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Abstract 
The commercial computational fluid dynamic (CFD) code ANSYS Fluent and multiple research CFD 

codes (ez4d which uses the conservation element and solution element (CESE) method and codes that use 
the flux reconstruction (FR) method) were tested using three different benchmark problems from the 
International Workshop for High-Order CFD Methods. The benchmark problems included the transonic 
Ringleb flow, vortex transport by uniform flow, and laminar boundary layer on a flat plate. Simulation 
results from the benchmark problems that had ez4d solutions showed that the Fluent solutions had less 
error than the ez4d solutions for a given degree of freedom. As expected, both the Fluent and ez4d 
solutions had larger errors for a given degree of freedom than the simulations that used the FR method 
because both Fluent and ez4d utilized a second-order scheme whereas the FR codes utilized a fourth-
order scheme. 

Nomenclature 
A  area 
cd  drag coefficient 
cf  skin friction coefficient 
h  length scale 
J  Ringleb parameter 
k  streamline parameter 
L  characteristic length 
n  number 
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O  numerical scheme order 
p  pressure 
q  velocity magnitude 
R  specific gas constant 
Rex  axial Reynolds number 
s  entropy 
T  temperature 
t  time 
u, v  streamwise and transverse velocity components 
x, y  cartesian coordinates 
Δywall  wall-normal spacing 
β  vortex strength 
δ  boundary-layer thickness 
γ  ratio of specific heats 
ρ  density 
 
Subscripts: 
GL  current grid level 
∞  freestream 

1.0 Introduction 
There is a push in the computational fluid dynamic (CFD) arena to develop CFD codes with higher 

accuracy while maintaining a relatively quick turn-around time in obtaining solutions. This push for 
higher accuracy has led to the development of several high-order research codes, including codes that are 
unstructured in nature. High-order refers to numerical schemes that are greater than second-order 
accurate. A set of CFD benchmark problems have been proposed to test high-order CFD codes, with 
results shared at the International Workshop for High-Order CFD Methods (Ref. 1). The workshop has 
been held five times since its inception in 2012. Most submissions to the workshops have been high-order 
solutions with a lack of low-order solutions to compare to. To help fill this solution gap, the authors 
decided to run a commercially available CFD code to compare its results to results from research codes. 
This paper presents the CFD results for three benchmark problems: transonic Ringleb flow, vortex 
transport by uniform flow, and laminar boundary layer on a flat plate. For comparison, each benchmark 
problem was simulated using several different codes: ANSYS Fluent, a research code utilizing the 
conservation element and solution element (CESE) numerical method, and research codes utilizing the 
flux reconstruction (FR) numerical method. 

2.0 Numerical Code Overviews 
2.1 ANSYS Fluent 

ANSYS Fluent Version 17.2 (Ref. 2) was the commercial CFD solver chosen for this study because 
of its popularity throughout industry and academia. Information from the Fluent website1 shows that the 
software’s popularity is due to its versatility: from designing and analyzing race cars to designing and 
analyzing water turbines. Fluent can use either a pressure- or density-based coupled solver and contains 

 
1https://www.ansys.com/products/fluids/ansys-fluent 
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several numerical schemes, including the Roe-FDS flux (Ref. 3), Green-Gauss node-based spatial 
gradient (Ref. 4), and the 2nd-order upwind spatial flow schemes that were used in the simulations 
presented in this paper. In addition, Fluent also allows users to create user-defined functions that allow the 
utilization of new and personalized models alongside the functions that are already within the software. 
With its connection and integration into ANSYS Workbench, the user is able to utilize and connect to 
many major computer aided design systems and complete all CFD components (i.e., geometry generation 
through post-processing) in one software package. Additional information on the full set of built-in 
functions and numerical schemes in Fluent can be found in the ANSYS Fluent Theory Guide (Ref. 5). 

