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I. Introduction

Notice to airmen (NOTAMs) contain vital information for all aviation stakeholders and are critical for personnel
involved with flight operations. A NOTAM states the abnormal status of some component found in the National

Airspace System (NAS). A NOTAM is typically related to facility, weather condition, service procedure, hazard
conditions that impact the normal status of the NAS. Originally introduced in 1947 [1], NOTAMs have evolved into
a unique language that uses special constructs, acronyms, and English abbreviations to make communication more
efficient.

Recently in 2011, the digital NOTAM was first adopted by the Federal Aviation Administration (FAA) following
the Aeronautical Information Exchange Model (AIXM) 5.1 specification [2]. This model describes NOTAMs through
‘scenarios’ which are business rules that attempts to describe all situations that can arise in the NAS. These rules are
all documented in the Digital NOTAM Specification [2], and future global standards are also evolving∗. The digital
NOTAM has paved the way to research including systems to appropriately filter and query relevant NOTAMs [3].
Although the AIXM model digitally captures most NOTAMs, roughly 30% are not yet digitized. The majority of this
problem has occurred due to insufficient infrastructure at smaller airports, as well as time and resource constraints for
certain types of heritage NOTAMs that have yet to be modeled by AIXM. While digital NOTAMs have made it easier to
check for NOTAMs prior to a flight, the increasing volume of NOTAMs and advances in deep learning and natural
language processing techniques offer new opportunities to understand and optimize NOTAMs to the benefit of pilots, air
traffic managers, and researchers.

II. Background
Natural language processing(NLP) includes computerized techniques that are used to analyze and represent language

[4, 5]. Recently, NLP techniques have been utilizing advances in the field of machine learning, deep learning, and
artificial intelligence for various tasks [5]. NLP techniques include but are not limited to word embeddings to transform
words into vectors, which are usually the first data processing layer [5], to topic modeling [6], named entity recognition
(NER) which is “used to extract entity objects with certain meanings from text data” [7], language modeling such as
bidirectional encoder representations from transformers (BERT) [8], or question answering [9].

With the modernization and growth of air traffic in the past decade [10], air traffic control (ATC) is facing a challenge
to modernize [11]. This is evident in the United States with initiatives such as NextGen [11]. Stroup et al. have looked
into ways artificial intelligence can be applied to the NAS [12] as well as the rationale for the use of AI in the NAS [13].
They note natural language processing as a technique that could be used. As traditional documents such as NOTAMs,
LOAs, and SOPs are still widely used today, it is worth examining how advances in AI and NLP can be used to help
with the modernization of the NAS.

Existing research in the aviation domain mostly focuses on using NLP techniques to help pilots with aircraft
maintenance issues or for aviation safety analysis. Paul et al. [14] investigated NLP techniques that are used in
Civil Aviation. They focused on applications such as IBM Watson’s question and answering tool to help pilots, flight
attendants, technical staff, and customer service agents with maintenance challenges and Boeing’s NLP system (BLUE)
to generate a semantic representation for texts such as technical and maintenance manuals [15]. Paul et al. [14] also
mention data sources used for NLP such as the European Coordination Centre for Accident and Incident Reporting
Systems (ECCAIRS) or the NASA Aviation Safety Report (ASRS) to collect and standardize reports of incidents in the
European Union and United States respectively.

There are a multitude of studies that focus on the ASRS data set that use different NLP techniques. Rose et al. [16]
presented a methodology to analyze aviation safety narratives using a word embedding technique called TF-IDF and
clustering with k-means. By using this method, they were able to identify relationships between narratives which could
also lead to more in depth analysis of certain groups. Similarly, Kuhn [6] explored the use of a topic modeling technique
called Latent Dirichlet Allocation (LDA) in ASRS data to identify topics which can expose known and unknown issues
and can pave the way to improve safety. Kierszbaum and Lapasset [17] take a slightly different approach with the ASRS
data. They examine using BERT for a question and answering task. They used thirty randomly selected reports to
answer the question “When did the incident happen” and they received 22 “good answers”.

