers of the extended transition system
defined in Equation 2 of Section 7.3 and that the elements of T ′ are the set GF ∪ AF
for potentially faulty guarantees GF and activation literals AF . We use the notation
af → {true, false} to indicate a constraint on the literal af .

Definition 11. Given a constraint system C, a cut set S of a top level event ¬P is a set
S ⊆ AF ⊆ C such that ∀af ∈ S, af → {true} and S ∪ {¬P} is satisfiable in C.

Intuitively, a cut set is a true valuation for some subset of fault activation literals
within a constraint system containing such that the constraint system is satisfiable given
those true valuations and the violation of a safety property.

Definition 12. A cut set S is minimal if and only if ∀af ∈ S, S \ {af } ∪ {¬P} is
unsatisfiable.

Our approach in computing minimal cut sets through the use of inductive valid-
ity cores is to supply activation literals constrained to be false to the algorithm. The
resulting MCSs consist of elements ¬af i. The removal of this constraint from the con-
straint system results in non-deterministically true activation literals. By the definition
of an MCS, we know that C \ MCS is satisfiable. This removal of constraints from
C removes the false constraint from each element in the MCS. Liffiton et. al showed
that any subset of a satisfiable set is also satisfiable [51], so we know that for set S
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consisting of elements of MCS with constraints removed, S ∪ {¬P} is also satisfiable.
This is the definition of a cut set. Minimality comes directly from the definition of a
minimal correction set.

A duality exists between the MUSs of a constraint system and the MCSs as estab-
lished by Reiter [63]. This duality is defined in terms of Minimal Hitting Sets (MHS).

Definition 13. A hitting set of a collection of sets A is a set H such that every set in A
is “hit” by H; H contains at least one element from every set in A.

Every MUS of a constraint system is a minimal hitting set of the system’s MCSs,
and likewise every MCS is a minimal hitting set of the system’s MUSs. This is noted
in previous work [30, 51] and the proof of such is given by Reiter (Theorem 4.4 and
Corollary 4.5) [63].

7.6 Toolsuite Used for Implementation
Architecture Analysis and Design Language We are using the Architectural Anal-
ysis and Design Language (AADL) to construct system architecture models of
performance-critical, embedded, real-time systems [2]. Language annexes to AADL
provide a rich set of modeling elements for various system design and analysis needs,
and the language definition is sufficiently rigorous to support formal analysis tools that
allow for early fault detection.

Assume Guarantee Reasoning Environment The Assume Guarantee Reasoning
Environment (AGREE) is a tool for formal analysis of behaviors in AADL models and
supports compositional verification [29]. It is implemented as an AADL annex and is
used to annotate AADL components with formal behavioral contracts. Each compo-
nent’s contracts includes assumptions and guarantees about the component’s inputs and
outputs respectively. AGREE translates an AADL model and the behavioral contracts
into Lustre [42] and then queries the JKind model checker to conduct the back-end
analysis [37].

Safety Annex for AADL The Safety Annex for AADL provides the ability to rea-
son about faults and faulty component behaviors in AADL models [68, 72]. In the
safety annex approach, AGREE is used to define the nominal behavior of system com-
ponents, faults are introduced into the nominal model, and the JKind model checker is
used to analyze the behavior of the system in the presence of faults.

7.7 Algorithm Implementation in the Safety Annex
In the formalism, any guarantee in the model had an associated fault activation literal
and could be unconstrained. In the implementation, we rely on the fault model created
in the safety annex to dictate which output constraints are modified (i.e., which guaran-
tees can be violated) and how they are modified. A user may define multiple, single, or
no faults on a single output. Each explicit fault defined in the safety annex is added to
the Lustre program as are associated fault activation literals [68, 72]. This corresponds
to the fi and af i described in Section 7.3.