2.2 Conservation Element and Solution Element (CESE) Method 

The CESE method, developed by S.-C. Chang (Refs. 6 and 7) in 1995, is a time accurate formulation 
with flux-conservation in both space and time. The method treats the discretized derivatives of space and 
time identically and utilizes a staggered mesh approach consisting of conservation elements (CE) and 
solution elements (SE). Originally developed as a second-order method, the CESE framework has been 
extended to higher orders (Ref. 8). The research code ez4d, developed by C.-L. Chang (Ref. 9), is an 
unstructured Navier-Stokes flow solver that utilizes the CESE numerical method. The code can run both 
the second-order accurate and the fourth-order accurate versions of the CESE scheme (Ref. 10), although 
only the second-order accurate scheme was used in this work.  

2.3 Flux Reconstruction (FR) Method 

The flux reconstruction approach, introduced by H. T. Huynh in 2007 (Ref. 11), provides a simple and 
economic framework to derive high-order numerical schemes for conservation laws. As used here, 
economic refers to the easiness of coding the numerical scheme as well as the cost efficiency of running 
the code. The main idea for the case of one spatial dimension is the following. The data are represented 
by a polynomial of degree n in each cell, and these polynomials collectively form a function, which can 
be and usually is discontinuous across cell interfaces. At each interface, the left and right states are used 
to define a common flux, which is typically the upwind flux. In each cell, the fluxes corresponding to the 
polynomial data can be approximated by polynomials again of degree n, which are also discontinuous 
across cell interfaces. These polynomials are called the discontinuous flux function. To resolve the jumps 
at the cell interface, we reconstruct the flux by a polynomial of degree n+1, which takes on the common 
flux values at the cell interfaces and thus, is continuous across cells. Such polynomials of degree n+1 are 
called continuous flux functions. In each cell, it approximates the discontinuous flux function, and 
different manners of approximation results in different schemes. The FR approach unifies several existing 
methods: it recovers the discontinuous Galerkin (DG), spectral volume, and spectral difference (or 
staggered-grid) methods. It also results in numerous new schemes with favorable properties (Ref. 12). 
While these schemes vary in order-of-accuracy, the fourth-order accurate version of the FR scheme was 
used in this work.  
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3.0 Problem Descriptions and Modeling 
3.1 Transonic Ringleb Flow 

The transonic Ringleb flow problem (Ref. 13), or Ringleb problem for short, involves an inviscid 
transonic flow through a 2D curved duct-like geometry, shown in Figure 1. For this problem, the 
Cartesian coordinates are defined as functions of a streamline parameter k and the nondimensional 
velocity magnitude q, shown in Equations (1) and (2). 

 ( ) 2 2
1 2 1,
2 2

 
= ⋅ − − ρ  

Jx q k
k q

  (1) 

 ( )
21, 1  = ± ⋅ −  ρ  

qy q k
k q k

  
(2) 

where 

 3 5
1 1 1 1 1log

3 5 2 1
+ = + + − ⋅  − 

aJ
a a a a

  (3) 

 
2

1
 
 γ− ρ = a   

(4) 

 
2

11
 γ
 γ− = ⋅

γ
p a   

(5) 

 211
2

γ −
= −a q   

(6) 

The left and right boundaries of the duct, modeled as slip walls, were defined by streamlines at k = 1.5 
and k = 0.7, respectively. The top and bottom boundaries of the duct, modeled as a subsonic inflow and 
outflow respectively, were defined by constant nondimensional velocity magnitudes of 0.5. For use with 
the Fluent code, which used the density-based solver, three structured 2D grids were generated by 
modifying the workshop provided P4-cell grids (which utilize high-order quad cells) with equivalent P1-
cell grids. For use with the ez4d code, three unstructured 2D grids were created using the Pointwise grid 
generation software by first creating a structured mesh and then slicing the quadrilaterals into triangles 
using the “best fit” diagonalize option. Figure 2 shows an example of the diagonalization process. The FR 
code used the P4-cell grids as provided by the workshop due to the need of higher-order mesh 
representation. Figure 3 shows example meshes and Table 1 provides a summary of the number of 
degrees of freedom for all the Ringleb cases. Note that for each code, the number of degrees of freedom, 
which is a function of the order of the scheme and the number of cells for a cell-based scheme or the 
number of nodes for a node-based scheme, were increased by increasing the number of cells/nodes within 
the computational domain. 
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Figure 1.—Ringleb geometry and boundary conditions. 