A lot of other high level work has also been done that focus on aviation safety reports. Tanguy et al. [18] examine
different tools to analyze aviation safety documents through the use of support vector machines (SVM) and LDA topic
modeling. Srinivasan et al. [19] propose a method to classify reports into binary classes using a combination of word
embedding and the Long Short-term Memory (LSTM) algorithm. Madeira et al. [20] developed an NLP pipeline

∗https://ext.eurocontrol.int/aixm_confluence/display/DNOTAM/Digital+NOTAM+Specification
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to predict human factors in aviation safety incidents. Their pipeline included pre-processing, feature extraction with
TF-IDF, Word2Vec, and Doc2Vec, and data modelling using semi-supervised Label Spreading(Ls) and supervised
SVM.

Other NLP techniques such as named entity recognition (NER) have loosely been used in the aviation domain. Xing
et al. [21] use NER to locate aviation customer service issues by examining civil aviation reviews. Finally, Bravin et al.
[22] did do some work related to NOTAMs. They examined the use of a Seq2Seq model to automatically "smartify"
NOTAMs in Europe and found promising results. It is important to note however, that NOTAMs published in the United
States are coded in a separate domestic format which differs from the International Civil Aviation Organization, or
ICAO format [23].

While there exists a multitude of research on the application of different NLP techniques to the aviation domain,
much of this research thus far has been focused on the analysis of safety events with some other applications in aviation
flight manuals or maintenance. Very limited research exists in literature regarding the use of NLP on heritage air traffic
management documents. This paper incorporates many of the methods discussed in prior work to present a pipeline for
the use of NLP on heritage air traffic management documents and to present several key findings when using these
techniques on NOTAMs.
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Fig. 1 Overview of Methodologies

The end goal of this research was to gain a deeper understanding about the current state of NOTAMs, and assess the
capability of modern deep learning models for information retrieval from hand-written NOTAMs. Figure 1 gives an
overview of the methodologies used to reach these goals. First, the raw data and preliminary pre-processing of NOTAM
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data sets will be discussed (Section III). Second, multiple exploratory data analysis tasks were performed to gauge
pattern finding and understanding within and between different NOTAMs (Section IV). Clustering techniques were
used to find these patterns, while topic modeling techniques like Latent Dirichlet Allocation, or LDA, were used to
understand differences and relationships between documents. Third, given patterns and an idea of what can be extracted
from NOTAMs, we moved onto our next objective, entity tagging (Section V). This tagging was used as both a tool
for extracting specific entities, as well as defining a relationship structure within each individual NOTAM. Lastly, we
assessed large deep learning models’ ability on comprehension and information retrieval of these domain-specific
documents (Section VI). Future efforts may include adopting the methodology used for NOTAMs for additional air
traffic management (ATM) documents, digitizing hand-written NOTAMs, and creating hybrid systems that utilize both
deep learning, and more rigid information exchange models.

III. Data and Preprocessing

A. NOTAM Background and Structure
Notices to Airmen, or NOTAMs, are short, highly contracted messages that describe real-time abnormal statuses,

conditions, and changes within the NAS[24]. Listed below is an example of a NOTAM posted at Newark Liberty
International Airport (EWR) pulled from the public FAA NOTAM Search website.† Typically, the audience for these
documents are pilots, air traffic controllers, and other operational personnel involved in flight operations [2]. One of the
biggest users of NOTAMs are pilots who brief on all active NOTAMs along a flight path before departing.

!EWR 01/020 EWR TWY EE HLDG PSN MARKINGS FOR ILS BTN RWY 04R/22L AND TWYM
FADED 2101041504-2106302300

This format, although confusing at first, is easily readable by someone familiar with NOTAMs. This one in particular is
regarding EWR, or Newark International Airport, and states that the holding position markings on taxiway EE and M
between runway 04R and 22L are faded. There is also specific information such as the start and end times which appear
as the last two tokens in every NOTAM. They follow the format of two-digit year, month, day, hour and minute.