The All MIVCs algorithm requires specific equations in the Lustre model to be
flagged for consideration in the analysis; these we call IVC algorithm elements. All
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Figure 28: Illustration of Two Layers of Analysis

equations in the model can be used as IVC algorithm elements or one can specify di-
rectly the equations to consider. In this implementation, the IVC algorithm elements
are added differently depending on the layer. In the leaf architectural level, fault acti-
vation literals are added to the IVC algorithm elements and are constrained to false. In
middle or top layers, supporting guarantees are added. This is shown in Figure 28.

The figure shows an arbitrary architecture with two analysis layers: top and leaf.
The top layer analysis adds G as IVC algorithm element; the leaf layer analysis adds
f1 and f2.

A requirement of the hitting set algorithm is that to find all MCSs, all MUSs must
be known. Ghassabani et al. [40] showed that finding all MIVCs is as hard as model
checking. It is a requirement of this analysis that all MIVCs are found. Once the MIVC
analysis is complete for a property at a given layer, a hitting set algorithm is used to
generate the related MCSs [38]. Depending on the layer of analysis, the MCSs contain
either guarantees (mid layer) or fault activation literals (leaf layer).

Algorithm 2: Compose Results

1 R← All MCSs(P) = ∨ni=1MCS i

2 where MCS i = ∧mj=1gfj
3 Function resolve(R):
4 for ∀ OR-node in R do
5 for ∀gfj in OR-node do
6 if ∃MCS(gfj) then
7 R← replace gfj in R with All MCSs(gfj );
8 resolve (All MCSs(gfj ));
9 else

10 R← replace gfj in R with afj ;

11 convert R to DNF

The composition of these results is performed top down and shown in Algorithm 2.
For each guarantee found in an MCS, a replacement is made with the guarantee’s own
MCSs. This is done recursively until all replacements have been made (line 7, 8 of
Algorithm 2). If on the other hand there are no MCSs for a given guarantee, that
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guarantee is replaced by its associated fault activation literal (line 10). At the leaf level
of analysis, no guarantees have associated MCSs (there are no children properties)
and thus reaches the end of recursion. At that time, the formula is converted back
into disjunctive normal form of fault activation literals to finish the translation into the
traditional fault tree (line 11).

Theorem 4. Algorithm 2 terminates

Proof. No infinite sets are generated by the All MIVCs or minimal hitting set algo-
rithms [40, 56]; therefore, for all gi in the model, All MCSs(gi) is a finite set and
MCS (gi) is a finite set. Each call to Resolve processes a guarantee that was not pre-
viously resolved, and for all gi at the leaf layer of analysis, All MCSs((gi) = ∅. Given
that there are finite layers in a model, the algorithm terminates.

Given that the growth of the DNF formula can grow quite quickly in the worst case,
we implemented strategies to prune the size of the intermediate fault trees.

7.8 Pruning to Address Scalability
The safety annex provides the capability to specify a type of verification in what is
called a fault hypothesis statement. These come in two forms: maximum number of
faults or probabilistic analysis. Algorithm 2 is the general approach, but the implemen-
tation changes slightly depending on which form of analysis is being performed. This
pruning improves performance and diminishes the problem of combinatorial explosion
in the size of minimal cut sets for larger models.

Guarantees with no associated faults If a guarantee is found in a minimal cor-
rection set and no fault has been defined in the model that can violate it, this minimal
correction set (and hence the entire subtree) is pruned.

Max n faults analysis The max n fault hypothesis in the safety annex restricts
the number of faults that can be independently active simultaneously. This statement
restricts the cardinality of minimal cut sets generated to n. If the number of elements
in an MCS exceeds the threshold of the hypothesis statement, that MCS is eliminated
from consideration and its subtree is pruned.

Probabilistic analysis pruning A probabilistic hypothesis statement restricts the
cut sets by use of a probabilistic threshold. Assuming independence between faults,
any cut sets with combined probability higher than the given probabilistic threshold
are removed from consideration. The allowable combinations of faults are calculated
before Algorithm 2 begins; this allows for dynamic pruning of minimal correction
sets. If the fault activation literals within an MCS are not a subset of any allowable
combination, that MCS is pruned from the formula.