 
 

 
Figure 2.—Example of slicing a quad grid into triangles by diagonalization. 

 
 

 
Figure 3.—Example Ringleb grids: ez4d at 6,144 number of degrees of freedom (nDOF) (left), 

Fluent at 3,072 nDOF (center), and FR at 3,072 nDOF (right). 
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TABLE 1.—THE NUMBER OF DEGREES OF FREEDOM (NDOF) 
RUN BY EACH CODE FOR THE RINGLEB PROBLEM 

nDOF Fluent ez4d FR 
3,072 X - X 
6,144 - X - 
12,288 X - X 
24,576 - X - 
49,152 X - X 
98,304 - X - 

 
3.2 Vortex Transport by Uniform Flow 

The problem of vortex transport by uniform flow (Ref. 14) involves the transport of a vortex within a 
2D inviscid flow field. The flow field was bounded by x = 0-0.1 and y = 0-0.1 with the center of the 
vortex originating at xc = 0.05 and yc = 0.05. The vortex was defined by the following perturbations to the 
freestream flow field: 
 

 
( ) ( ) 20.51

0.005

−
∞− ⋅ β ⋅ − ⋅

δ =
rcu y y e

u  (7) 

 

 
( ) ( ) 20.5

0.005

−
∞β ⋅ − ⋅

δ =
rcu x x e

v  (8) 

 

 ( ) 22 10.5

1

−
∞⋅ β ⋅

δ =
γ

⋅
γ −

ru e
T

R
 (9) 

where 

 
( ) ( )2 2

0.005
− + −

=
c cx x y y

r  (10) 

 
The simulated vortex had a vortex strength, β, of 0.2 with the freestream flow oriented in only the 
x-direction at a Mach number of 0.5. The quadrilateral and triangle grids provided by the 3rd International 
Workshop on High-Order CFD Methods were used for both the Fluent, which used the density-based 
solver, and the FR code simulations. Sample grids are shown in Figure 4. The intent was to simulate the 
vortex with the ez4d code; however, simulations are still on-going and will be included in the paper when 
completed. The FR code hpMusic (Ref. 15) was used in lieu of the FR code that was used in the Ringleb 
problem due to that the authors were no longer funded to continue the research. The number of degrees of 
freedom run for the three codes are listed in Table 2. Just like with the Ringleb problem, the number of 
degrees of freedom per code were increased by increasing the cell count of each grid. Because periodic 
boundary conditions are used for all boundaries, this problem can be run indefinitely, with one period of 
time defined as the amount of time it takes for the vortex to propagate from its initial location through the 
domain and back to its initial location. 
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Figure 4.—Coarsened example vortex grids: Fluent/FR quadrilateral 

(left) and Fluent/FR triangular (right). 
 

TABLE 2.—THE NUMBER OF DEGREES OF FREEDOM (nDOF) 
RUN BY EACH CODE FOR THE VORTEX PROBLEM 

nDOF Cell type Fluent FR 
1,024 Quad X - 
2,048 Tri X - 
4,096 Quad X X 
8,192 Tri X X 

16,384 Quad X X 
32,768 Tri X X 
65,536 Quad X X 
131,072 Tri - X 
262,144 Quad - X 
524,288 Tri - X 

