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This work addresses preconditioning approaches for an implicit high-order solver frame-
work applied to multiple physics. The solver is based on a space-time spectral element method
and matrix-free Newton-Krylov solver developed at NASA over the recent years. Within this
context, most preconditioning methods are impractical, as the computational time and mem-
ory requirements scale poorly with increasing polynomial orders. To improve computational
efficiency, we first describe a novel entity-based Block Jacobi preconditioner for the continuous-
Galerkin solution of the linear-elasticity and linear-shell equations. Second, we introduce a
multigrid algorithm to further reduce time-to-solution on stiff cases arising from continuous-
and discontinuous-Galerkin discretizations. Results obtained on relevant single-physics ref-
erence solutions, demonstrate the feasibility of the methods, paving the way for high-order
solutions of fully coupled multi-physics problems.

I. Introduction
As there are many engineering problems involving the coupling of multiple physics, there is a growing interest in

developing solution strategies that account for these effects, leveraging the variety of methods and tools available to
accurately solve single physics discretizations. Common approaches involve the use of partitioned solution strategies,
which re-use existing single physics solvers through data transfers. Such coupling schemes, which do not require
modifications of the single physics solvers, have natural limitations, as they tend to be non-conservative, inaccurate,
and numerically unstable [1]. As a consequence, development efforts to achieve robustness and accuracy of the
associated single physics solvers are lost. On the other hand, monolithic approaches can be consistent, stable, and
high-order accurate, at the expense of a higher software development effort. To this end, recent research at NASA
has focused on the development of a high-order monolithic implicit multi-physics solver [2, 3]. The infrastructure
supports the discontinuous-, continuous-, and C1-discontinuous-Galerkin numerical methods in a fully space-time
manner, along with adjoint and tangent solver capability. One of the goals is to simulate the complex fluid structure
interaction of flow past an entry capsule with a parachute attached. This requires simulating multiple physics like the
compressible Navier-Stokes equations, the dynamics of a moving body using the linear elasticity equations and the
structural response of the thin parachute using the linear shell equations. More recent applications are high-order mesh
generation capabilities [4] and the solution of the Eikonal equation [5].

High-order discretizations have many theoretical advantages over conventional numerical methods when solving for
multi-physics partial differential equations (PDEs). The objective of the current work is to introduce a preconditioning
suite that allows for the efficient solution of linear systems arising from the space-time implicit discretization of multiple
physics problems up to 16th-order accuracy in both space and time. The key idea is to build preconditioners in a
local-to-each physics fashion, which simplifies the implementation from a software design perspective, while maintaining
the coupling between each physics when assembling the linearization of the residual. These individual single physics
preconditioning methods can then be combined arbitrarily into a monolithic system by properly considering coupling
terms. One of the main issues this work addresses is the prohibitive computational cost at high-order of standard
matrix-based factorization algorithms, both from CPU time and memory requirements. To this end, the solver relies
upon a matrix-free implementation of the linearization operator to avoid the computation and storage of the Jacobian
matrix [6]. An efficient preconditioner still requires the use of parts of the iteration matrix and therefore we focus on
devising operators and strategies that maintain the limited memory footprint of the solver.

Previous work has emphasized the development of solvers and preconditioners for the set of Navier–Stokes equations,
which is the most costly physics module in the current suite. A novel tensor-product formulation of the preconditioner
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operator [7] is efficient on ”benchmark" cases, however, this alone is not effective enough for stiff linear systems
associated with low mach numbers or general mesh elements. To this end, an extension of the method based on multigrid
techniques, which relies on efficient coarse order smoothers based on the incomplete lower-upper decomposition (ILU)
of the iteration matrix, was recently investigated [8]. This algorithm shows potential for high-order computational fluid
dynamics (CFD) simulations providing improvements in computational efficiency in the diffusion dominated regions of
the flow.

In this work, we first report recent developments towards an efficient preconditioning method for the elastic solvers
of the multi-physics framework. The preconditioner is based on the factorization of the Jacobian matrix associated with
degrees of freedom located at the lower-dimensional entities of the mesh, while employing a diagonal approximation of
the volumetric terms of the matrix. This results in a computational cost that scales as that of a two-dimensional implicit
solver and can be applied to space-time solutions up to 16th order. Second, we further improve the computational
efficiency by extending the multigrid preconditioning algorithm previously reported by the authors [8] to the elastic
solvers, where the newly designed preconditioner is applied on the GMRES smoothers of the fine levels. Third, we
extend the preconditioning method described in [8] for the solution of stiff adjoint problems.

