SLD Instrumentation in IWTs – Investigation Overview

Judith F. Van Zante, NASA Glenn (presenter)

Aviation, Aug 2021

Walter Strapp, Met Analytics Biagio Esposito, CIRA David Orchard, NRCC Alexei Korolev, ECCC Tom Ratvasky, NASA Jim Riley, FAA

This material is a work of the U. S. Government and is not subject to copyright protection in the United States. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Session Lineup & Outline

No	SLD Instrumentation Session Topics	Presenter		
1	SLD Instrumentation Collaboration Overview	J. Van Zante		
2	Comparison of PSD and MVD measurements at NRC AIWT	A. Korolev		
3	IKP TWC Measurements in SLD at NASA IRT	T. Ratvasky		
4	Inter-Facility LWC Differences in SLD due to Calibration Instruments	L. King-Steen		
5	Causes of MW Bias During SLD Testing in the IRT	L. King-Steen		
6	SEA Ice Crystal Detector (ICD) in SLD at NASA IRT	L. Lilie		

- Motivation & Goals
- Facilities
- Instrumentation
- Test Matrix
- Future Work

Team Members

0		
N	کې	A
$\mathbf{\times}$		

NASA:

NRC CNRC

Mark Potapczuk, Mary Wadel, Jack OldenburgNRCC:David Orchard, Catherine Clark, Gislain ChevretteCIRA:Biagio EspositoECCC:Alexei Korolev, Ivan Heckman, Jason Iwachow, Mike HarwoodFAA:Tom Bond, Jim Riley, John Fisher, Chris Dumont

Judith Van Zante, Tom Ratvasky, Laura King-Steen, Emily Timko,

Met Analytics: Walter Strapp

With support from probe manufacturersArtium:Will BachaloSEA:Lyle Lilie

Nomenclature

National Agencies

- CIRA = Centro Italiano Ricerche Aerospaziali SCpA (IT)
- ECCC = Environment and Climate Change Canada (CA)
- FAA = Federal Aviation Administration (US)
- NASA = National Aeronautics and Space Administration (US)
- NRCC = National Research Council Canada (CA)

Facilities

- AIWT = Altitude Icing Wind Tunnel (NRCC)
- IRT = Icing Research Tunnel (NASA)
- IWT = Icing Wind Tunnel (CIRA)

Cloud

- LWC = Liquid Water Content (g/m³)
- MVD = Median Volumetric Diameter (um)
- PSD = Particle Size Distribution
- SLD = Supercooled Large Drop

Probes – Water Content

- ICD = Ice Crystal Detector (SEA)
- IKP = Iso-Kinetic Probe (SEA/NRCC)
- MW = Multi-Wire, or Multi-Element (SEA)

Probes – Sizing

- 2D-S = Two Dimensional Stereo (SPEC)
- ADA = Airborne Droplet Analyser (Aerometrics)
- CDP = Cloud Droplet Probe (DMT)
- HSI = High Speed Imaging (Artium)
- OAP = Optical Array Probe (PMS)
- PDI = Phase Doppler Interferometer (Artium)

Background

Now: SLD Instrumentation Collaboration

2015: FAA, EASA New Rule: App O

2004: SLD Instrumentation Workshop (NASA, FAA, MSC, CIRA)

1994: ATR-72 Accident

5

Motivation & Goals

1.Better understand cloud characterization probes and data processing algorithms in SLD conditions.

- > PSD, Particle Size Distribution probes
- LWC, Liquid Water Content probes

2. Better understand ability to simulate SLD conditions in several facilities.

- NRCC's AIWT, Altitude Icing Wind Tunnel
- > NASA's IRT, Icing Research Tunnel
- CIRA's IWT, Icing Wind Tunnel
- 3.Assess potential for inter-facility bias in SLD simulations due to choice of instrumentation.