3.3 Laminar Boundary Layer on a Flat Plate 

The final test problem considered is a subsonic laminar flow over a 2D flat plate (Ref. 16). The 
problem set up is shown in Figure 5. Boundary conditions, also shown in Figure 5, include a subsonic 
inflow, pressure exit, symmetry, and the flat plate modeled as an adiabatic no-slip wall. Using the grids 
provided by the 3rd International Workshop on High-Order CFD Methods yields LH = 1.25, LV = 2, and 
the length of the adiabatic wall as one. Simulations on a total of four structured grids were performed 
using the Fluent code, which used both the pressure- and density-based solvers. Table 3 lists the wall-
normal spacing for the grids and Figure 6 shows a sample grid. The hpMusic code was once again used 
due to a lack of funding and also used the structured grids provided by the workshop. In addition, 
simulations were performed on five unstructured grids using the ez4d code, with the unstructured grids 
created by diagonalizing the structured grids used by the Fluent code. A full list of the number of degrees 
of freedom simulated are tabulated in Table 4. The freestream flow field for this problem was Mach 0.5, 
zero degrees angle of attack, and a Reynolds number of 1.0×106 (based on the length of the flat plate). 
Properties of the flow field included a Prandtl number of 0.72 and a ratio of specific heats of 1.4.  
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Figure 5.—Computational domain for the flat plate problem (Ref. 16). 

 
TABLE 3.—GRID WALL-NORMAL SPACINGS RUN BY 

EACH CODE FOR THE FLAT PLATE PROBLEM 
Δywall Fluent ez4d FR 

1.88×10–4 X - X 
9.38×10–5 X X X 
4.69×10–5 X X X 
2.34×10–5 X X X 
1.17×10–5 - X - 
5.86×10–6 - X - 

 

 
Figure 6.—Example flat plate grid 

with Δywall = 9.38×10–5. 
 

TABLE 4.—THE NUMBER OF DEGREES OF FREEDOM (nDOF) 
RUN BY EACH CODE FOR THE FLAT PLATE PROBLEM 

nDOF Fluent ez4d FR 
8,960 X - X 

17,920 - X - 
35,840 X - X 
71,680 - X - 
143,360 X - X 
286,720 - X - 
573,440 X - X 

1,146,880 - X - 
4,587,520 - X - 
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4.0 Results 
Note that the CFL numbers and time-step sizes run by each code were small enough to ensure that the 

spatial discretization errors would be bigger than the temporal discretization errors for each problem. 
Simulations for the Ringleb and flat plate problems were run steady-state while the simulations for the 
vortex problem were run time-accurate. 

4.1 Transonic Ringleb Flow 

Figure 7 to Figure 9 show some of the entropy contours computed using the three numerical codes at 
the degrees of freedom outlined in Table 1. It can be seen that all three codes converge towards a constant 
entropy flow field, with the variation in entropy occurring along the inner wall. Due to how the curved 
walls were represented in the grids used by the ez4d code, the ez4d simulations were rerun with the 
analytical solution used as the boundary condition for the inner and outer walls. Figure 10 to Figure 12 
show the entropy contours from the ez4d simulations. It can be seen that using the analytical solution at 
the boundaries has greatly improved the solutions compared to using the slip-wall boundary condition. 

Aside from contour plots, the error associated with each converged solution was also explored. For 
the Ringleb problem, the error of interest was the L2 norm for entropy and was computed as follows: 
 

 ( )
( )2

1

,1
2

=

=
−

=
∑

∑ ∫
i

n
i exact i

i

i A
L s n

i

s s dA
E

A
rror  (11) 

 
where the entropy, 𝑠𝑠, is defined as: 
 

 
γ

=
ρ
ps  (12) 

 
and the exact entropy, sexact, was computed to be 0.7143 via the Ringleb problem analytical solution. 

The length scale, h, was defined as a function of the degrees of freedom, which in turn is a function of 
the order of the numerical scheme and the number of cells or nodes per grid if the numerical scheme is 
cell- or node-based, respectively. 
 