In the following sections, the space-time discretization of the equation sets are briefly introduced, together with
a detailed description of the preconditioning operators. Results involving the application of this preconditioner to
mesh deformation/optimization cases, and the two-dimensional simulation of a deforming membrane will be presented
afterwards. Finally, we will show the performance of the newly designed multigrid preconditioner for the solution of
stiff linear systems arising from the elasticity solver, as well as the solution of a adjoint problems arising from the
Navier–Stokes equations.

II. The numerical framework

A. Compressible Navier–Stokes equations
The spatial discretization for the Navier–Stokes equations is based upon the discontinuous-Galerkin method described

by Diosady and Murman [6]. The method employs an entropy-stable formulation of the compressible Navier–Stokes
equations. The discretization is based on a tessellation of the domain Ω into possibly curved non-overlapping
elements, K, while the time is partitioned into intervals, here denoted as time-slabs, defined as In = [tn, tn+1]. The
polynomial approximation space is defined asV = {w,w |K×I ∈ [Pκ(K × I)]m}, with κ equal to the order of polynomial
approximation in the space-time domain consisting of piece-wise polynomial functions, where m is the number of
equations. We seek a solution v ∈ Vh such that the weak form

r(w,v) =
∑
κ

{∫
I

∫
κ
−

(
w,t · u + ∇w · ( f

I − fV )
)

+

∫
I

∫
∂κ

w · ( f̂ I · n − f̂V · n)

+

∫
κ
w(tn+1
− ) · u(t

n+1
− ) − w(tn+) · u(t

n
−)

}
= 0 (1)

is satisfied for all w ∈ Vh, where u = u(v) as given above. Here f̂ I · n and f̂V · n denote numerical flux functions
approximating the inviscid and viscous fluxes, respectively, while n is the outward pointing normal vector. In this work,
the inviscid flux is discretized using the method of Ismail and Roe [9], while the viscous flux is discretized using an
interior penalty method with stabilization parameters computed following the second form of the Bassi and Rebay
scheme [10]. We remark that tensor-product basis functions [11] are employed to reduce the computational complexity
of the residual evaluation through the use of the sum-factorization approach. The computational costs can be further
reduced by the use of optimized numerical kernels to maximise the throughput of the application on state-of-the-art
CPU architectures.

B. Linear elasticity equations
The code infrastructure is based on the work of Diosady and Murman [12]. We here recall the basic elements of

the discretization strategy, while pointing to the previous work for further details. In order to obtain a volume mesh
displacement, we solve the equations of linear elasticity given the prescribed displacement at the boundaries. The linear
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elasticity equations are:

σi j , j = 0. (2)

Here σi j is the Cauchy stress tensor given by:

σi j = 2µεi j + λεkk (3)

where µ = E
2(1+ν) and λ = µ

2ν
1−2ν are the Lamé constants given as a function of the Young’s Modulus, E , and Poisson

ratio, ν. The strain tensor, ε is given by:

εi j =
1
2
(
ui, j + u j ,i

)
(4)

where u is the displacement field. A compact representation of the stress tensor may be given by σi j = Ci jklui, j , where
Ci jkl is the stiffness tensor.

To obtain a space-time discretization, we partition the spatial domain Ω into non-overlapping elements, κ, and the
time domain is divided into intervals, here time-slabs, In = [tn, tn+1], similarly to what is described for the Navier–Stokes
equations. For each time slab, we fix the temporal coordinate and solve for the 3-spatial coordinates of the displacement
of the space-time mesh from a reference initial spatial mesh. We apply a continuous-Galerkin discretization of (2) over
the initial mesh. Let us define

V =
{
w ∈ H1(Ω) × L2(I)),w |κ ∈ [P(κ × I)]3

}
,

as the space-time finite-element solution space consisting of C0 continuous piece-wise polynomial functions on each
element. We seek solutions for the mesh displacements, u ∈ VE satisfying

r(w,v) =
∑
κ

{
−

∫
I

∫
κ0
wi, jCi jkluk ,l +

∫
I

∫
∂κ0∩∂Ω

̂wiCi jkluk ,ln j

}
= 0. (5)

It is worth noting that we solve for the displacements for steady-state cases, while for unsteady cases we solve for
the velocity field at each time slab, while the displacements are obtained as u(t) = u(0) +

∫ T

0 vdt. The specified
displacements are weakly enforced on the boundaries of the fluid mesh.

