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This paper describes a process utilizing computational fluid dynamics experiments to de-
velop a reduced-order, integrated propulsion-airframe aerodynamic model for a lift+cruise
electric vertical takeoff and landing (eVTOL) reference aircraft concept. eVTOL configura-
tions exhibit aerodynamic characteristics of both fixed-wing and rotary-wing aircraft as well
as complex phenomena, such as propulsion-airframe interactions. Consequently, conventional
aircraft aerodynamic modeling strategies require modification when applied to these unique
aircraft. A novel aero-propulsive modeling approach using design of experiments techniques
and computational fluid dynamics simulations is postulated for modeling a lift+cruise aircraft
configuration. Aero-propulsive models are developed throughout the operational flight enve-
lope to enable continuous flight dynamics simulations from hover through forward flight. The
model adequacy is assessed using validation data acquired separately from data used to identify
the model and indicates that the models have sufficient predictive capability. Research find-
ings are presented with a discussion of unique lift+cruise aircraft aerodynamic characteristics
and practical strategies to inform future aero-propulsive modeling and simulation efforts for
eVTOL aircraft.

Nomenclature

1 = wingspan, ft
�G , �H , �I = dimensionless body-axis force coefficients
�; , �<, �= = dimensionless body-axis moment coefficients
2̄ = mean aerodynamic chord, ft
� = rotor and propeller diameter, ft
4∗ = normalized residual
� = advance ratio
!, " , # = body-axis aero-propulsive moments, ft-lbf
= = rotor and propeller rotational speed, revolutions/s
?, @, A = body-axis angular velocity components, rad/s
@̄ = freestream dynamic pressure, lbf/ft2
( = wing area, ft2
D, E, F = body-axis translational velocity components, ft/s
+ = freestream airspeed, ft/s
- , . , / = body-axis aero-propulsive forces, lbf
U = angle of attack, rad or deg
V = angle of sideslip, rad or deg
d = air density, slug/ft3

Superscripts
) = transpose
¤ = time derivative
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I. Introduction

Electric vertical takeoff and landing (eVTOL) aircraft enabling future Urban Air Mobility (UAM) transportation
missions are gaining interest in the aerospace industry. UAM vehicles require precise hover and efficient cruise

capabilities as well as the ability to safely transition between flight regimes. eVTOL aircraft are a hybrid between
traditional fixed-wing and rotary-wing aircraft utilizing certain attributes of each type of vehicle. Fixed-wing aircraft
contribute longer endurance, better efficiency, and the ability to operate at high speeds. Rotorcraft have the ability
to takeoff and land vertically, hover, and precisely maneuver in confined areas. eVTOL aircraft also uniquely utilize
distributed electric propulsion technology, which has broadened the traditional aeronautical vehicle design space and
resulted in numerous novel vehicle designs [1, 2].

While eVTOL vehicles’ hybrid configurations are convenient from an operational standpoint [3], there are many
research areas to be addressed prior to introduction of operational eVTOL vehicles for a UAM mission [4]. eVTOL
vehicle technical challenges include airworthiness certification, air traffic management, pilot-operator interface, handling
qualities, simplified vehicle operations, contingency management, vehicle autonomy, and flight controls strategies. One
important enabling tool for many eVTOL research efforts is an accurate vehicle flight dynamics model, but the current
modeling state-of-the-art for eVTOL vehicles heavily relies on low-fidelity conceptual design tools, such as NDARC [5]
and VSPAero [6]. Consequently, development of high-fidelity aerodynamic models for eVTOL aircraft is a crucial need,
however, eVTOL-specific aerodynamic model strategies are largely unexplored. Thus, development of high-fidelity
aerodynamic models for eVTOL configurations is a new, critical area of research where novel aerodynamic modeling
strategies are needed to appropriately represent pertinent aerodynamic phenomena specific to these unique vehicles.

eVTOL aircraft aerodynamic modeling is a challenge due to several vehicle attributes which hamper model
development. These features include many control surfaces and propulsors, propulsion-airframe interactions, propulsor-
propulsor interactions, high-incidence angle propulsor aerodynamics, vehicle instability, rapidly changing aerodynamics
through transition, and large flight envelopes that need to be characterized by a global aerodynamic model. Since
propulsion aerodynamics, airframe aerodynamics, and propulsion-airframe interactional aerodynamics are generally
highly coupled for eVTOL aircraft, their aerodynamic models represent a combination of propulsion and airframe
aerodynamics characteristics. For this reason, eVTOL aircraft aerodynamic models can also be referred to as aero-
propulsive models. Most past eVTOL modeling work has used analytical and semi-empirical models to develop vehicle
models for research applications; however, these are low-fidelity methods which drastically simplify highly complex
aerodynamics. Ref. [7] highlights many of these efforts for a variety of different hybrid vehicles including tilt-wing,
tilt-rotor, tail sitters, and dual-propulsion system configurations. The subset of eVTOL aircraft of interest in this work
are dual-propulsion system vehicles where different propulsors are used for vertical and forward flight. This vehicle
design is currently being referred to in literature as the lift+cruise configuration type [2].

Two predecessor aircraft to the vehicle studied in this work are subscale, tilt-wing, distributed electric propulsion,
vertical takeoff and landing aircraft called the GL-10 [8] and LA-8 [9]. Several different scaled variants of the GL-10
and LA-8 vehicles were developed and tested to enable research in areas such as aerodynamic modeling [10–15], flight
controls [16, 17], and flight testing [18, 19]. The complexity associated with these aircraft inspired an ongoing effort to
develop a process to efficiently develop aerodynamic models for arbitrarily complex aerospace vehicles, referred to as
Rapid Aero Modeling or RAM [20–22]. The RAM process utilizes design of experiments (DOE) theory [23] and a
unique sequential modeling algorithm to develop aerodynamic models meeting a user-defined desired level of fidelity.
DOE in this context also includes the field of response surface methodology (RSM). Model development strategies and
lessons learned from these previous eVTOL aircraft studies, as well as the RAM process, informed the development of
the aero-propulsive models presented in this work.

This work builds on previous eVTOL aircraft modeling research to develop a full-envelope, high-fidelity aero-
propulsive model for the NASA Lift+Cruise aircraft concept [2]. Computational fluid dynamics (CFD) simulations are
treated as an experimental data source, similar to static wind tunnel testing, to identify reduced-order response surface
models sufficient for flight dynamics simulations. Consequently, the following discussion focuses on methods used to
develop mathematical models from experimentally-derived data, termed aircraft system identification [24]. eVTOL
vehicles exhibit aerodynamic characteristics similar to both fixed-wing and rotary-wing aircraft, but system identification
approaches used for either type of vehicle type do not independently translate to modeling eVTOL vehicles [13]. This
manuscript seeks to provide a thorough development and assessment of a new computational strategy for eVTOL aircraft
modeling that can be applied prior to development of a physical vehicle.

The paper is organized as follows: Section II presents pertinent background information informing modeling
strategies and introduces the experimental aircraft. Section III provides a synopsis of the RAM algorithm used for
model development with Sec. IV providing more details on the methods used for model identification. The CFD data
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gathering effort is described in Sec. V. Postulation of lift+cruise vehicle-specific aero-propulsive modeling strategies are
described in Sec. VI followed by sample modeling results presented in Sec. VII. Section VIII highlights flight dynamics
simulation considerations and overall conclusions are summarized in Sec. IX.

II. Background
This section presents an overview of experimental fixed-wing and rotary-wing aircraft modeling techniques, which

helps guide the development of the lift+cruise vehicle modeling approach described in the remainder of the paper. The
section concludes with a description of the conceptual NASA Lift+Cruise aircraft.

A. Fixed-Wing and Rotary-Wing System Identification Approaches
Fixed-wing aircraft system identification techniques are well-developed for standard problems and have been

applied successfully to numerous aircraft configurations [25, 26]. Aerodynamic modeling for fixed-wing aircraft
is conventionally performed by developing data tables or functional representations of dimensionless aerodynamic
force and moment coefficients as a function of aircraft states and controls. For subsonic aircraft, the dimensionless
aerodynamic force and moment coefficients are conventionally expressed as a function of angle of attack U, angle of
sideslip V, dimensionless angular rates ?̂, @̂, Â, and control surface deflections, such as elevator X4, aileron X0, and
rudder XA positions. The dimensionless forces and moments are termed response variables, or dependent variables;
the airflow angles, angular rates, and control surface deflections are termed the explanatory variables. Models may be
developed using computational methods, wind tunnel testing, or flight testing. The dimensionless force and moment
coefficients in the aircraft body-axes are defined as
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where @̄ = 1
2 d+

2 is the freestream dynamic pressure. The forces are also commonly expressed in the stability-axes for
modeling where lift coefficient �! and drag coefficient �� replace �G and �I .