 
( ) ( )

1 1
1

= =
− ⋅DOF cells nodes

h
n O n

 (13) 

 
Figure 13 shows the L2 norm of the entropy error for the Ringleb problem. It should be noted that 

Fluent was unable to get a converged solution at 12,228 degrees of freedom and therefore that data point 
was omitted from the figure. It can be seen that the Fluent solutions have a lower entropy error than the 
ez4d solutions with the slip-wall boundary condition, but have a higher entropy error than the ez4d 
solutions with the analytical solution boundary condition. In addition, all Fluent and ez4d solutions have a 
higher entropy error than the FR solutions for a given length scale. This is largely due to the fact that the 
FR method utilized a fourth-order scheme whereas both Fluent and ez4d utilized second-order schemes. 
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The Fluent and FR solutions respectively showed expected order of accuracy with second- and fourth-
order convergence; however, the ez4d solutions using the slip-wall boundary condition only demonstrated 
first-order convergence. This is because the convergence rate of the CESE method is sensitive to the 
representation of the boundary curvature. Since the curved boundaries of the Ringleb problem were 
represented by a series of first-order lines in the grids that were used with ez4d, it prevented the code 
from converging at its expected second-order rate. This is mitigated when using the analytical solution 
boundary condition, which showed the expected second-order convergence. While the Fluent simulations 
also used grids with first-order representation of the curved boundaries, the numerical schemes as 
implemented are less sensitive to the boundary representation, partially explaining why the Fluent 
solutions showed second-order convergence and the ez4d solutions using the slip-wall boundary 
condition did not. Further, the FR solutions showed fourth-order convergence partially due to the use of 
grids with fourth-order representation of the curved boundaries. 
 
 
 

  
Figure 7.—Entropy contours for Fluent with 3,072 degrees of 

freedom (left) and ez4d with 6,144 degrees of freedom (right). 
 
 
 
 
 

  
Figure 8.—Entropy contours for FR with 12,288 degrees of 

freedom (left) and ez4d with 24,576 degrees of freedom (right). 
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Figure 9.—Entropy contours for Fluent with 49,152 degrees of 

freedom (left) and ez4d with 98,304 degrees of freedom (right). 
 
 
 

  
Figure 10.—Entropy contours for ez4d with 6,144 degrees of 

freedom using the analytical solution (left) and slip-wall (right) 
boundary conditions. 

 
 
 

  
Figure 11.—Entropy contours for ez4d with 24,576 degrees of 

freedom using the analytical solution (left) and slip-wall (right) 
boundary conditions. 
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Figure 12.—Entropy contours for ez4d with 98,304 degrees of 

freedom using the analytical solution (left) and slip-wall (right) 
boundary conditions. 

 
 
 
 

 
Figure 13.—L2 entropy error for the Ringleb problem.  
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4.2 Vortex Transport by Uniform Flow 

Figure 14 through Figure 18 show some of the nondimensional u velocity contours computed using 
the two numerical codes at the various degrees of freedom outlined in Table 2. The ez4d solutions are 
absent from these comparisons as an incorrect setup could not be rectified due to a lack of 
time/discontinuation of funding. The u velocity contours were nondimensionalized by the freestream 
velocity, u∞. It can be seen that for a given degree of freedom, the vortex tends to stretch and move 
downwards in the domain as the number of completed periods increases. However, increasing the number 
of degrees of freedom has the expected result of better preserving the exact strength and location of the 
vortex after completing 50 periods. The two exceptions to this are the Fluent solution with 16,384 and 
32,768 degrees of freedom, which appear to dissipate the vortex completely by the time 50 periods have 
been completed. A closer examination of the 32,768 degrees of freedom solution reveals the highly 
stretched remnants of the vortex, as shown in Figure 19. For comparison, Figure 19 also shows the FR 
solution at the same degrees of freedom. 