Due to the digital NOTAM structure, one can generate plain English versions for those less familiar with the NOTAM
format. We use this plain English format for inputs into pretrained deep learning models as discussed later in section VI.

Issuing Airport: (EWR) Newark Liberty Intl
NOTAM Number: 01/020
Effective Time Frame
Beginning: Monday, January 4, 2021 1504 (UTC)
Ending: Wednesday, June 30, 2021 2300 (UTC)
Affected Areas
Taxiway: EE (between RWY 04R/22L and TWY M )
Marking Type: Holding position markings for ILS
Status: Faded

Figure 2 gives a deeper understanding of the general structure found within the body of domestic NOTAMs [25]. Closed
boxes represent required features, whereas dotted boxes are optional [25]. Overall, these features are used to describe
how a specific attribute within the NAS is affected, giving descriptions and exact details of time and location. Recalling
the example above, the keyword is TWY, the attribute is EE HLDG PSN MARKINGS (referring to holding position
markings on the taxiway named EE), the condition is FADED, and the start of activity/end of validity times are
shown by the last two numbers: 2101041504 and 2106302300.

This structure is explored further when creating a parameterized dataset in Section V, where each box in Fig. 2 can
represent a unique feature of a NOTAM.

B. Our Data
In order to perform machine learning on NOTAM data, a collection of NOTAMs is needed. The dataset used for the

studies in this paper is provided by the FAA. Specifically, this data includes 3.73 million NOTAMs active between
†https://notams.aim.faa.gov/notamSearch
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Fig. 2 General NOTAM structure [25].

March 2019 and March 2020. These NOTAMs include roughly 30.34% flight data center ‡ and and 69.66% domestic
NOTAMs. This dataset also includes 1.04 million digital NOTAMs that are converted into ICAO and Plain Language
formats. The Plain Language format will be used in Section VI for deep learning tasks.

C. Preprocessing
Before performing any tasks on the data, a few preprocessing steps were taken to ensure both consistency between

data and best performance when creating models. As different NLP tasks require different forms of preprocessing,
additional optional steps taken are mentioned.

1) Completely remove non-conforming NOTAMs (about 60,000 of 3.7 million or 1.6%) which:
1) Do not contain valid start/end times. Valid timestamps follow the format YYMMDDHHmm§.
2) Do not contain a valid NOTAM number. Valid NOTAM numbers follow the format MM/####.
3) Do not contain a valid keyword. Valid keywords are RWY, TWY, APRON, AD, OBST, NAV, COM, SVC

and AIRSPACE.
2) Remove all non-alphanumeric characters.
3) Separate all tokens by spaces.
4) (Optional) Convert all characters to lowercase.
5) (Optional) Replace specific numeric values with special tokens such as time or notam_num, or remove numbers

all-together. Wallace [26] shows that certain NLP models have difficulty understanding large numbers, especially
outside of their training sets, which NOTAMs are polluted with. Some of the models in this paper also experienced
metric gains when removing numeric values.

IV. Exploratory Data Analysis
In this section, the raw NOTAM data are explored for inter-document patterns, similarities and anomalies. The

methodology includes converting each NOTAM into an embedding, or high-dimensional vector, to represent it
numerically. There are algorithms to convert words into vectors, and in this paper we primarily discuss a simpler
statistical technique called Term Frequency-Inverse Document Frequency. After embedding the data, unsupervised
clustering algorithms such as k-means or Agglomerative Hierarchical Clustering are used to create groupings of similar
NOTAMs. These vectorized documents are then passed into a dimensionality reduction algorithm for visualization.
The dimensionality reduction algorithms explored are Principal Component Analysis (PCA), t-Distributed Stochastic
Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). Topic modeling along
with similarity and anomaly detection operations are also performed on the TF-IDF embedded data using Latent
Dirichlet Allocation (LDA).