Rotorcraft system identification follows different conventions from fixed-wing modeling, but is also well defined in
the literature for helicopters and tilt-rotor variants [27]. Contrary to fixed-wing aircraft system identification, rotorcraft
models generally rely more heavily on computational data or flight test data because wind tunnel testing is precluded by
difficulties in scaling subscale rotary-wing vehicles and facility limitations [28]. Body-axis force and moment parameters
are also generally estimated in their dimensional form due to the differences in scaling between rotor and fuselage
aerodynamics. Stability-axes and wind-axes become undefined in hover, so modeling is generally only performed in
the body-axes for rotorcraft. Rotorcraft system identification efforts most often develop linear models at a reference
flight condition. These point models are only valid near the flight condition where they are identified and assume that
complex rotorcraft aerodynamics can be represented in coupled, linear differential equations. The explanatory variables
used for estimation are generally body-axis velocity components D, E, F, angular rates ?, @, A , pilot control inputs, and
rotor states, such as flapping, lead-lag, inflow, coning, engine dynamics, etc., depending on the design of the vehicle and
the desired bandwidth of the developed model. Formulation in terms of body-axis velocity components, as opposed to
airflow angles U and V, allows the state variables to be defined in hover and reflects the fact that fuselage angle of attack
and angle of sideslip are less physically meaningful for describing rotorcraft aerodynamics. Models are commonly
expressed in the form of a transfer function or state-space model with added time delay parameters to account for
unmodeled higher-order dynamics [27].

Multirotor system identification has become a recent area of research interest with the growing availability
and capabilities of electrically-powered unmanned aerial vehicles (e.g., see Refs. [29–32]). Multirotor modeling
methodologies generally follow closely to rotorcraft system identification techniques, with the exception that certain
rotor-specific states become less significant because the rotors generally have a smaller diameter, higher rigidity, and
do not use cyclic pitch controls. Airframe-propulsion interactions can account for a significant portion of multirotor
aerodynamic forces and moments [33], but are often ignored or lumped into quasi-steady, linear stability derivatives.
The aerodynamic characteristics of lift+cruise aircraft configurations are generally a hybrid between multirotor and
fixed-wing aircraft, depending on the operational flight mode.
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B. Aircraft
The modeling approach presented in this paper for lift+cruise aircraft is described in the context of a recent NASA

reference vehicle configuration introduced in Ref. [2]. This vehicle concept is referred to simply as “Lift+Cruise,” where
capitalization is used to distinguish from the generic “lift+cruise” configuration type. The purpose of the reference
aircraft is to allow development of UAM enabling technologies, while also being impartial to prominent designs in
industry.

The Lift+Cruise, pictured in Fig. 1, is a full-scale, vertical takeoff and landing, distributed propulsion aircraft
concept with eight fixed-pitch lifting rotors and one variable-pitch, rear-mounted pusher propeller. The lifting rotors
are intended to be used sparingly for takeoff, landing, and low-speed transition due to their high energy consumption.
In high-speed cruise flight, the aircraft is only propelled by the pusher propeller and the two-bladed lifting rotors are
aligned with oncoming airflow to minimize drag.

Fig. 1 Schematic of the NASA Lift+Cruise reference
vehicle concept.
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Fig. 2 Lift+Cruise propulsor and control surface def-
initions.

The conceptual Lift+Cruise variant studied for this research effort includes 14 total available control effectors
including the nine aforementioned propulsors, two aileron surfaces, two elevator surfaces, and a rudder. A diagram of
the propulsors and control surface definitions is shown in Fig. 2. The control surface deflections are denoted X0! for
left aileron, X0' for right aileron, X4! for left elevator, X4' for right elevator, and XA for rudder. Aileron and elevator
deflections are defined positive trailing edge downward and rudder deflection is defined positive trailing edge left. The
lifting rotor rotational speeds are denoted =1, =2, ..., =8. Rotors 2, 3, 6, and 7 rotate clockwise and rotors 1, 4, 5, and
8 rotate counterclockwise, as viewed from the top. The pusher propeller rotational speed is denoted =9, and rotates
clockwise as viewed from the rear.

III. RAM Algorithm
The Rapid Aero Modeling (RAM) algorithm is an efficient, statistically rigorous aircraft testing and model

development approach that has been applied to both wind tunnel testing [21] and computational experiments [22].
RAM utilizes DOE and system identification theory to execute a unique, automated modeling process that continuously
informs the user of modeling progress and, if desired, allows user intervention at certain stages. The RAM algorithm
has been implemented into software as a collection of MATLAB scripts that has been used to develop aerodynamic
models for several different aircraft. A flowchart illustrating the RAM process is shown in Fig. 3.

The RAM algorithm is initiated by providing information specific to the particular aircraft modeling effort including
the explanatory variables, response variables, and a desired prediction error threshold. The algorithm then generates
test matrices from a library of DOE test blocks. For each different number of experimental test factors, a series of
five DOE test blocks are available to acquire the data necessary to identify increasingly complex aerodynamic models.
Original block design was accomplished with the aid of Design-Expert®, a commercially available statistical software
package.∗ The blocks are as follows: (1) face-centered design (FCD), (2) nested FCD [34], (3) I-optimal design for
quadratic models, (4) I-optimal design for up to cubic models, and (5) I-optimal design used as validation data. Blocks
(1) and (2) are each minimum run resolution V, face-centered, central composite designs. Minimum run resolution V
fractional factorial designs contain the minimum number of test points to support estimation of linear and two-factor

∗Information available online at https://www.statease.com/software/design-expert/ [accessed May 2021]
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PE Supports Rapid Aero Modeling (RAM) Process

• RAM provides an automated, efficient, statistically rigorous, testing process.

• Fidelity levels defined for each aero coefficient in terms of prediction error.

• First applications to static wind-tunnel (RAM-T) and computational experiments (RAM-C).
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Fig. 3 RAM process flowchart.

interaction model terms. The nested FCD [34] augments the conventional FCD to provide greater data density within
the factor space and allows estimation of pure cubic model terms. The subsequent I-optimal blocks are designed to
minimize the integrated prediction variance over the range of factors, which reduces prediction error for the identified
models [23]. Each I-optimal design augments the designs from previous blocks to sequentially improve the model
and avoid duplicating previously tested combinations of factor settings. Blocks (3) and (4) are I-optimal designs
which include the number of points required to fit a model for the specified complexity if the blocks were designed
independently. The Block (5) I-optimal design contains 75 additional validation test points, which has been found
to provide a good estimate of prediction error while remaining a modest number of test points. Figure 4 shows a
two-dimensional slice of an experiment with 17 test factors; Fig. 4a shows Blocks 1-2 and Fig. 4b shows Blocks 3-5.
Although “Coded Variable 1” and “Coded Variable 2” are shown in the figure, similar plots would be obtained for other
test variables and the variables would be converted into engineering units before executing testing.

(a) Blocks 1 and 2 (FCD and nested FCD designs) (b) Blocks 3, 4, and 5 (I-optimal and validation designs)

Fig. 4 Two-dimensional slice of 17-factor RAM DOE test blocks.

After data collection for each block, the RAM algorithm generates new aerodynamic models using stepwise
regression [24, 35] or multivariate orthogonal function modeling [24, 36] for model structure identification and
ordinary least-squares regression for parameter estimation. The candidate regressor complexity reflects the current
amount of available data, with more complex models becoming identifiable when additional data are available. The
model identification methodology will be discussed further in the next section, along with special considerations for
reduced-order modeling using computational testing.

After a candidate aerodynamic model has been developed for a given amount of data, the model adequacy is tested
using a prediction error test to determine if the user’s desired level of modeling fidelity has been achieved. Regression
methods minimize the summation of squared modeling residuals between modeled and measured response, so inspection
of modeling fit metrics and modeling residuals alone does not provide information about the model predictive capability.
Assessment of model performance using validation data not used for modeling provides a more reliable estimate of
model prediction accuracy. Validation assessment can be performed by analyzing the residuals between the measured
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response z and predicted response ŷ for the same explanatory variable inputs. Comparison of modeling and prediction
residuals is useful because a significant increase in the spread of prediction residuals compared to modeling residuals is
a way of diagnosing an improper model fit. Residuals can be given further interpretability by normalization. The error
normalization metric used in this work is the range of response variable measurements used to develop the model. The
normalized residual vector is defined as:

e∗ =
z − ŷ

range(z) (2)

The critical binomial analysis of residuals prediction error metric (4∗2E ) is most often used to quantify the aggregate
prediction error in the RAM algorithm. The process of computing 4∗2E is shown in Ref. [13] and further explanation
of critical binomial analysis of residuals and justification for using this metric to assess prediction error is given in
Ref. [37]. Alternatively, the normalized root-mean-square error (NRMSE),

NRMSE =
1

range(z)

√
(z − ŷ)) (z − ŷ)

#
(3)

for validation data can be used to quantify the aggregate prediction error. The prediction error is calculated for each
response variable to quantify model performance and is compared to the user-defined level of modeling fidelity. If
each response passes the prediction error test, then the models are designated as complete and the modeling process
ends with the RAM algorithm generating an output file containing the final aerodynamic model. If any response fails
the prediction error test, the RAM process continues by acquiring more data and fitting new models. If additional test
blocks are available for a particular modeling region, the algorithm will send the next test block to the test facility for
data acquisition. If all designed test blocks have been exhausted, the RAM algorithm partitions the modeling space
for a user-specified test factor and new data is collected for each new region. Modeling can also be ceased by user
intervention if the models are deemed sufficient by, for example, only failing the prediction error test by a small margin
or only failing the prediction error test in certain response variables.