The errors of interest for this problem were the velocity components after the vortex had completed 
50 time periods of transport. Since all boundaries are periodic and this is a purely inviscid flow, the exact 
solution after completing an integer number of periods is simply the initial conditions for the vortex 
problem. The L2 norm for the u and v velocities were defined in a similar manner to the L2 norm for the 
Ringleb problem.  

 ( )
( )2,1

2

1

=

=

−
=
∑ ∫

∑

n
i initial ii Ai

L u n
ii

u u dA
Error

A
 (14) 

 ( )
( )2,1

2

1

=

=

−
=
∑ ∫

∑

n
i initial ii Ai

L v n
ii

v v dA
Error

A
 (15) 

Figure 20 shows the L2 norm of the u and v velocities for the vortex problem. On both the 
quadrilateral and triangular meshes, the Fluent solutions tend to be relatively flat, close to zeroth-order 
convergence. This is mostly due to the dissipation error maxing out the integrated L2 error and is 
suspected that the Fluent solutions would show an improved order of convergence if given enough 
degrees of freedom. The FR solutions show fourth-order convergence on both the quadrilateral and 
triangular meshes. All of the above trends hold true for the L2 norm of both the u and v velocities. 

 

 
Figure 14.—u velocity contours after 1 time period (left) and 50 time periods 

(right) for Fluent on a quadrilateral mesh with 16,384 degrees of freedom. 
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Figure 15.—u velocity contours after 1 time period (left) and 50 time periods 

(right) for Fluent on a triangular mesh with 32,768 degrees of freedom. 
 
 
 
 

  
Figure 16.—u velocity contours after 1 time period (left) and 50 time periods 

(right) for Fluent on a quadrilateral mesh with 65,536 degrees of freedom. 
 
 
 
 

  
Figure 17.—u velocity contours after 1 time period (left) and 50 time periods 

(right) for FR on a quadrilateral mesh with 16,384 degrees of freedom. 
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Figure 18.—u velocity contours after 1 time period (left) and 50 time periods 

(right) for FR on a triangular mesh with 524,288 degrees of freedom. 
 
 
 
 

  
Figure 19.—u velocity contour after 50 time periods for Fluent (left) and FR 

(right) on a triangular mesh with 32,768 degrees of freedom with the contour 
range zoomed in. 

 
 
 
 

  
Figure 20.—L2 u velocity (left) and v velocity (right) errors for the vortex problem after 50 time periods.  
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4.3 Laminar Boundary Layer on a Flat Plate 

For the flat plate problem, the parameter of interest was the error in the drag coefficient, 𝑐𝑐𝑑𝑑. Because 
there is no exact solution for a compressible laminar boundary layer, the exact drag coefficient was 
estimated by using Equation (16), which is a form of Richardson extrapolation (Refs. 17 and 18). 

 
( )

, , 1
, ,

2 1
− −= +

−
d GL d GL

d exact d GL O n
c c

c c   (16) 

The error in the drag coefficient was then computed by Equation (17). 

 ( )2
,

2
,

−
= d d exact

cd
d exact

c c
Error

c
  (17) 

where 

 3, , , 1.401 10−= ⋅d exact Fluent pc  (18) 

 3, , , 1.332 10−ρ = ⋅d exact Fluentc  (19) 

 3, , 4 1.265 10−= ⋅d exact ez dc  (20) 

 3, , 1.313 10−= ⋅d exact FRc  (21) 

The two exact drag coefficients for the Fluent code are for the pressure-based solver (cd,exact,Fluent,p) and the 
density-based solver (cd,exact,Fluent,ρ). 