Using a particular choice of basis to discretize the spaceV, equation (5) leads to a system of linear equations which
must be solved for the mesh displacement. Since our goal is to use the mesh deformation strategy as part of an unsteady
fluid-structure interaction simulation, efficient solution of the resulting system of equations is required. Here we rely
on the tensor-product formulation of the basis functions like we do when solving for the compresisble Navier-Stokes
equations. The computation of the residual semilinear form involves computing integrals over the space-time mesh
elements. However, degrees of freedom associated with mesh entities are shared between two or more mesh elements.
For this reason, the global vector of degrees of freedom is mapped into a local-to-each element arrangement before
computing (5), while the opposite operation is performed on the residual vector. These gather/scatter operations from
global to local memory layout allow to efficiently reuse the same optimized tensor-product computational kernels as for
the discontinuous-Galerkin solver in order to further reduce the computational cost on state-of-the-art CPU architectures.

C. Linear-shell equations
The linear-shell equations model the parachute fabrics as a shell structures in a thin curved domain, and it computes

the velocity (x,t ) for the unsteady linear-shell simulations with respect to the undeformed mid-surface, represented by
the ξ1, ξ2 curvilinear coordinates, of thickness h in the ξ3 direction. The linear-shell equation reads as:

−A3
[
Σαβ

]
,ξαξβ

−
1
2

(
Aα

[
Παβ

]
,ξβ
+ Aβ

[
Παβ

]
,ξα

)
−

Aα,ξβ × A2 + A2 × A3 Aα,ξβ · A3

| |A1 × A2 | |

[
Σαβ

]
,ξ1
−

A1 × Aα,ξβ + A3 × A1 Aα,ξβ · A3

| |A1 × A2 | |

[
Σαβ

]
,ξ2

−q + ρhx,tt = 0,

(6)

where Σαβ =
[

Eh3

12(1−ν2)
CαβγδBγδ

]
, Παβ =

[
Eh

1−ν2 CαβγδHγδ
]
and Ais are the undeformed mid-surface basis vectors. Hαβ ,

Bαβ , Cαβγδ , q, E , ν and ρ are the membrane strain, bending strain, rank-4 symmetric tensor, load on the mid-surface,
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Young’s Modulus, Poisson ratio, and density respectively. Further details of the linear-shell equations can be found in
Burgess et al. [13].

To discretize the second-order derivative in Eqn. 6, a C1-discontinuous-Galerkin spectral-element methodology was
developed. We partition the spatial undeformed mid-surface Ωs into non-overlapping elements, κs , and the time domain
is divided into intervals, here time-slabs, In = [tn, tn+1] to obtain a space-time discretization. We define

V =
{
w ∈ H1(Ωs) × L2(I)),w |κs ∈ [P(κs × I)]3

}
the space-time finite-element space consisting of C0 continuous piece-wise polynomial functions on each element. We
then seek solutions for the mesh velocity, x,t ∈ VE satisfying

r(w, Ûx) =
∑
κs

{

∫
κs

∫
t

1
2

(
Aα · w,ξβ + Aβ · w,ξα

) [
Παβ

]
+

∫
κs

∫
t

(
−A3 · w,ξαξβ + w,ξ1 ·

Aα,ξβ × A2 + A2 × A3 Aα,ξβ · A3

| |A1 × A2 | |
+ w,ξ2 ·

A1 × Aα,ξβ + A3 × A1 Aα,ξβ · A3

| |A1 × A2 | |

) [
Σαβ

]
−

∫
κs

∫
t

q · w −

∫
dΩs

∫
t

N · w +

∫
κs

∫
t

ρhx,tt · w +
∫
dκs

∫
t

JΣαβ } = 0,

(7)
where N is the traction at the shell boundaries and JΣαβ is the jump terms arising from the second-order derivative
terms [13]. Similar to the linear elasticity, the displacement x are obtained as x(t) = x(0) +

∫ T

0 x,tdt.