Model partitioning is a critical step in the RAM process for modeling complex vehicle aerodynamics over a large
factor range. For many aerodynamic modeling studies, there can be nonlinear behavior that is difficult to adequately
capture with a single polynomial fit. In order to sufficiently describe this complexity and reduce overall modeling error,
the RAM algorithm is designed to partition the modeling space and develop new models over a smaller range of certain
factors. The RAM splitting process is demonstrated in Fig. 5a for a single test factor, where local models are defined
on each interval, or region, shown in the figure. Passing regions are shown in green and failing regions are shown in
red. When the identified models in a certain region fail to meet the prediction error threshold after all test blocks have
been completed, the region is split, new data is collected, and new models are fit until the desired prediction error is
achieved. Upon obtaining passing modeling regions over the full modeling space, the modeling process is deemed
complete. However, the individual models covering a subset of the factor space usually do not perfectly intersect with
neighboring models at their boundaries, which creates a discontinuity between modeling regions. This is an undesirable
attribute for simulation and controls applications. In order to blend neighboring models, the RAM software utilizes
data from regions on both sides of the model intersection to create additional blending models spanning over the local
intersections. This process is reflected in Fig. 5b, where the set of passing region models are shown in green and the
models used for blending are shown in blue. The regions of overlap between local models are then smoothly combined
using a quintic transition polynomial weighting function, following the procedure described in Ref. [15]. This model
blending approach allows for a globally smooth response surface over the whole modeling space.

(a) Example RAM region splitting (b) Example RAM region blending

Fig. 5 Demonstration of RAM splitting and model blending logic, with local models defined on each interval.
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IV. Model Identification Methodology
The following subsections provide an overview of the model structure determination and parameter estimation

methods utilized within the RAM algorithm. A comprehensive description of these techniques is given in Ref. [24].
The model identification methods used in the RAM software were adapted from the System IDentification Programs for
AirCraft (SIDPAC) software toolbox.† SIDPAC is a collection of programs written in MATLAB® that can be tailored
for a particular modeling effort. This flexibility was beneficial while developing the RAM software.

A. Parameter Estimation
Ordinary least-squares regression is used to estimate a vector of =? unknown model parameters in a vector ) for a

given model y = ^) [24]. Here y is the length # model response vector and ^ is a # × =? matrix consisting of column
vectors of regressors assumed to be assembled from data that are measured without error. The regression equation,
including a measurement of the response variable z, corrupted by constant variance, zero-mean, and uncorrelated
measurement error ., is given as:

z = ^) + . (4)

For least-squares parameter estimation, the optimal estimate of the unknown parameters ) is determined by minimizing
the cost function:

� ()) = 1
2
(z − ^))) (z − ^)) (5)

It follows that the solution to compute an optimal estimate of the unknown parameters is

)̂ =
(
^) ^

)−1
^) z (6)

where )̂ is a vector of =? estimated parameters. Assuming uncorrelated measurement errors and an adequate model
structure is used to compute a modeled response variable history ŷ = ^)̂, a length =? vector of standard errors s()̂)
corresponding to the estimated parameters )̂ is given as:

s()̂) =

√(
(z − ŷ)) (z − ŷ)

# − =?

)
diag

[ (
^) ^

)−1
]

(7)

The present work involves model identification from computational testing, where both the explanatory variables
and response variables contain no measurement error. Stated another way, the test results are purely deterministic,
meaning that if a certain combination of factor settings is replicated, an identical measured response will be recorded.
Perfect explanatory variable measurements aid accurate parameter estimation, since regression methods assume that the
regressors are known without error. Perfect response data, however, results in modeling residuals derived solely from
modeling errors, which are generally not normally distributed, constant variance, and independent. While the parameter
estimates obtained from least-squares regression are still valid, the parameter standard errors, parameter confidence
intervals, and model prediction intervals lack statistical justification; parameter significance testing is also not justified.

Least-squares regression estimates model parameters in a fixed model structure. Consequently, a method of
determining an adequate model structure is required.

B. Model Structure Determination
Development of an adequate model structure is one of the most challenging aspects of aero-propulsive modeling

for eVTOL aircraft. These vehicles share overlapping characteristics with both fixed-wing and rotary-wing aircraft,
as well as experience complex vehicle-specific phenomena such as high incidence angle propulsor aerodynamics,
distributed propulsion interactions, and propulsion-airframe interactions, which must be represented in the model
structure. Consequently, suitable definitions of modeling explanatory and response variables are unclear and the
expected model structure is not well defined due to limited previous research in this area. Furthermore, the presence
of a larger number of candidate regressors compared to conventional aircraft modeling problems leads to large data
processing times, and a requirement for more subject matter expert insight. Additional challenges for computational
experiment model structure selection arise because the response data have no random error, which means that modeling
residuals are derived only from modeling error. Multiple techniques were investigated to develop the model structure,

†Information available online at https://software.nasa.gov/software/LAR-16100-1 [accessed May 2021]
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including stepwise regression [24, 35] and multivariate orthogonal function modeling [24, 36]. Each technique was
found to require special procedures for the analysis presented in this paper to account for the response data lacking
random error.

1. Stepwise Regression
The stepwise regression algorithm used in this work for model structure development is based on the algorithm

described in Refs. [24, 35]. This algorithm is a combination of forward selection and backwards elimination of candidate
regressors where a single regressor is either added to or removed from the model at each iteration. The procedure is
started with only a bias parameter included in the model structure. The first step is adding the candidate regressor with
the highest correlation to the unmodeled portion of the response variable into the model. The process is continued
by adding excluded candidate model terms with the highest partial correlation A8 into the model, for the conditioned
modeling problem. For the 8th model term excluded from the model structure, A8 is calculated as:

A8 =
(v8 − Ē8)) (vI − ĒI)√

(v8 − Ē8)) (v8 − Ē8)
√
(vI − ĒI)) (vI − ĒI)

(8)

Here, v8 is the 8th model term residual vector resulting from being regressed on by terms included in the current model,
with mean denoted Ē8; vI is the difference between the measured response variable and the response modeled by the
current regressors in the model, with mean denoted ĒI .

At each stepwise regression iteration, terms included in the model are considered to be removed from the model if
their partial �-statistic, �08 , falls below a cutoff threshold � (U? , 1, # − =?) prescribed by a partial �-test for significance
at an U? significant level with =? included model regressors. The significant level U? is commonly chosen as U? = 0.05,
or 95% confidence that the model term is significant. For the 8th model term included in the current iteration of the
model structure, �08 is calculated as

�08 =
\̂2
8

B2 (\̂8)
(9)

where \̂8 is the associated parameter estimate and B2 (\̂8) is the respective parameter variance.
The stepwise regression algorithm can be run automatically or manually. Due to the abundance of candidate

regressors and large number of model terms needed to describe complex eVTOL aerodynamic phenomena, each model
required many iterations to converge to an adequate model structure. For this reason, the stepwise regression algorithm
was run automatically until the remaining excluded model terms did not surpass the partial �-statistic cutoff value when
added to the model.

2. Multivariate Orthogonal Function Modeling
The multivariate orthogonal function (MOF) modeling approach described in Refs. [24, 36] is initiated by

orthogonalizing a predefined set of candidate regressors using an algorithm such as Gram-Schmidt orthogonalization or
QR decomposition. Orthogonal regressors are convenient for model structure development because of the ability to
independently assess the orthogonalized candidate regressors potential to model the response variable—this facilitates
selecting only the model terms that significantly contribute to model effectiveness. The orthogonal regressors are then
ranked from highest to lowest decrease in the mean squared fit error (MSFE):

MSFE =
1
#
(z − ŷ)) (z − ŷ) (10)

In other words, this ranks the regressors from highest to lowest ability to improve the model. Candidate regressors are
brought into the model structure in this order.

Deciding which terms to include in the final model can then be done using one or more statistical metrics. A
common threshold for MOF modeling is to minimize the predicted squared error (PSE) [24, 38]. The PSE is the sum of
the MSFE and a model complexity penalty related to the number of terms included in the model,

PSE = MSFE + f2
<0G

?