Figure 21 shows the error in the drag coefficient as a function of length scale. It can be seen that the 
Fluent pressure-based solver solutions show first-order accuracy while the Fluent density-based solver 
solutions show an order-of-accuracy between first- and second-order. This is in contrast to the ez4d 
solutions which show second-order accuracy, however, it is noted that the Fluent solutions tend to have 
less error for a given length scale compared to the ez4d solutions. It can also be seen that the FR solutions 
show the expected fourth-order accuracy. One thing to keep in mind with Figure 21 is that it is plotting 
error based on a solution-dependent estimate of the exact drag coefficient value, which is a value that 
varies between codes. With that in mind, the FR solutions are converging to the estimated exact drag 
coefficient value of 1.31×10–3 that is reported by other codes (Refs. 19 and 20). The Fluent solutions that 
used the density-based solver converge closer to the reported estimated exact drag coefficient than the 
solutions from the pressure-based solver, which in turn are closer than the ez4d solutions. 

Table 5 shows the sensitivity of the estimated exact drag coefficient to the number of degrees of 
freedom. For the FR solutions, the estimated exact drag coefficient improves with increasing degrees of 
freedom and ultimately converges. The estimated exact drag coefficients for the Fluent density-based 
solver and ez4d solutions show initial improvement with increasing degrees of freedom. However, 
increasing the number of degrees of freedom beyond 143,360 for the Fluent density-based solver 
solutions and 1,146,880 for the ez4d solutions results in the respective codes overshooting the estimated 
exact drag coefficient value seen by others and do not reach a converged state. The Fluent pressure-based 
solver solutions predict an estimated exact drag coefficient that diverges from the value seen be others 
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with increasing degrees of freedom and does not reach a converged state. It is not known at this time why 
the Fluent and ez4d solutions behave in these ways. 

Two additional metrics were used to compare the results between the three codes. First, u velocity 
profiles were compared, as shown in Figure 22. For reference, the incompressible Blasius solutions were 
also plotted, and all profiles were nondimensionalized by the freestream velocity, u∞. It can be seen that 
all four CFD solutions agree well with each other. Second, the flat plate skin friction coefficient profiles 
were plotted, as shown in Figure 23. Just like the u velocity profiles, the Blasius solution was plotted for 
reference and the CFD solutions agree well with each other. These two additional metrics show that the 
codes are converging to the expected solution. 
 
 
 

 
Figure 21.—Drag coefficient error for the flat plate problem. 

 
 
 

TABLE 5.—ESTIMATED EXACT DRAG COEFFICIENT BASED 
ON RICHARDSON EXTRAPOLATION 

nDOF Fluent (p-based) Fluent (ρ-based) ez4d FR 
8,960 NA NA - NA 
17,920 - - NA - 
35,840 1.314×10–3 1.278×10–3 - 1.315×10–3 
71,680 - - 1.596×10–3 - 

143,360 1.316×10–3 1.318×10–3 - 1.313×10–3 
286,720 - - 1.458×10–3 - 
573,440 1.401×10–3 1.332×10–3 - 1.313×10–3 

1,146,880 - - 1.287×10–3 - 
4,587,520 - - 1.265×10–3 - 
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Figure 22.—Nondimensional u velocity profiles for ez4d with 1,146,880 degrees of freedom, 

Fluent with 573,440 degrees of freedom, and FR with 573,440 degrees of freedom. 

 

- 
Figure 23.—Skin friction coefficient profiles for ez4d 

with 1,146,880 degrees of freedom, Fluent with 
573,440 degrees of freedom, and FR with 573,440 
degrees of freedom. 
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5.0 Conclusions 
To conclude, several different CFD codes were run on three different high-order workshop 

benchmark problems to compare solution accuracy between the codes. Converged solutions produced by 
the ANSYS Fluent code had lower errors compared to converged solutions produced by the ez4d code for 
the Ringleb and flat plate problems. Both the Fluent and ez4d converged solutions had higher errors for 
all benchmark problems presented in this paper when compared to the converged solutions from the FR 
codes for a given length scale. Whereas both Fluent and ez4d utilized second-order schemes, the FR 
codes utilized a fourth-order scheme, explaining why they outperformed both Fluent and ez4d in terms of 
error at the same number of degrees of freedom. 
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