Facility Information

NRCC's AIWT, Altitude Icing Wind Tunnel

- > 0.57 x 0.57 m², 6:1
- PSD: Malvern
- LWC: Rotating Cylinder

NASA's IRT, Icing Research Tunnel

- ➤ 1.83 x 2.74 m², 14:1
- PSD: CDP, OAP-230X, OAP-230Y
- > LWC: MW, Icing Blade
- CIRA's IWT, Icing Wind Tunnel
 - ➤ 2.35 x 2.25 m², 10:1
 - PSD: ADAs, OAP-2D-GA2
 - LWC: Icing Blade, Robust Probe

Instrumentation Considerations

Team selected Probes from current and emerging technologies.

The Team enlisted support from manufacturers Artium Technologies, Inc. and Science Engineering Associates, Inc. to ensure the best quality data from the newer technologies being evaluated at the tunnels.

Statement regarding choice of Common Reference Probes:

- Should not be interpreted that the Team believes these probes provide the "most accurate" measurement.
- Chosen because of good reputation within the community, familiarity with the probes and data processing schemes AND practical reasons – with in Team is ability to transport, operate and analyze their data in a consistent manner.

Instrumentation (Common)

PSD Probes	Full Name	Range (um)	Manufact	urer	Owner (Sponsor)	
CDP-2	Cloud Droplet Probe	2 – 50	DMT		ECCC	
2D-S	2Dimensional Stereo	10 – 1280 (2560)) SPEC		ECCC	
PDI-FPDR-2	Phase Doppler	Small: 1 – 130	Artium		Artium (ECCC)	
PDI-4D	Interferometer	Large: 7 – 1000	Artium		CIRA	
HSI-FPDR	High Speed	5 – 1500	Artium		ECCC	
HSI w/ trigger	Imaging	5 – 1800	Artium		CIRA	
LWC Probes	Full Name	Manufacturer	Owner			
MW	Multi-wire	SEA	NASA	B	3old denotes	
IKP-2	Iso-Kinetic Probe	SEA, NRCC	NASA		Common Reference Probes used for	
ICD	Ice Crystal Detector	SEA	SEA (FAA) i		terfacility comparison	
NACA-0012	Airfoil		Facility			

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

9

Instrumentation – Common Reference

Common Reference Probes

- > PSD: CDP-2 + 2D-S w/ common processing algorithm
- LWC: Multi-wire (MW)

0 CDP-2 (ECCC) light intensity

2D-S (ECCC) optical array probe

Instrumentation – Additional PSD

PDI-FPDR (ECCC-Artium)

HSI-FPDR (ECCC)

PDI-4D (CIRA)

HSI with trigger (CIRA)

Instrumentation – Additional LWC

IKP-2 (NASA) MW & Background Hum.

12

Tunnel IKP (NRCC)

Common Test Matrix – Target

Derived from overlap region from each Facility's stated capabilities.

- Primary test points: LWC sweep for LWC probes & MVD Sweep for PSD probes
- Airspeed at 80 m/s or 150 kts (77.2 m/s)

Conditions set in each facility per native calibration with native probes

LWC Sn	veep (x)	MVD Sweep (o)				
LWC	MVD	LWC	MVD			
(g/m³)	(um)	(g/m³)	(um)			
0.5	20	0.5	20			
1.0	20	0.5	50			
1.5	20	0.5	100			
2.0	20	0.5	150			
2.5	20	0.5	200			
3.0	20	0.5	250			

MVD

Test Matrix – Actual

- NRCC met targets via native cal curves
- NASA & CIRA selected calibrated points
 - Allowing non-sweep parameter to vary
- Two facilities added bimodal and
- Two facilities added higher speed LWC sweeps.
- NASA added LWC sweep at MVD =140 um.

Note: CIRA recently installed new SLD nozzles, and conducted a full cal. In June 2021, prior to their SLD Instrumentation test.