#
(11)

where ? is the number of terms in the current model structure and f2
<0G is an estimate of the upper-bound of mean

squared error for the model prediction of data not used to develop the model. In physical testing, the quantity f2
<0G can
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be estimated using the variance of measured responses between repeated data points or from the variance between the
measured response z and mean measured response z̄. In the present application where the response of repeat points is
identical, the latter approach is used to provide an estimate of f2

<0G as:

f2
<0G =

1
# − 1

#∑
8=1
[z(8) − z̄]2 (12)

After the orthogonal regressors were ranked by their ability to reduce the MSFE, the cutoff for model term addition
was chosen to be the candidate model term where the PSE was minimized. After determining the model terms to include
in the model structure, the final parameter values were estimated using least-squares regression in ordinary regressor
space.

3. Deterministic Experiment Considerations
As highlighted previously, the data used for model development in this paper is obtained from computational

experiments where the response data do not contain measurement error, and consequently, replicate factor settings
will produce the same output response. This results in several practical challenges for model structure determination.
Preliminary model structure identification results showed that stepwise regression run with a common significant
level threshold (e.g. U? = 0.05) admitted too many model terms and MOF modeling run using the PSE as defined in
Eqs. (11)-(12) admitted too few model terms. Both over-fitting and under-fitting models results in deficient response
prediction. These observations were made by subject matter expert review of the model terms and consulting modeling
and prediction error metrics in view of the number of included model terms.

Stepwise regression relies on significant testing for each candidate model term to iteratively converge to a final
model structure. The partial �-statistic (Eq. (9)) is used as the cutoff threshold to retain terms in the model; however, its
value is dependent on the estimated parameter variance B2 (\̂8), which is not statistically valid because the residuals only
contain modeling error (which is generally not normally distributed, constant variance, and independent). Although, for
the present study, the residuals appeared to be reasonably normally distributed, constant variance, and independent, even
though the residuals only contain modeling error. An example residual analysis is shown later in Sec. VII. The CFD
simulations run using randomized DOE test matrices include implicit variability between data points from sources such
as complex flowfields, flow unsteadiness, convergence criteria, grid resolution, and turbulence models. Accordingly,
reduced-order model identification for the CFD simulations used in this application results in approximately independent,
normally distributed, and constant variance modeling residuals, which can be justified by the central limit theorem. This
implies that use of the partial �-statistic still provides a valid metric to assess the relative utility of including a particular
model term. As a consequence of the noise-free experiment, commonly-applied significance level thresholds were found
to admit too many model terms into the model. Over-parameterizing the model is undesirable because the model yields
unrealistic response predictions and unnecessary curvature. To mitigate this problem, model structures identified with
several different significance levels between U? = 0.05 (95% confidence) to U? = 10−6 (99.9999% confidence) were
identified and compared. For the data analyzed for this work, U? = 0.0001 (99.99% confidence) appeared to be a good
choice to obtain a parsimonious model with good prediction capability.

While the PSE metric and the overall MOF modeling process do not have underlying assumptions regarding the
probability distribution of modeling residuals, the resulting model structure is largely dependent on the estimate of
f2
<0G . For this work, the PSE metric threshold defined using the f2

<0G calculated using Eq. (12) was found to admit too
few model terms into the model, which failed to sufficiently describe certain important, deterministic aerodynamic
characteristics. In other words, the f2

<0G value, calculated using Eq. (12), is overestimated for the present application
and, thus, its use within the PSE metric make the PSE-based model term entry threshold too conservative. To overcome
this shortcoming, the f2

<0G estimate used to calculate the PSE was multiplied by a scale factor ^, to allow admission of
more model terms. The PSE metric, with this modified prediction error variance estimate, is calculated as:

PSE = MSFE + ^f2
<0G

?

#
(13)

Model structures developed using MOF modeling with several different values of ^ between ^ = 1 (equivalent to the
standard f2

<0G formulation) to ^ = 0.05 were identified and compared. For the data analyzed for this work, ^ = 0.2
appeared to be a good choice to identify a model with good prediction capability, while maintaining model parsimony.

The model structures identified using the above cutoff criteria for stepwise regression and MOF modeling yielded
models with good prediction capability and a reasonable number of model terms. Although similar results were obtained
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using both methods and the use of both methods has been justified for the present application, MOF modeling is the
more generally applicable algorithm due to fewer assumptions regarding the residual distribution. For this reason, the
models identified using MOF modeling with a model complexity penalty scale factor of ^ = 0.2 were taken as the final
models.

Although not applied in this work, it is worth noting that an alternative approach to identify an adequate model
structure from a noise-free experiment could be to inject Gaussian white noise into the response data representative
of the noise levels expected to be seen in a physical measurement facility, such as a wind tunnel. With response data
containing representative measurement noise, stepwise regression and multivariate orthogonal function modeling can
be run without the above modifications to identify the model structure. Once the model structure is identified, parameter
estimation could then be performed using the noise free data to prevent the noise from corrupting the final parameter
estimates. While this is a valid alternative approach, the final model structure will still be dependent on the variance of
the injected noise, which is effectively another tunable scale factor.

V. Computational Testing
While wind tunnel and flight testing provide high-quality data needed for aerodynamic model development, these

methods also require significant time and resources, including development of a physical test vehicle. Alternatively,
computational testing does not require any vehicle hardware, allowing aerodynamic analysis in early design stages.
For this work, CFD simulations are used as a computational test facility to enable aero-propulsive model development
for the conceptual Lift+Cruise aircraft. Specifically, the OVERFLOW CFD code [39–41] was used with the Chimera
overset grid approach to produce the results presented in this paper. The Chimera overset grid approach is particularly
suited to multiple-body or moving body applications, and has been used extensively for rotorcraft and eVTOL
configurations [42, 43]. The complex, nonlinear aerodynamics and vehicle interactions exhibited by eVTOL aircraft
warrant investment in computationally expensive CFD solutions to develop aero-propulsive models with reasonable
prediction capability. For the Lift+Cruise aircraft, rotor wash over the wing and tail can make a large contribution to the
vehicle aerodynamics. These effects are apparent in the flowfield depicted in Fig. 6.

Fig. 6 Transitioning Lift+Cruise vehicle with flow
from the rotors colored by pressure coefficient.

Fig. 7 CFD overset grid system for the Lift+Cruise
vehicle.

A coarse computational grid of four million points was created for the Lift+Cruise concept aircraft analyzed in
this work to facilitate developing an aero-propulsive model of the vehicle sufficient for flight dynamics simulations.
The aircraft components included in the gridding were the wing, fuselage, horizontal tail, vertical tail, eight lifting
rotors, and pusher propeller, as shown in Fig. 7. The rotors and pusher propeller were modeled using a rotor disk
methodology [44], as opposed to modeling fully rotating blades, to reduce the grid size and encourage steady-state
flow solutions. The aircraft geometry was also simplified by removing the support struts for the lifting rotors and the
landing gear. Further simplification of gridding requirements was achieved by deforming the surface grids to model
control surfaces and ignoring the gaps at the ends of each control surface. The present grid system is adequate to
model dominant propulsion-airframe interaction effects, however, grid refinement studies and unsteady flow simulations
were not performed. While these simplifications are justified for the current study using a conceptual vehicle, certain
complexity reduction measures would need to be reassessed for modeling an actual aircraft. With these approximations,
each test point was calculated in approximately two hours on one node (20 CPU cores) of the NASA Advanced
Supercomputing (NAS) Pleiades system. Typical runs were made generating 50 test points simultaneously, limited by
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availability of resources on the system.
The computational expense associated with CFD simulations currently requires a significant amount of time to

compute aerodynamic force and moment predictions at a single point. Thus, in order to develop an effective and efficient
flight dynamics simulation, response surface representations of the complex Lift+Cruise aerodynamics were identified
using the RAM software. The general process for computational data collection used for model development was
initiated by developing a test matrix using the RAM software, which specified the freestream velocity components,
control surface deflection angles, and propulsor speed settings for each test point. The RAM algorithm subsequently
generated a text file listing factor settings for each point in a test block. Specialized scripts were used to generate
OVERFLOW input files and modify computational geometry to match each test point. CFD simulations were then run
to predict the aero-propulsive forces and moments for each point, and additional scripts extracted vehicle force and
moment history data to generate average values. The results were collected into text files read by the RAM software and
utilized to develop response surface models describing the aircraft aerodynamics following the RAM algorithm. This
process, depicted in Fig. 8, continued until models with sufficient prediction capability had been identified.

CFD 

“Test Facility”
Output Data Files

CFD Input Files

Aerodynamic Model

RAM 

Software

Test Information

Fig. 8 Connection of the RAM algorithm with the OVERFLOW CFD test facility.

VI. Lift+Cruise Aero-Propulsive Modeling Approach
The Lift+Cruise aircraft has numerous different operational flight conditions where drastically different flight

characteristics are expected. In low-speed flight, the aircraft is expected to exhibit rotorcraft and multirotor like
aerodynamics. In high-speed forward flight, the vehicle’s aerodynamics are expected to resemble a fixed-wing aircraft.
In transition, a hybrid of fixed-wing and rotary-wing aerodynamic characteristics are anticipated. In order to develop a
flight dynamics simulation for the vehicle’s full flight envelope, it is necessary to model all flight conditions expected
to be seen through a typical flight mission. As mentioned previously, propulsion and airframe aerodynamics for
eVTOL aircraft are generally highly coupled across a significant portion of their flight envelope. Therefore, in the
context of modeling the Lift+Cruise aircraft, the aerodynamic model describes propulsion and airframe aerodynamic
characteristics in an integrated aero-propulsive model.