D. Implicit time integration
The space-time fully coupled linear system is solved using a matrix-free Newton-Krylov algorithm. A single Newton

update is obtained through the solution of (
∂R∗

∂U

)
∆Uk = −R∗(Uk), (8)

with R∗(U) is the unsteady residual and ∆Uk is the Newton’s update. We remark that the vectors R∗ and U may span
multiple physics and multiple discretization methods, which are fully coupled by appropriate boundary conditions as
reported in [2]. Eq. (8) represents a linear system that we solve using a preconditioned restarted Flexible Generalized
Minimal Residual (FGMRES) algorithm [14]. One advantage of such a method is that the residual Jacobian matrix
∂R∗/∂U is not required explicitly, only its product with the residual update. This task is accomplished within the
following steps:

1. Evaluation of the state, gradient, linearized state and linearized gradient (U , ∇U , V and ∇V ) at the quadrature
points.

2. Evaluation of the linearized fluxes (FLin =
∂F
∂UV + ∂F

∂∇U∇V ) at the quadrature points.

3. Multiplication of the linearized fluxes with the gradient of the basis functions.

The use of a matrix-free implementation decouples the use of the Jacobian to compute the Fréchet derivatives with
respect to its use for preconditioning, and increases the flexibility of the solver.

III. Entity-based preconditioning for the continuous-Galerkin discretization

A. Method
For the structual solver, which is based on a continuous-Galerkin (CG) formulation, preconditioning is based on the

factorization of the Jacobian blocks associated with the degrees of freedom residing on the lower-dimensional entities.
Following standard CG practices, we divide the degrees of freedom by entity type: vertices (v), edges (e), faces ( f ) and
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volumes (κ). This reflects on the Jacobian matrix, which can be divided in a 4x4 entity-block matrix:

∂R
∂U =


Av,v Av,e Av, f Av,κ

Ae,v Ae,e Ae, f Ae,κ

A f ,v A f ,e A f , f A f ,κ

Aκ,v Aκ,e Aκ, f Aκ,κ


. (9)

Each block Ai, j contains the dependence of the residual vector associated with a given entity i with respect to a degree of
freedom located on an entity j. In order to build a preconditioner, we first neglect the mixed entity-blocks, i.e. we only
consider the block diagonal of (9). This not only reduces the storage, but considerably simplifies the computation and
factorization of the preconditioner. This savings allows to factorize each entity sub-section of the matrix independently,
increasing the computational efficiency of the method. Note that each one of the entity-wise Jacobian blocks represents
a sparse matrix. Av,v , Ae,e and A f , f have a sparsity pattern associated with the mesh element connectivity, and can be
stored in the block-compressed sparse-row format (BSR). This increases the computational efficiency of the factorization
and the triangular solve with respect to a standard compressed sparse-row format (CSR) by reducing indirect addressing
and using optimized matrix-matrix products. On the other hand, the Jacobian block associated with the volumes Aκ,κ

are dense and block-diagonal by construction with the use of our modal basis functions.
It is worth noting that it would still be impractical to use the full block diagonal matrix Aκ,κ at very high-order

of accuracy, since the space and time complexity of factorization algorithms scale poorly with polynomial order. In
order to circumvent this issue, we store its diagonal approximation, which reduces substantially the computational
cost of the method. Once the reduced matrix has been assembled, we construct the preconditioner as in Equation (10)
by computing the incomplete LU with zero filling (ILU0) factorization of each matrix independently, which can be
performed at a very low computational cost. For the volume terms, the ILU reduces to the computation of the reciprocal
element of the point diagonal. We refer to this approach as Entity Block-ILU0 (EILU0).

P−1 =


ILU0(Av,v)

ILU0(Ae,e)

ILU0(A f , f )

diag(Aκ,κ)
−1


. (10)

A further reduced version of the preconditioner can be obtained by neglecting the off-diagonal blocks of the Jacobian
matrices Av,v , Ae,e and A f , f . In this case, the Block-ILU0 reduce to the LU factorization of each diagonal block of the
matrix, which significantly reduces the CPU time and memory requirements. In the remainder of the paper, we will
refer to this approach as Entity Block-Jacobi (EBJ). Although an eigenvalue analysis showed that the spectral properties
of this block-diagonal matrix do not allow to construct a simple Jacobi-iterative solver, its use within a GMRES linear
solver proved to be very effective to reduce the computational costs.