NRC				NASA				CIRA				
Test	VTAS	LWC	MVD	Test	VTAS	LWC	MVD	Test	VTAS	LWC	MVD	
point	(m/s)	(g/m3)	(µm)	point	(m/s)	(g/m3)	(µm)	point	(m/s)	(g/m3)	(µm)	
IWT LWC Sweep				IRT LWC	swee	р		IWT LWC sweep				
IWT-2	80	0.35	20	IRT-1	77.2	0.42	14.5	IWT-1	80	0.35	20	
IWT-3	80	0.5	20	IRT-1a	77.2	0.47	19.8					
IWT-4	80	0.9	20					IWT-2	80	0.89	23	
IWT-5	80	1.0	20	IRT-2a	77.2	0.97	22.2					
IWT-6	80	1.4	20					IWT-3	80	1.4	20	
IWT-7	80	1.5	20	IRT-3	77.2	1.57	20.0					
IWT-8	80	2.0	20	IRT-4a	77.2	1.98	19.7	IWT-4	80	2.0	20	
IWT-9	80	2.5	20	IRT-5	77.2	2.64	22.8	IWT-5	80	2.5	20	
IWT-10	80	3.0	20	IRT-6b	77.2	3.02	20.3	IWT-6	80	3.0	20	
IWT M	VD Sw	/eep		IRT MVD Sweep				IWT MVD sweep				
IWT-21	80	0.5	15	IRT-21c	77.2	0.42	14.9	IWT-21	80	0.40	15	
IWT-23	80	0.5	28	IRT-22	77.2	0.57	30	IWT-22	80	0.65	25	
IWT-24	80	0.5	40					IWT-23	80	0.65	40	
IWT-25	80	0.5	45	IRT-23	77.2	0.50	46					
IWT-26	80	0.5	60	IRT-24	77.2	0.54	60	IWT-24	80	0.68	60	
IWT-27	80	0.5	76	IRT-25	77.2	0.51	108	IWT-25	80	0.89	90	
IWT-28	80	0.5	116	IRT-26a	77.2	0.45	142	IWT-26	80	0.83	145	
IWT-29	80	0.5	178	IRT-26	77.2	0.60	169	IWT-27	80	0.89	160	
IWT-30	80	0.5	199	IRT-27	77.2	0.71	208					
IWT-31	80	0.5	227	IRT-28	77.2	0.91	275					
IWT-32	80	0.5	262	IRT-29	77.2	1.36	460	IWT-28	80	higher	300	
IWT Bi Modal				IRT Bi Mo	dal							
IWT-51	80	0.5	< 40	IRT-51	77.2	2.00	< 40					
IWT-52	80	0.5	>40									
				LWC sweep, 129 m/s				IWT LW	C swe	e p, 140	m/s	
				IRT-11	128.6	0.61	20.0	IWT-11	140	0.44	25	
				IRT-12	128.6	1.17	19.7	IWT-12	140	1.38	20	
				IRT-13	128.6	2.00	25.6	IWT-13	140	2.00	20	
	LWC sweep, MVD = 140 um											
				IRT-81	77.2	0.45	142					
				IRT-82	77.2	0.56	140					
				IRT-83	77.2	0.62	138					
				IRT-84	77.2	0.75	138					
				IRT-85	77.2	0.87	139					

Test Procedure

- 1. Each facility set conditions according to their native calibration.
- 2. Probes acquired data according to established practices
 - a. ECCC operated the CDP-2 and 2D-S and analyzed data according to their algorithms
 - b. NASA operated the MW and analyzed data according to their algorithm
 - i. except using native MVD (instead of PSD) to determine the MW concave element collision efficiency

Accomplishments to Date; Future Work

- NRCC completed 15 days testing, 2017-18
- > NASA completed 15 days testing, 2017-18
- ECCC completed analysis on CDP-2 and 2D-S data
- NASA completed analysis on MW data
- Difficulties with PSD results will lead to more testing (5-d at NRCC and 5-d at NASA) and investigating additional data analysis tools.
- Begin CIRA tests in Spring 2022

Acknowledgements

NASA AETC-CA

(Aerosciences Evaluation and Test Capabilities - Capability Advancement)

- FAA Technical Center
- NRCC Aerodynamics Laboratory
- ECCC Atmospheric Science and Technology Branch
- CIRA SLD-FZDZ program

We also thank the dedicated facility engineers and technicians at the AIWT and IRT who so well supported these tests.

> Contact: Judith.F.VanZante@nasa.gov

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

FAA & EASA Appendix O (SLD)

Freezing Rain (d_max > 500 um)

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

19