The Lift+Cruise flight envelope was divided into four distinct flight regimes for model development based on which
control effectors were active. The hover regime occurs in low-speed flight where all lifting rotors are active, but the
pusher propeller is off. This would resemble when the vehicle is close to takeoff or landing. The transition regime
occurs when the aircraft is moving between low-speed hover and forward flight. In this case, both the lifting rotors and
pusher propeller are active. The cruise regime occurs when the aircraft is operating in forward flight propelled by only
the pusher propeller. The glider regime simulates a failure condition when both the lifting rotors and pusher propeller
are inactive. The full range of test factors prescribed for each flight regime is shown in Tables 1-4. The forward speed
ranges that each of these flight regimes cover are shown in Fig. 9. The full RAM block designs described in Sec. III for
the cruise and glider regimes supported up to cubic and three-factor interaction model terms; the full RAM block design
for the hover and transition flight regimes only supports up to pure cubic and two-factor interactions model terms due to
the large number of test factors.

The test factors varied for the computational experiments included the body-axis velocity components D, E, F,
control surface deflections X0! , X0' , X4! , X4' , XA , and propulsor speed =1, =2, ..., =9. While the pusher propeller for the
Lift+Cruise design is variable-pitch, the propeller was held to a fixed pitch angle for the present modeling work. For the
cruise and glider flight regimes, the test matrices were developed in terms of U and V rather than E and F. This reflects
that the vehicle is essentially a fixed-wing aircraft in the cruise and glider flight regimes, and thus, the aerodynamics are
more effectively described by airflow angles over a range of freestream velocities. Altitude effects were not considered
for this study, although, it is understood that operation of the vehicle at different altitudes would significantly change the
aero-propulsive model in certain flight regimes, depending on the model formulation. All computational testing for this
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Table 1 Test factor ranges used for modeling the Lift+Cruise hover regime (16 variable factors)

Factor(s) Units Minimum Center Maximum
D kts −5 +20 +45
E kts −10 0 +10
F kts −10 0 +10

X0! , X0' , X4! , X4' , XA deg −30 0 +30
=1, =2, ..., =8 RPM 550 1050 1550

=9 RPM 0 0 0

Table 2 Test factor ranges used for modeling the Lift+Cruise transition regime (17 variable factors)

Factor(s) Units Minimum Center Maximum
D kts −5 +45 +95
E kts −10 0 +10
F kts −10 0 +10

X0! , X0' , X4! , X4' , XA deg −30 0 +30
=1, =2, ..., =8 RPM 550 1050 1550

=9 RPM 750 1250 1750

Table 3 Test factor ranges used for modeling the Lift+Cruise cruise regime (9 variable factors)

Factor(s) Units Minimum Center Maximum
D kts +50 +90 +130
V deg −6 0 +6
U deg 0 +6 +12

X0! , X0' , X4! , X4' , XA deg −30 0 +30
=1, =2, ..., =8 RPM 0 0 0

=9 RPM 550 1150 1750

Table 4 Test factor ranges used for modeling the Lift+Cruise glider regime (8 variable factors)

Factor(s) Units Minimum Center Maximum
D kts +50 +90 +130
V deg −6 0 +6
U deg 0 +6 +12

X0! , X0' , X4! , X4' , XA deg −30 0 +30
=1, =2, ..., =8 RPM 0 0 0

=9 RPM 0 0 0

12



Fig. 9 Forward speed range modeled for each Lift+Cruise flight regime.

work was performed assuming standard atmosphere conditions at an altitude of 6000 ft.
After collection of computational data, models were fit using the RAM software. The explanatory and response

variables used for eVTOL aircraft system identification are currently not well established in literature. Reference [13]
justified the use of body-axis velocity components, control surface deflection angles, and either propulsor rotational
speed or estimated propulsor thrust as the explanatory variables for modeling a tilt-wing, distributed propulsion aircraft.
This same work justified using dimensional body-axis forces and moments as the response variables. These modeling
choices could also be used to model the Lift+Cruise, but the different vehicle configuration suggests a modified modeling
strategy.

For the Lift+Cruise hover regime, the explanatory variables were defined as the body-axis velocity components
D, E, F, control surface deflections X0! , X0' , X4! , X4' , XA , and rotor speed =1, =2, ..., =8. The explanatory variables
defined for the transition regime were identical to those define for the hover regime, except propeller speed =9 was
also included. The response variables were designated as the dimensional body-axis aero-propulsive forces -,., /
and moments !, ", # . Dimensional forces and moments are used opposed to force and moment coefficients because
nondimensionalization by freestream dynamic pressure @̄ is not valid for vehicles that are propulsion-dominated and
experience significant airframe-propulsion interaction. Propulsor aerodynamics, for example, scale with the dynamic
pressure experienced by the individual propeller blades opposed to freestream dynamic pressure. The use of body-axis
velocity as explanatory variables and dimensional forces and moments as response variables also allows the model to be
defined at a zero-airspeed hover condition.

In the Lift+Cruise cruise and glider regimes, the aircraft aerodynamic characteristics become similar to a fixed-wing
vehicle. Consequently, airflow angles U and V are used as explanatory variables for these flight conditions opposed to
body-axis velocity components. Also, the response variables are defined as the dimensionless force coefficients �G , �H ,
�I and moment coefficients �; , �<, �=, shown in Eq. (1). Lift coefficient �! and drag coefficient �� could be used
as response variables instead of �G and �I , but this choice did not appear to make a significant difference in model
performance because cruise and glider modeling was only performed over a modest angle of attack range. As before, the
control surface deflections X0! , X0' , X4! , X4' , XA are defined as additional explanatory variables. For the cruise model,
the pusher propeller rotational speed =9 could be used as an explanatory variable, however, the variable does not have a
widely-used dimensionless form compatible with using the body-axis force and moment coefficients as the response
variables. Advance ratio,

� =
+

=�
(14)

is commonly used to parameterize axial-flow propeller aerodynamics using the propeller thrust coefficient, �) = )

d=2�4 ,

and torque coefficient, �& = &

d=2�5 , as the response variables; advance ratio parameterization can be also justified here
using dimensional analysis [45]. However, parameterizing propulsion effects with a polynomial expansion of advance
ratio when using the aircraft force and moment coefficients as response variables is not physically consistent. The
force and moment coefficients are normalized by freestream dynamic pressure @̄ = 1

2 d+
2, rather than d=2, which is

proportional to the dynamic pressure experienced by the individual propeller blades. Geometric constants used for
normalization of the airframe and propeller response variables are also different, but these are constant for a particular
aircraft rather than a variable quantity.

To derive a more physically-justified dimensionless variable to describe the pusher propeller effect on the aircraft
force and moment coefficients, consider a model for the propeller thrust coefficient quadratic in advance ratio:

�) = �)> + �)� � + �)�2 �
2 = �)> + �)�

(
+

=�

)
+ �)

�2

(
+

=�

)2
(15)

13



Converting this model to dimensional thrust ) using the definition of thrust coefficient yields:

) = d=2�4

[
�)> + �)�

(
+

=�

)
+ �)

�2

(
+

=�

)2
]
= d�2

(
�)>�

2=2 + �)��=+ + �)�2+
2
)

(16)

Since � is vehicle constant and air density d is constant at a particular atmospheric test condition, the model terms
are essentially =2, =+ , and +2 in the dimensional model. Note that these terms appear as candidate regressors for the
dimensional modeling approach used for the transition flight regime when quadratic and two-factor interactions model
terms are supported by the data and assuming + ≈ D. For the thrust component oriented along the body G-axis, the
propulsion component of the body G-axis force coefficient �G? (cf. Eq. (1)) can be written as:

�G? =
)

1
2 d+

2(
=

2�2

(

[
�)>

(
=�

+

)2
+ �)�

(
=�

+

)
+ �)

�2

]
(17)

The quantity =�/+ is the inverse of advance ratio, which is defined here as:

�̂ =
=�

+
(18)

Absorbing the constant terms into the model parameters, the propulsion component of G-axis force coefficient can be
written as,

�G? = �G�̂2 �̂
2 + �G�̂ �̂ + �G?> (19)

where �G
�̂2 =

2�2

(
�)> , �G�̂ =

2�2

(
�)� , and �G?> =

2�2

(
�)

�2 .
Following the results of this analysis, the explanatory variable for the pusher propeller in the cruise regime is

defined to be �̂9 = =9�/+ , which resulted in the best model fit. Note that this approach is only valid when the vehicle is
operating like a fixed-wing airplane, although, airframe-propulsion interactions are still able to be described by the
model. Also note that the �G?> =

2�2

(
�)

�2 term in Eq. (19) will not be separately identifiable from the aerodynamic
bias �G> when airframe and propulsion aerodynamics are being estimated together.