B. Performance
The first test case here considered is the deformation of a box-in-box mesh [12], which involves embedding a box of

size (0.2 × 0.2) within a unit box (1 × 1) and rotating the interior box by a prescribed motion. We consider here mesh
motions on a 2nd-, 4th- and 8th-order meshes with a fixed number of mesh elements (24), as depicted in Figure 1. To
focus on the performance of the solver rather than the efficacy of the mesh deformation algorithm, the solver employs
a linear elastic model with constant Young modulus E and Poisson ratio ν throughout the domain. Figure 2 shows
the convergence plot of the test case for N = 2,4,8 order solutions. The Entity Block Jacobi preconditioner provides
considerable improvements with respect to the unpreconditioned case, and, as expected, the advantages increase with the
increased stiffness at higher solution order, with the reduction of total CPU time greater than two orders of magnitude.

Next, we examine the performance of the preconditioner operator in a test case involving mesh deformation of a
low-pressure turbine airfoil presented in [15]. Starting with an initial mesh, we apply perturbations along the surface
normal to represent surface roughness effects, and use the elasticity approach to propagate the surface deformations into
the domain. Figure 3 shows the deformation applied at the surface of the turbine blade, as well as the deformed mesh
near the leading edge of the blade. This approach is associated with a fixed point (steady-state) mesh displacement.
Figure 4 compares the method with respect to the unpreconditioned case. It can be observed that the entity-based
preconditioner again reduces the CPU time by roughly two orders of magnitude.
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Fig. 1 Box-in-box test case. Initial mesh (left) and θ = 30°deformed mesh (right) coloured by the determinant
of the scaled Jacobian for the 8th order case.

Fig. 2 Preconditioner performance on the mesh deformation algorithm applied to the box-in-box case. Com-
parison between the Entity Block Jacobi (EBJ) preconditioner and unpreconditioned solutions.

Fig. 3 Geometric mesh deformation of the LPT airfoil. Surface normal displacement (left) and its volumetric
propagation within the domain (right).
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Fig. 4 Performance of the mesh deformation algorithm applied to the LPT airfoil up to N = 16 order.
Comparison between the Entity Block Jacobi (EBJ) preconditioner and unpreconditioned solutions.

Fig. 5 Unconstrained plate subject to external periodic forcing in phase with the 4th-vibration mode, coloured
by the vertical displacement. The mesh is made by 8x8 elements, while t̃ indicates the non-dimensional time.

(a) t̃ = 0.0 (b) t̃ = 0.125 (c) t̃ = 0.25 (d) t̃ = 0.375 (e) t̃ = 0.5

Fig. 6 Preconditioner performance on the linear-shell simulation of an unsteady free-free plate for different
polynomial orders N = 2,4,8,16. Comparison between the Entity Block Jacobi (EBJ) preconditioner and
unpreconditioned solutions.

Finally, we examine the performance of the preconditioner on the linear-shell simulation of an unconstrained
plate using 4th-order discretization in time, see Figure 5. The preconditioner strategy for the linear-shell follows the
methodology employed for the linear-elasticity, with the addition that the Jacobian matrix is modified to take into
account the high-order derivative contribution. Note that in lower-dimensional problems, such as the linear-shell solver
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on a surface instead of a volume, the "volumes" are the faces of the mesh, so the discussion of Eqn. (10) is consistently
reduced by the topological dimension. Similarly to the previous test cases, we report results for different polynomial
orders in space on the same number of mesh elements. Figure 6 shows significant improvements in the computational
efficiency, where the highest order case (N = 16) converges several orders of magnitude faster than the case without a
preconditioner.

IV. Multigrid preconditioning

A. Method
A multigrid preconditioner has been introduced by the authors in [8]. A stack of nested discretization spaces,

V0 ⊂ . . .V` ⊂ . . .Vc , withV0 = V, is constructed by lowering the order of the element-wise polynomial approximation
of the solution and applying an iterative solver in each one of them. On coarse spaces, low-frequency modes of the
error shift towards the upper side of the spectrum, and hence are damped more effectively by the iterative solver. The
approach to obtain coarse spaces follows a matrix-free framework, where the L2-projection of the state is used to apply
the linearization of the residual to the vector of unknowns of the linear system on the coarse level. The L2-projection
operator for our discontinuous-Galerkin spectral-element solver is local to each element,∫

I

∫
κ
w`+1w`+1U`+1 =

∫
I

∫
κ
w`+1w`U` (11)

with w` ∈ V` , w`+1 ∈ V`+1 and V` ⊂ V`+1. Hence, the coarse space state can be obtained as a sequence of
matrix-vector products