To access the algorithm implementation or example models, see the repository [69].

8 Related Work
A model-based approach for safety analysis was proposed by Joshi et. al in [45–47].
In this approach, a safety analysis system model (SASM) is the central artifact in the
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safety analysis process, and traditional safety analysis artifacts, such as fault trees, are
automatically generated by tools that analyze the SASM.

The contents and structure of the SASM differ significantly across different concep-
tions of MBSA. We can draw distinctions between approaches along several different
axes. The first is whether they propagate faults explicitly through user-defined prop-
agations, which we call failure logic modeling (FLM) or through existing behavioral
modeling, which we call failure effect modeling (FEM). The next is whether models
and notations are purpose-built for safety analysis vs. those that extend existing system
models (ESM).

For FEM approaches, there are several additional dimensions. One dimension in-
volves whether causal or non-causal models are allowed. Non-causal models allow
simultaneous (in time) bi-directional error propagations, which allow more natural ex-
pression of some failure types (e.g. reverse flow within segments of a pipe), but are
more difficult to analyze. A final dimension involves whether analysis is composi-
tional across layers of hierarchically-composed systems or monolithic. Our approach
is an extension of AADL (ESM), causal, compositional, mixed FLM/FEM approach.

Tools such as the AADL Error Model Annex, Version 2 (EMV2) [36] and HiP-
HOPS for EAST-ADL [26] are FLM-based ESM approaches. As previously discussed,
given many possible faults, these propagation relationships require substantial user ef-
fort and become more complex. In addition, it becomes the analyst’s responsibility to
determine whether faults can propagate; missing propagations lead to unsound analy-
ses. In our Safety Annex, propagations occur through system behaviors (defined by the
nominal contracts) with no additional user effort.

Closely related to our work is the model-based safety assessment toolset called
COMPASS (Correctness, Modeling project and Performance of Aerospace Sys-
tems) [14]. COMPASS is a mixed FLM/FEM-based, causal compositional tool suite
that uses the SLIM language, which is based on a subset of AADL, for its input mod-
els [15, 20]. In SLIM, a nominal system model and the error model are developed
separately and then transformed into an extended system model. This extended model
is automatically translated into input models for the NuSMV model checker [27, 57],
MRMC (Markov Reward Model Checker) [49, 55], and RAT (Requirements Analysis
Tool) [61]. The safety analysis tool xSAP [10] can be invoked in order to generate
safety analysis artifacts such as fault trees and FMEA tables [11]. COMPASS is an
impressive tool suite, but some of the features that make AADL suitable for SW/HW
architecture specification: event and event-data ports, threads, and processes, appear
to be missing, which means that the SLIM language may not be suitable as a general
system design notation (ESM).

SmartIFlow [43] is a FEM-based, purpose-built, monolithic non-causal safety anal-
ysis tool that describes components and their interactions using finite state machines
and events. Verification is done through an explicit state model checker which returns
sets of counterexamples for safety requirements in the presence of failures. SmartI-
Flow allows non-causal models containing simultaneous (in time) bi-directional error
propagations. On the other hand, the tools do not yet appear to scale to industrial-sized
problems, as mentioned by the authors [43]: “As current experience is based on mod-
els with limited size, there is still a long way to go to make this approach ready for
application in an industrial context”.

46



The Safety Analysis and Modeling Language (SAML) [41] is a FEM-based,
purpose-built, monolithic causal safety analysis language. System models constructed
in SAML can be used for both qualitative and quantitative analyses. It allows for the
combination of discrete probability distributions and non-determinism. The SAML
model can be automatically imported into several analysis tools like NuSMV [27],
PRISM (Probabilistic Symbolic Model Checker) [50], or the MRMC probabilistic
model checker [49].