The explanatory variables and response variables defined for each flight regime are summarized in Table 5. The
following section presents sample modeling results using this methodology.

Table 5 Summary of explanatory variables and response variables for the different flight regimes

Hover Regime
Explanatory Variables D, E, F, X0! , X0' , X4! , X4' , XA , =1, =2, =3, =4, =5, =6, =7, =8

Response Variables -,., /, !, ", #

Transition Regime
Explanatory Variables D, E, F, X0! , X0' , X4! , X4' , XA , =1, =2, =3, =4, =5, =6, =7, =8, =9

Response Variables -,., /, !, ", #

Cruise Regime
Explanatory Variables D, V, U, X0! , X0' , X4! , X4' , XA , �̂9

Response Variables �G , �H , �I , �; , �<, �=

Glider Regime
Explanatory Variables D, V, U, X0! , X0' , X4! , X4' , XA

Response Variables �G , �H , �I , �; , �<, �=
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VII. Aero-Propulsive Modeling Results
Separate aero-propulsive models were developed for each flight regime described above to produce a full-envelope

aerodynamic database for the Lift+Cruise aircraft. For this study, the goal was to develop models minimizing prediction
error, where a value of approximately 5% or less of 4∗2E for each response was considered to be adequate based on
analysis judgment. Following the decision logic in the RAM algorithm, the hover and transition flight regimes were
partitioned into two and five regions in D, respectively, to obtain adequate prediction capability. These steps are depicted
in Fig. 10. After developing local models in each region, a global hover model and transition model was developed
following the model blending process described in Sec. III with support from Ref. [15]. Adequate model performance
within the cruise and glider flight regimes was obtained without requiring partitioning. This is because most of
the aerodynamic variation with forward airspeed is described by modeling the response using the nondimensional
aerodynamic force and moment coefficients, and the model was developed over a limited range of angle of attack.

(a) Hover regime (b) Transition regime

Fig. 10 RAM model partitioning steps in u needed to adequately model the Lift+Cruise hover and transition
regimes.

A. Local Modeling Results
To analyze the adherence to regression modeling assumptions and analyze model adequacy, sample residual plots

are shown in Fig. 11 for a local transition model for 45 ≤ D ≤ 70 kts. Figure 11a shows the normalized modeling
residuals and normalized validation residuals against run number, as well as the 4∗2E metric bounds. Figure 11b shows
normal probability plots for the standardized modeling residuals for each response. Figure 11c shows the normalized
modeling and validation residuals against the predicted response. These plots show that the residuals are reasonably
independent, normally distributed, and constant variance which reflects the residual characteristics seen in physical
testing, even though the data lacks measurement error. The identified model parameters are valid and significance
testing can be used as a metric to assess the utility of including a particular model term; however, the parameter standard
errors are not statistically meaningful. The plots also show that modeling and prediction residuals appear to have similar
magnitude supporting the claim that a good predictive model has been identified. Residuals with similar character were
obtained for local aero-propulsive models identified across the Lift+Cruise flight envelope.

Tables showing modeling and prediction error metrics for each local model within each flight regime are given at
the end of this paper. Table 6 shows the coefficient of determination ('2) value for each local model. The '2 metric
reflects the fraction of variation in the dependent variable about its mean value that is described by the model. All local
models have an '2 value above 93% and a majority of the local models have an '2 value above 98% indicating that a
significant portion of the variation in the response is described by the models. Table 7 shows the number of model terms
identified in each local model and indicates that more model terms are required to model the hover and transition flight
regimes due to the increased aerodynamic complexity present when the lifting rotors are operational. The binomial
analysis of residuals prediction error metric (4∗2E ) value for each model is shown in Table 8. Most local models have an
4∗2E value less than 5% indicating that good models have been identified. Table 9 and Table 10 present the NRMSE
for modeling and validation data, respectively. The NRMSE values calculated using modeling and validation data for
each local model are similar also indicating that a quality model has been identified. The 4∗2E and NRMSE metrics are
calculated using the response type used to identify the model (- , . , / , !, " , and # for hover and transition; �G , �H ,
�I , �; , �<, and �= for cruise and glider).

B. Global Modeling Results
The 4∗2E prediction error metric and validation NRMSE values for the global responses in each flight regime are

compared in Fig. 12. The metrics are calculated using dimensional forces and moments such that all flight regimes
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(a) Normalized residual history (b) Normal probability plot

(c) Normalized residuals against predicted response

Fig. 11 Residual diagnostics for a local Lift+Cruise transition model (45 ≤ u ≤ 70 kts).

relative prediction error values can be directly compared. Almost all global prediction metrics values are 5% or lower
indicating global models with adequate predictive capability were identified. For all responses except pitching moment,
the transition and hover models have a higher prediction error compared to the cruise and glider models. This reflects
the increased modeling difficulty for a lift+cruise aircraft in low-speed and transitioning flight due to highly nonlinear
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propulsion-airframe interactions (cf. Fig. 6).

Fig. 12 Global e∗cv and NRMSE values calculated using validation data for each response.

Figure 13 shows model response comparisons to one-factor-at-a-time (OFAT) sweeps in forward speed D for the
hover, transition, and cruise flight regimes. Figure 13a and Fig. 13b show a D-sweep over a significant portion of the
hover and transition flight regimes, where all other explanatory variables are set to their center values shown in Table 1
and Table 2, respectively. The model response shows overall good agreement with the OFAT data points, considering
the substantial aerodynamic complexity exhibited in these flight regimes. Increased scatter in the CFD data points and a
worse model fit for certain responses at low speeds (particularly for ! and #) reflects the trade-off between efficiency
and accuracy. A fixed number of time steps were used for all CFD runs in order to conduct efficient testing, rather
than adapting the number of time steps for each run. Future studies may benefit from using an increased number of
time steps at low speeds, where the nature of the flow physics leads to longer convergence times. Two D-sweeps for the
cruise flight regime are shown in Fig. 13c at an angle of attack of 0◦ and 6◦ and a pusher propeller rotational speed =9 of
1250 RPM and 1150 RPM, respectively; all other explanatory variables are held to their center values shown in Table 3.
Close model predictions of the CFD data points can be seen for the - , / , !, and " responses. Some model prediction
deviations can be seen in the . and # responses, but these responses are small and of lesser importance when sweeping
D.

VIII. Flight Dynamics Simulation Considerations
The identified static aero-propulsive model for each flight regime is a central component of the flight dynamics

simulation developed for the Lift+Cruise aircraft. However, there are additional components necessary for successful full-
envelope flight simulations, which include isolated propulsor characterization, aerodynamic damping predictions, flight
regime synthesis for full flight mission simulations, the equations of motion, and subsystem dynamics approximations.
Each of these topics are briefly highlighted in the remainder of this section. The intended use of the developed
Lift+Cruise simulation is intelligent contingency management research for eVTOL aircraft operating in a future urban
flight environment [46].

A. Isolated Propeller and Rotor Model Development
Isolated propulsor model identification is useful for multiple purposes including aerodynamic damping predictions,

flight regime synthesis, and propulsor failure approximations. For this work, different modeling strategies were used
to develop a response surface representation for the forces and moments produced by the pusher propeller and lifting
rotors. The conventional propeller variable normalization conventions (e.g. see Refs. [45, 47]) are used for both rotor
and propeller model identification for simplicity, but it is recognized that rotors are generally modeled using a different
geometric convention [48, 49]. Model predictions for the dimensional forces and moments are not dependent on whether
the propeller or rotor normalization convention is used.

To develop an isolated rotor aerodynamic model, a blade element momentum theory (BEMT) simulation‡ was used
‡The BEMT simulation used for this work was developed and validated by George Altamirano, Flight Dynamics Branch, NASA Langley

Research Center; and David Hartman, Analytical Mechanics Associates, Hampton VA.
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(a) Hover regime (b) Transition regime (c) Cruise regime

Fig. 13 Model response compared to CFD data points sweeping u.

as a computational test facility to identify a reduced-order response surface model for the dominant rotor aerodynamics.
The BEMT simulation is based on an adapted form of the blade element calculations performed in the NDARC software§
and predicts the forces and moments produced by the rotors operating at nonzero incidence angles. The reduced-order
rotor aerodynamic modeling methodology followed similar modeling methods that is described in Ref. [15]. MOF
modeling was used for model structure identification and ordinary least-squares regression was used for parameter
estimation (see Sec. IV). The response variables were the propulsor force and moment coefficients in the hub frame,

�)G =
)G

d=2�4 , �)H =
)H

d=2�4 , �)I =
)I

d=2�4 , �&G =
&G

d=2�5 , �&H =
&H

d=2�5 , �&I =
&I

d=2�5 (20)

where )G , )H , )I are the isolated propulsor forces and &G , &H , &I are the isolated propulsor moments in the propulsor
hub frame. The explanatory variables were defined as the normal component of advance ratio �G , tangential components
of advance ratio �I , and the tip Mach number "C8 ? ,

�G =
+ cos 8?
=�

(21)

�I =
+ sin 8?
=�

(22)

"C8 ? =
c=�

0
(23)

where 8? is the incidence angle relative to the oncoming airflow (see Fig. 14) and 0 is the speed of sound. Improved
modeling performance was obtained when "C8 ? was defined as a polynomial spline [50],(

"C8 ? − 0.3
)
+ =

{(
"C8 ? − 0.3

)
"C8 ? ≥ 0.3

0 "C8 ? < 0.3
(24)

§Information available online at https://software.nasa.gov/software/ARC-16265-1 [accessed May 2021]
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which enacts the variable only when compressibility effects manifest. The candidate model terms consisted of expansions
of each explanatory variable up to quartic terms as well as all arrangements of cross terms up to a total of fourth order.
Reynolds number effects, which can be influential for subscale vehicles [51, 52], were deemed insignificant for the
full-scale propulsors investigated in this work.