U`+1 =M−1
`+1Φ

T
`+1W`Φ`U` = I

`+1
` U` (12)

whereΦ is the interpolation matrix, W is the diagonal matrix of the Gauss-quadrature weights, and M is the mass matrix.
The subscript `, ` + 1 represents the multigrid level. Similarly, the prolongation operator, defined as the natural injection
of the coarse DoFs into the fine space solution, is obtained as an L2 projection between the coarse and the fine space:

U` =M−1
` Φ

T
` W`Φ`+1U`+1 = I

`
`+1U`+1 (13)

Finally, the restriction operator, to be applied to residual vectors, can be obtained as the transpose of the prolongation.
That is, considering the symmetry of the mass matrix,

R`+1 = Φ
T
`+1W`Φ`M−1

` R` = (I
`
`+1)

TR` (14)

Note thatΦ and M are applied using the same tensor-product sum-factorization approach used for the residual evaluation.
The projection, restriction and prolongation operators are defined on elements, however, when we apply the multigrid

preconditioner in a continuous-Galerkin solver, the global degrees of freedom are ordered according to the entities.
Hence, before and after applying the element-wise operators, we gather/scatter the DoFs from the global ordering to the
elemental ordering and vice-versa. During the first gather operation, shared degrees of freedom are effectively duplicated
in the elemental representation of the problem. Hence, no continuity requirement is enforced during the application of
the restriction, prolongation, and projection operators. The high-order interior modes of the C0-continuous piecewise
polynomial functions are orthogonal with each other, but non-orthogonal to the modes of topologically lower entities,
which results in different values of the shared entities in different elements. To ensure continuity, shared-entity values
are averaged during the scatter operation. Note that the average operation is only required in the restriction and in the
L2-projection operators, as the prolongation simply pads the higher order modes with zeros .

Here we provide an overview of the sequence of operations involved in p-multigrid iterations. The recursive
p-multigrid V-cycle for the problem of Eq. (8) on level ` is reported in Algorithm 1. To obtain an application of the
p-multigrid preconditioner the multilevel iteration is invoked on the fine problem. One MGV iteration requires two
applications of the smoother on the finest level (one pre- and one post-smoothing) and one application of the coarse
level smoother independently from the number of levels.

The choice of the smoother plays an important aspect for the computational efficiency of the method. Traditionally,
stable operators with optimal smoothing properties have been used to achieve high multigrid efficiency. Notable
examples are the Jacobi iterative method or a multi-stage Runge-Kutta. However, these methods may suffer from stability
issues, which are typically prevented by the use of under-relaxation factors. On the other hand, more complex smoothing
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algorithms, such as few iterations of a GMRES solver, are stable by construction and can work with arbitrarily complex
problems, and for this reason have been used in this work. The GMRES smoothers are able to maintain the matrix-free
nature of the solver, but still require the use of a preconditioner to efficiently smooth high error frequencies in each
multigrid level.

Algorithm 1 U` = MGV (l, R̃∗`,U`)

if (` = L) then
U` = solve(lin`, R̃∗`,0)

end if
if (` < L) then
Pre-smoothing:
U` = smooth(lin`, R̃∗`,U`)

Coarse grid correction:
D` = R̃∗` − lin`(U`)

D`+1 = (I
`
`+1)

TD`
E`+1 = MGV (` + 1,D`+1,0)
Û` = U` + I

`
`+1E`+1

Post-smoothing:
U` = smooth(lin`, R̃∗`, Û`)

end if
return U`

In order to maintain efficiency, a strategy is adopted for multigrid preconditioning that utilizes an efficient "weaker"
form of the preconditioned GMRES smoother on the finest levels, and a "stronger" preconditioner for the coarser
levels [8, 16]. Thus, the difficulties with memory availability and computational cost associated with polynomial scaling
at high order are avoided, while leveraging the advantages offered by improved Jacobian approximations at lower orders.
To employ this strategy for Navier–Stokes, smoothers are preconditioned using a tensor-product alternating directions
implicit (ADI) operator [7] on the fine space (N > 2), and an incomplete LU factorization with zero-filling (Block-ILU0)
on the coarsest spaceVc . Similarly, for the elasticity, the Entity Block-Jacobi preconditioner (EBJ) is used in all but the
coarsest space, where the Entity Block-ILU0 is employed. Note that for a continuous-Galerkin coarse space the only
non-zeros degrees of freedom are located on the mesh vertices, and therefore the Entity Block-ILU0 corresponds to the
Block-ILU0 of the full Jacobian matrix.