‡All flight data center NOTAMs start with FDC. They typically include changes to IFR flight procedures or temporary flight restrictions [25].
§YYMMDDHHmm: Two digit year, month, day, hour, minute
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Fig. 3 Methodology that was followed to gain insight from TF-IDF word embedding.

TF-IDF is a statistical technique that can determine the relevance and significance of certain words in a particular
document [27]. Figure 3 summarizes the methodology that was followed to gain insight from TF-IDF word embedding
and will be explained in detail throughout this section. First, a matrix is generated in which each row refers to a NOTAM,
and each column refers to a different word. All unique words occurring in the entire corpus will have a column. Counts
of each word in a particular NOTAM are placed in the appropriate row/column. The matrix generated is commonly
referred to as a Bag of Words (BoW) matrix. An example is shown in Table 1.

Table 1 Example Bag of Words Matrix

,>A31 ,>A32 ... ,>A38

#$)�"1 �>D=C1,1 �>D=C2,1 ... �>D=C8,1

#$)�"2 �>D=C1,2 �>D=C2,2 ... �>D=C8,2

... ... ... ... ...
#$)�" 9 �>D=C1, 9 �>D=C2, 9 ... �>D=C8, 9

To generate the TF-IDF matrix, Equation 1 was applied to every cell i,j where i represents each word and j represents
each NOTAM:

C 5 8358, 9 = C 58, 9 · log(( # + 1
1 + 358

) + 1) (1)

where C 5 8358, 9 is the TF-IDF score of the ith word in document j, C 58, 9 is the term frequency or the number of
occurrences word i in document j, N is the number of NOTAMs, and 358 is the number of documents word i appears in.
The TF-IDF score vector for each NOTAM j is then normalized using the Euclidean norm. The TF-IDF matrices for
the NOTAM data-set were generated through the TfidfVectorizer function in scikit-learn’s feature extraction module ¶.
The default parameters were used. This function uses Equation 1, a slightly modified version of the standard TF-IDF
equation found in most textbooks and other works [28]. The scikit-learn feature extraction module documentation¶

can be consulted for further explanation of the equation. All NOTAMs were pre-processed so that every number was
replaced with the # symbol using Python’s regular expression operations function ‖. An example of a TF-IDF matrix is
shown in Table 2.

The generated TF-IDF matrix contained 5,000 randomly selected NOTAMs from the initial 3.73 million NOTAMs.
NOTAMs were down-sampled to 5,000 as running these algorithms on all NOTAMs would be computationally
expensive.

B. K-Means Clustering
K-means is a clustering algorithm that is designed to split data into exactly k number of clusters [29]. The algorithm

places points in clusters to reduce the squared Euclidean distance between points in the same cluster. The Euclidean
¶https://scikit-learn.org/stable/modules/feature_extraction.html
‖https://docs.python.org/3/library/re.html
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Table 2 Example TF-IDF Matrix

,>A31 ,>A32 ... ,>A38

#$)�"1 C 5 8351,1 C 5 8352,1 ... C 5 8358,1

#$)�"2 C 5 8351,2 C 5 8352,2 ... C 5 8358,2

... ... ... ... ...
#$)�" 9 C 5 8351, 9 C 5 8352, 9 ... C 5 8358, 9

distance is the root of square difference between two coordinates [30]. In this case, NOTAMs that share similar words
and length will be “closer”. The use of the k-means algorithm on a TF-IDF matrix for aviation related safety narratives
has had prior success [16].