𝑉

𝑧

𝑖𝑝

𝑥

Fig. 14 Propulsor incidence angle definition and coordinate system.

An isolated pusher propeller model was developed using full-vehicle DOE CFD runs directly which were used
previously to identify the full vehicle aero-propulsive model. This approach was taken, rather than using the BEMT
simulation described above, because the pusher propeller effects can be more readily isolated between full-vehicle
CFD data sets since it is a single variable; the approach also permits accounting for the vehicle presence effect on
propeller performance. The data for propeller modeling was obtained using the difference between CFD data with
the propeller-on (data previously used for transition and cruise flight regime model identification) and the full-vehicle
model predictions with the propeller-off (the identified hover and glider models) to estimate the thrust and torque
produced by the pusher propeller. These data were normalized by d=2�4 and d=2�5 to form the thrust coefficient and
torque coefficient, respectively. Models for the propeller thrust and torque coefficient were then fit using a polynomial
expansion of the normal component of advance ratio �G as the regressors. Since the pusher propeller axis of rotation is
oriented in the same direction as the body G-axis, �G can be simply calculated as:

�G =
+ cosU cos V

=�
=

D

=�
(25)

The off-axis forces and moments for the pusher propeller were neglected, which is a reasonable assumption since the
propeller generally operates at either low airspeed or low incidence angle. This approach resulted in a good model for
the pusher propeller performance across the modeled flight envelope.

B. Aerodynamic Damping Predictions
All the above analysis concerns developing a static aero-propulsive model, however, dynamic aerodynamic effects

have a significant influence on aircraft flight dynamics. Aerodynamic damping predictions are needed to add realism to
eVTOL vehicle simulations, but present practical challenges to account for the isolated propulsors, bare airframe, and
propulsion-airframe interaction aerodynamic damping contributions. For this work, low-fidelity damping predictions
for the bare airframe and isolated propulsors were superimposed with the static aero-propulsive model to enable more
realistic vehicle simulations, absent high-fidelity damping predictions. Damping associated with airframe-propulsion
interaction effects were not considered, but it is recognized that these effects may have a significant effect on aerodynamic
damping.

Bare airframe linear dynamic derivatives were estimated using a strip theory model of the aircraft [53]. Damping
effects from isolated propulsors were estimated using the pusher propeller and rotor models discussed above. As
described in detail in Ref. [15], relative velocity experienced by each propulsor is dependent on its location relative to
the aircraft center of gravity, its orientation relative to the aircraft body-axes, the freestream velocity components D, E,
F, and the vehicle body-axis angular velocity components, ?, @, A . Consequently, nonzero vehicle angular velocity will
change the force and moment production by each propulsor depending on its position and orientation on the vehicle.
The propulsion damping aerodynamic forces and moments were estimated using the difference between the predicted
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forces and moments produced by each propulsor with and without vehicle angular velocity. In simulation, the propulsor
forces and moments are then transformed to the body frame and added to the bare airframe aerodynamic damping
predictions to augment the static aero-propulsive model with dynamic aerodynamic influences.

C. Flight Regime Synthesis
Although the four flight regime models (hover, transition, cruise, and glider) describe the Lift+Cruise aerodynamics

over its operational flight envelope, the flight regimes are disjointed because different sets of propulsors are active in
each model (see Tables 1-4). This results in a practical challenge of simulating a continuous vehicle flight mission
where flying between multiple flight regimes is required. For example, it is required to fly between the hover and
translation flight regimes as well as the transition and cruise flight regimes in a normal flight mission. For this work, the
identified isolated propulsor models were used to obtain reasonable predictions of smooth movement between various
flight regimes. Because it is not advised to extrapolate the vehicle aero-propulsive models outside the factor ranges used
to identify each model, isolated propulsor models are used to make predictions outside of the propulsor range of validity
for each flight regime model for use in a flight regime synthesis procedure. The force and moment predictions are then
blended from the two flight modes being transitioned between.

As an example of the flight regime synthesis process, consider the movement between the transition (lifting rotors
are active) and cruise flight regimes (lifting rotors are inactive), where there is a gap in modeled rotor speed between 0 to
550 RPM. For the cruise model, the predicted full-vehicle forces and moments assuming the rotors are not present (�")
are added to the predicted forces/moments from the isolated propulsion models for the current operating rotor speed
(%" (=1, =2, ..., =8)). In other words, this superimposes the cruise model with the isolated rotor forces and moments.
For the transition model, the predicted full-vehicle forces and moments assuming the rotors are operating at their lower
RPM limit ()" (=1! , =2! , ..., =8! )) is added to the difference between predicted forces/moments from the isolated
propulsion models at the current operating rotor speed (%" (=1, =2, ..., =8)) and at the rotor speed set to the full-vehicle
model boundary value (%" (=1! , =2! , ..., =8! )). This effectively acts to remove rotor forces and moments from the
transition model predictions. These pseudo-extrapolated transition and cruise model response predictions are then
blended together using a quintic transition polynomial (see Ref. [15]), where the mean rotor speed value determines the
weighting F1 and F2 given to the cruise and transition model predictions. This process to form a blended model (�")
prediction, in the form of an equation, is given as:

�" = F1 [�" + %" (=1, =2, ..., =8)] + F2
[
)" (=1! , =2! , ..., =8! ) + %" (=1, =2, ..., =8) − %" (=1! , =2! , ..., =8! )

]
Similar methods are used for movement between other flight regimes. Although propulsion-airframe interaction effects
are not accurately captured for the propulsors used for blending, this methodology yields reasonable predictions and
allows continuous simulation from hover through forward flight. It is also worth noting that a similar approach can be
used to simulate propulsor failure scenarios.

D. Equations of Motion
Simulation of the Lift+Cruise aircraft was implemented using the kinematic and dynamic aircraft equations of motion

developed under a standard set of assumptions [24, 54, 55]. The aircraft is modeled as a six degree-of-freedom rigid
body treating the gyroscopic effects from the rotating portions of the propulsion system as applied external moments.
The translational and rotational dynamics equations contain the forces -,., / and moments !, ", # computed using
the identified models, which include the collective contributions of propulsion and airframe effects as well as their
interactions. The translational dynamics equations are,

¤D = AE − @F − 6 sin \ + -/< (26)

¤E = ?F − AD + 6 cos \ sin q + ./< (27)

¤F = @D − ?E + 6 cos \ cos q + //< (28)

where, < is the aircraft mass, 6 is the gravitational acceleration, q is the Euler roll angle, and \ is the Euler pitch angle,
with all other variables following their earlier definition. The rotational dynamics equations augmented to include
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propulsor gyroscopic effects are,

�G ¤? − �GI ¤A = ! + (�H − �I)@A + �GI ?@ − ( ¤ℎG + @ℎI − AℎH) (29)

�H ¤@ = " + (�I − �G)?A + �GI (A2 − ?2) − ( ¤ℎH + AℎG − ?ℎI) (30)

�I ¤A − �GI ¤? = # + (�G − �H)?@ − �GI@A − ( ¤ℎI + ?ℎH − @ℎG) (31)

where, �G , �H , �I , �GI are the aircraft moments of inertia and ℎG , ℎH , ℎI are the net components of angular momentum
of the propulsors, with all other variable definitions presented above. The angular momentum of a single propulsor
about its axis of rotation is ℎ? = �?Ω? , where �? is the moment of inertia of the rotating portion of the propulsor and
Ω? = 2c= is the rotation rate in radians per second, with clockwise rotation as viewed from behind the propulsor being
positive. For use in the above equations, the angular momentum for each propulsor about its axis of rotation is rotated
into the aircraft body axes and then summed to compute the net angular momentum for all propulsors. If the rotors are
operated symmetrically, their angular momentum components cancel, however, asymmetric rotor usage and the pusher
propeller operation cause the propulsion gyroscopic effects to become significant.