B. Performance
We first assess the efficiency of this solution strategy on stiff problems arising from the continuous-Galerkin solver

for unsteady mesh deformation. The test case is taken from the high-order workshop series [17], where a NACA 0012
airfoil is given a time-dependent vertical displacement

y(t) = α2t2
(
β − αt
γ

)
(15)

with α = 0.2, β = 3.0, and γ = 4.0. We test the algorithm for two spatial polynomial orders, N = 4,8, and we keep
the polynomial order in time constant (Nt = 4). The multigrid smoothers are instances of preconditioned matrix-free
GMRES solvers coupled with the Entity Block-Jacobi preconditioner in all levels but the coarsest, where the Entity
ILU0-GMRES algorithm is used. The performance is tightly correlated to the number of smoothing iterations and to the
choice of the smoothers. The focus here is to show the the representative improvement from the use of the multigrid
algorithm rather than devising an optimized set of smoothing parameters that would be problem dependent.

Figure 7 shows the performance in terms of number of GMRES iterations and CPU time. For both the polynomial
orders N a significant saving in terms of GMRES iterations are obtained when switching from single-grid to multigrid,
with significant savings in terms of computational time. The N = 4 case was roughly 8 times faster, while in the N = 8
case we observed savings greater than an order of magnitude.
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Fig. 7 Performance of the multigrid preconditioning strategy compared to the single-grid EBJ preconditioner
for the NACA mesh deformation test case at N = 4; 8.

Second, we assess the performance of the multigrid algorithm for the solution of an adjoint problem arising from
the discontinuous-Galerkin solution of the Navier–Stokes equations. The adjoint solution consists of solving one single
linear system, which allows to isolate the effect of the preconditioner on performance from that of the nonlinear solver.
The test case presented here involves the flow around a NACA 4412 airfoil and computes the adjoint solution with
respect to the drag force on the surface of the airfoil. The flow conditions are M = 0.1, α = 12°, with the computed
Reynolds numbers of Re = 5000 and 50k, i.e. a lower and higher Reynolds number case to assess the relative importance
of diffusion. The numerical tests are obtained on a three-dimensional discretization made by roughly 368k, 2.1M DoFs
per equation at Re = 5000, 50k, respectively. Contours of velocity magnitude in the center of the planar section are
presented in Fig.8 at the relevant Reynolds numbers.

The performance of the multigrid algorithm with respect to the single-grid, tensor-product ADI preconditioner are
reported in Figures 9 and 10. For N = 4, we use one coarse level N = 2, with ADI on the fine and Block-ILU0 on the
coarse. For N = 8, we use two coarse levels (N = 4, N = 2), with ADI everywhere but on the coarsest level, where
we use Block-ILU0. The results obtained for the Re = 5000 case show speed-up values in CPU time around 3, which
decreases to roughly 2 for the case at the higher Reynolds number.

Fig. 8 Contours of the velocity magnitude of the flow around a NACA 4412 airfoil at Re = 5000; 50k, M = 0.1,
α = 12°.
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Fig. 9 Performance of the multigrid preconditioning strategy compared to the single-grid ADI preconditioner
for the NACA 4412 test case at Re = 5000 for N = 4; 8.

Fig. 10 Performance of themultigrid preconditioning strategy compared to the single-grid ADI preconditioner
for the NACA 4412 test case at Re = 50k for N = 4; 8.

V. Conclusion
The paper presents an efficient preconditioning strategy for solving high-order discretizations using implicit

Newton-Krylov methods. A hierarchy of preconditioning methods is constructed which utilizes strong preconditioners
built around approximations of the full residual Jacobian at low order, and efficient matrix-free preconditioners tailored
to the physical system/discretization at higher order. This hierarchy is then implemented in a multigrid preconditioning
strategy to leverage the strengths of each type of preconditioner at different polynomial approximations. Results across
several physical systems and two different discretization strategies demonstrate this approach is competitive in terms of
computational effort with explicit methods at CFL=1, while allowing the choice of an arbitrary timestep based upon
physical considerations for multiphysics applications. We believe the approach outlined here is general, and can be
applied to other discretization methods for high-order systems.
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