AltaRica [9,60] is a FEM-based, purpose-built, monolithic safety analysis language
with several dialects. There is one dialect of AltaRica which use dataflow (causal)
semantics, while the most recent language update (AltaRica 3.0) uses non-causal se-
mantics. The dataflow dialect has substantial tool support, including the commercial
Cecilia OCAS tool from Dassault [7]. For this dialect the Safety assessment, fault tree
generation, and functional verification can be performed with the aid of NuSMV model
checking [16]. Failure states are defined throughout the system and flow variables are
updated through the use of assertions [6]. AltaRica 3.0 has support for simulation and
Markov model generation through the OpenAltaRica (www.openaltarica.fr) tool suite.

Formal verification tools based on model checking have been used to automate the
generation of safety artifacts [10, 16, 22]. This approach has limitations in terms of
scalability and readability of the fault trees generated. Work has been done towards
mitigating these limitations by the scalable generation of readable fault trees [18].

Minimal cut sets generated by monolithic analysis look at explicitly defined faults
throughout the architecture and attempt through various techniques to find the minimal
violating set for a particular property. We outline some of the common monolithic
approaches to minimal cut set generation in this section.

The representation of Boolean formulae as Binary Decision Diagrams (BDDs) was
first formalized in the mid 1980s [25] and was extended to the representation of fault
trees not many years later [62]. After this formalization, the BDD approach to FTA
provided a new approach to safety analysis. The model is constructed using a BDD,
then a second BDD - usually slightly restructured - is used to encode minimal cut
sets. Unfortunately, due to the structure of BDDs, the worst case is exponential in size
in terms of the number of variables [25, 62]. In industrial sized systems, this is not
realistically useful.

SAT based computation was introduced to address scalability problems in the
BDD approach; initially it was used as a preprocessing step to simplify the deci-
sion diagram [17], but later was extended to allow for all minimal cut set process-
ing and generation without the use of BDDs [13]. Since then, much research has
focused on leveraging the power of model checking in the problems of safety assess-
ment [8, 13, 23, 67, 68, 74].

Bozzano et al. formulated a Bounded Model Checking (BMC) approach to the
problem by successively approximating the cut set generation and computations to al-
low for an “anytime approximation” in cases when the cut sets were simply too large
and numerous to find [13]. These algorithms are implemented in xSAP [10] and COM-
PASS [11].

The model based safety assessment tool AltaRica 3.0 [59] performs a series of pro-
cessing to transform the model into a reachability graph and then compile to Boolean
formula in order to compute the minimal cut sets. Other tools such as HiP-HOPS [58]
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have implemented algorithms that follow the failure propagations in the model and
collect information about safety related dependencies and hazards. The Safety Anal-
ysis Modeling Language (SAML) [41] provides a safety specific modeling language
that can be translated into a number of input languages for model checkers in order to
provide model checking support for minimal cut set generation.

To our knowledge, a fully compositional approach to generating fault forests or
minimal cut sets has not been introduced.

9 Conclusion
We have developed an extension to the AADL language with tool support for for-
mal analysis of system safety properties in the presence of faults. Faulty behavior is
specified as an extension of the nominal model, allowing safety analysis and system
implementation to be driven from a single common model. Both symmetric and asym-
metric faulty behaviors are supported. This new Safety Annex leverages the AADL
structural model and nominal behavioral specification (using the AGREE annex) to
propagate faulty component behaviors without the need to add separate propagation
specifications to the model. Implicit error propagation enables safety engineers to in-
ject failures/faults at component level and assess the effect of behavioral propagation
at the system level. It also supports explicit error propagation that allows safety en-
gineers to describe dependent faults that are not easily captured using implicit error
propagation. Generation of minimal cut sets collects all minimal set of fault combi-
nations that can cause violation of the top level properties. For more details on the
tool, models, and approach, see the technical report [70] and other publications from
this research [68, 71, 72]. To access the tool plugin, users manual, or models, see the
repository [69].
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