E. Propulsion and Control Surface Actuator Dynamics
The aircraft equations of motion can be augmented with additional states to represent the dynamics associated with

control surface actuation and propulsor speed changes. Lag associated with the propulsors are particularly important to
consider for controller design, because propulsion dynamics can be significantly slower than control surface dynamics,
particularly for full-scale eVTOL vehicles with fixed-pitch propulsors. A current open question for eVTOL vehicle
design is if mechanically simpler rotational speed control is fast enough for vehicle stabilization at low speeds, or if more
complex, higher-bandwidth variable-pitch control is necessary for reasonable controller performance. The propulsion
dynamics are also directly affected by the propulsor moment of inertia and electrical motor characteristics. For this work,
propulsor and control surface dynamics were modeled using first-order and second-order dynamics representing the lag
between a commanded value and actual value. Expressed as a differential equation, these respectively take the form,

¤X = 1
g
(X2<3 − X) (32)

¥X + 2Zl= ¤X + l2
=X = l

2
=X2<3 (33)

where X is the actual value of a propulsor or control surface variable, X2<3 is the corresponding commanded value, g is
first-order time constant, l= is the natural frequency, and Z is the damping ratio. The dynamics equation order and
constant parameters can be individually chosen and varied for each propulsor and control surface within the simulation.

IX. Conclusions
A novel computational approach for developing lift+cruise aircraft aero-propulsive models suitable for flight

dynamics simulations has been presented. Models were developed and evaluated for the NASA Lift+Cruise concept
aircraft’s full operational envelope, which included four distinct modeled flight regimes: hover, transition, cruise, and
glider. The modeling approach utilizing the RAM process was tailored specifically to lift+cruse vehicle attributes and
specific flight regime characteristics. Models describing forward-flight aerodynamics reflected fixed-wing aircraft
modeling techniques and models at low-speed conditions were similar to rotary-wing aircraft modeling techniques.
Model identification challenges for computational experiments were described and practical mitigation strategies were
discussed. Final models were shown to have good predictive capability and small normalized model fit error across
the vehicle flight envelope. Additional eVTOL vehicle flight dynamics considerations necessary for accurate flight
simulations were highlighted to inform future simulation activities. This work provides progress in eVTOL aircraft
modeling research using computational techniques, but ongoing modeling studies are anticipated to further refine
eVTOL vehicle aero-propulsive model development methodologies.

Acknowledgments
This research was funded by the NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools

and Technologies (TTT) project and Revolutionary Vertical Lift Technologies (RVLT) project. Numerical simulations

21



were performed using the NASA Advanced Supercomputing (NAS) System and the NASA Langley Research Center
Mid-Range Computing Cluster. Vehicle flight dynamics simulation development support was provided by Thomas
Britton. Constructive feedback from Irene Gregory, Jacob Cook, and Michael Acheson helped to guide the Lift+Cruise
model development work described in this paper. Additional conversations with Eugene Morelli are acknowledged and
appreciated.

Additional Tables

Table 6 Coefficient of determination, X2, for each local model (expressed as a percentage)

Model Name - or �G . or �H / or �I ! or �; " or �< # or �=
Hover Model (−5 ≤ D ≤ +20 kts) 96.6 96.8 98.8 99.1 99.1 97.7
Hover Model (20 ≤ D ≤ 45 kts) 93.4 96.2 99.0 99.3 99.0 97.3
Transition Model (−5 ≤ D ≤ +7.5 kts) 98.5 96.0 98.4 99.3 98.4 93.5
Transition Model (7.5 ≤ D ≤ 20 kts) 99.1 96.8 98.8 99.3 98.4 96.0
Transition Model (20 ≤ D ≤ 45 kts) 99.0 96.6 98.9 99.3 98.3 96.7
Transition Model (45 ≤ D ≤ 70 kts) 99.1 98.1 99.1 99.4 98.8 97.3
Transition Model (70 ≤ D ≤ 95 kts) 99.4 98.7 98.9 99.3 99.0 97.6
Cruise Model (50 ≤ D ≤ 130 kts) 99.9 99.3 99.9 99.9 99.6 99.4
Glider Model (50 ≤ D ≤ 130 kts) 99.6 99.3 99.9 99.9 99.3 99.2

Table 7 Number of model parameters identified for each local model

Model Name - or �G . or �H / or �I ! or �; " or �< # or �=
Hover Model (−5 ≤ D ≤ +20 kts) 46 29 28 23 21 46
Hover Model (20 ≤ D ≤ 45 kts) 63 42 29 22 30 42
Transition Model (−5 ≤ D ≤ +7.5 kts) 15 39 24 24 32 71
Transition Model (7.5 ≤ D ≤ 20 kts) 21 39 27 29 36 52
Transition Model (20 ≤ D ≤ 45 kts) 24 48 35 26 37 55
Transition Model (45 ≤ D ≤ 70 kts) 30 40 27 23 36 52
Transition Model (70 ≤ D ≤ 95 kts) 28 32 24 29 40 39
Cruise Model (50 ≤ D ≤ 130 kts) 18 18 18 15 21 35
Glider Model (50 ≤ D ≤ 130 kts) 12 20 14 12 28 20
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Table 8 Binomial analysis of residuals prediction error metric, e∗cv , for each local model response (expressed
as a percentage)

Model Name - or �G . or �H / or �I ! or �; " or �< # or �=
Hover Model (−5 ≤ D ≤ +20 kts) 8.79 4.32 1.96 2.47 2.17 4.03
Hover Model (20 ≤ D ≤ 45 kts) 7.13 6.15 2.89 2.37 2.61 4.03
Transition Model (−5 ≤ D ≤ +7.5 kts) 4.72 6.69 2.88 2.22 3.31 7.51
Transition Model (7.5 ≤ D ≤ 20 kts) 6.25 4.35 3.04 2.36 2.87 3.79
Transition Model (20 ≤ D ≤ 45 kts) 5.37 5.49 2.40 2.00 2.73 5.19
Transition Model (45 ≤ D ≤ 70 kts) 4.23 3.58 2.25 1.90 2.36 3.84
Transition Model (70 ≤ D ≤ 95 kts) 3.26 3.28 1.98 2.30 2.36 4.45
Cruise Model (50 ≤ D ≤ 130 kts) 0.797 1.95 1.19 1.19 1.67 1.84
Glider Model (50 ≤ D ≤ 130 kts) 2.50 3.56 1.19 1.18 3.58 4.45

Table 9 Modeling data percent NRMSE for each local model response

Model Name - or �G . or �H / or �I ! or �; " or �< # or �=
Hover Model (−5 ≤ D ≤ +20 kts) 3.48 2.62 1.77 1.50 1.46 2.36
Hover Model (20 ≤ D ≤ 45 kts) 4.08 3.28 1.64 1.32 1.44 2.41
Transition Model (−5 ≤ D ≤ +7.5 kts) 3.58 3.06 1.86 1.32 1.68 3.90
Transition Model (7.5 ≤ D ≤ 20 kts) 2.93 2.61 1.59 1.25 1.70 2.47
Transition Model (20 ≤ D ≤ 45 kts) 2.80 2.79 1.38 1.24 1.71 2.43
Transition Model (45 ≤ D ≤ 70 kts) 2.39 2.08 1.40 1.16 1.44 2.38
Transition Model (70 ≤ D ≤ 95 kts) 1.96 1.73 1.44 1.28 1.33 2.52
Cruise Model (50 ≤ D ≤ 130 kts) 0.509 1.08 0.689 0.687 0.937 1.03
Glider Model (50 ≤ D ≤ 130 kts) 1.70 1.74 0.693 0.711 1.92 2.07

Table 10 Validation data percent NRMSE for each local model response

Model Name - or �G . or �H / or �I ! or �; " or �< # or �=
Hover Model (−5 ≤ D ≤ +20 kts) 5.23 3.04 1.38 1.53 1.47 2.82
Hover Model (20 ≤ D ≤ 45 kts) 4.64 3.98 1.69 1.52 1.61 2.69
Transition Model (−5 ≤ D ≤ +7.5 kts) 3.58 3.87 2.17 1.53 2.27 5.34
Transition Model (7.5 ≤ D ≤ 20 kts) 3.88 3.12 2.00 1.66 2.05 2.33
Transition Model (20 ≤ D ≤ 45 kts) 3.51 3.76 1.71 1.26 1.96 3.52
Transition Model (45 ≤ D ≤ 70 kts) 2.46 2.31 1.51 1.25 1.66 2.74
Transition Model (70 ≤ D ≤ 95 kts) 2.31 1.97 1.41 1.62 1.54 2.66
Cruise Model (50 ≤ D ≤ 130 kts) 0.478 1.17 0.768 0.766 0.966 1.12
Glider Model (50 ≤ D ≤ 130 kts) 1.87 2.07 0.688 0.733 2.04 2.53
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