The k-means clustering algorithm was run on the generated TF-IDF matrix using scikit-learn’s clustering module
∗∗. Values of k (number of clusters) from two to ten were chosen and run. The clusters and TF-IDF matrix were
visualized using PCA, t-SNE, and UMAP to reduce the dimensionality of the TF-IDF matrix to two for visualization on
a two-dimensional plane. Reducing dimensionality to three-dimensions was also tried, but did not provide significantly
more insight than two-dimensions. PCA [31], t-SNE [32], and UMAP [33] are commonly used methods to reduce
dimensionality and reveal structure in data. PCA dimensionality reduction was implemented using scikit-learn’s
decomposition module ††. Scikit-learn’s manifold module was used to implement t-SNE ‡‡. The UMAP-Learn module
§§ was used to implement UMAP dimensionality reduction. Both t-SNE and UMAP have hyperparameters that can be
tuned. For t-SNE, the perplexity hyperparameter was set to 300, learning_rate was set to 50, and random_state was
set to 20. All other hyperparameters were left at their default values. For UMAP, n_neighbors was set to 45 and the
random_state was set to 20. All other hyperparameters were left at their default values. An arbitrary value was chosen
for the random state for reproducibility. Multiple values each of the hyperparameters were chosen and tested to find
values that produced meaningful visualizations.

Fig. 4 Visualization of TF-IDF Matrix on 5,000 NOTAMs following dimensionality reduction. Clusters are
found using the k-Means clustering algorithm with a k-Value of 3.

Figure 4 shows results for k-means clustering with a k-value of 3 after PCA, t-SNE, and UMAP dimensionality
reduction. Table 3 summarizes the top 20 keywords found in each cluster based on the TF-IDF matrix. Most success was
found breaking the NOTAMs into three clusters as the NOTAMs were clustered into three distinct categories: Airport
NOTAMs, Weather NOTAMs, and Airspace NOTAMs. These categories were determined based on the top keywords
from each cluster and by examining NOTAMs that were in these various clusters. These three categories encompass
the reasons a majority of NOTAMs are issued. There were 2,583 NOTAMs grouped into the Weather category, 1,842
NOTAMs grouped into the Airport category, and 575 NOTAMs grouped into the airspace category. Choosing a value

∗∗https://scikit-learn.org/stable/modules/clustering.html
††https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
‡‡https://scikit-learn.org/stable/modules/manifold.html
§§https://umap-learn.readthedocs.io/en/latest/
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Table 3 TF-IDF K-Means Clustering Top 20 Words

Category Top 20 Words
Airport NOTAMs ils, btn, tower, sfc, us, obst, nav, agl, wip, lgt, ad, ap, nm, ft, out, service, of, rwy, twy, clsd
Weather NOTAMs medium, ft, ba, over, wid, and, twy, apron, ice, all, compacted, dry, rwy, wet, pct, in, sn, at, ficon, obs
Airspace NOTAMs zkc, zlc, zab, sfcfl, ar, sfc, zse, not, to, suae, up, but, including, moa, suac, suaw, ft, fl, airspace, act

of k greater than 3 did not produce more meaningful clusters while a k value of 2 combined the Weather and Airport
NOTAM clusters into the same cluster. The Airport NOTAM category includes but is not limited to NOTAMs that refer
to the state of operations at various airports such as runway and taxiway closures, obstructions, navigation using the
instrument landing system, etc. This is signified by the top keywords in this category such as “ils” which stands for
instrument landing system, “obst” which stands for obstruction, “nav” which stands for navigation, “rwy” and “twy”
which stand for runway and taxiway respectively, “clsd” which stands for closed, and the keywords “out,” “of,” and
“service.”

The Weather NOTAM category includes but is not limited to NOTAMs that refer to weather conditions at airports.
The most common weather NOTAMs in the data-set tend to refer to precipitation on runways and taxiways. This
is signified by the top keywords in this category such as “dry,” “wet,” “ice,” “pct” which stands for percent, “wid”
which stands for width, as well as the keywords such as “rwy,” “twy,” and “apron” which identify where these weather
obstructions may be happening. As seen in both t-SNE and UMAP dimensionality reduction, there is overlap between
Airport NOTAMs and Weather NOTAMs while PCA shows a clear split. However, even in PCA, Airport NOTAMs
and Weather NOTAMs are close together. This split makes sense as Weather NOTAMs are applicable at airports.
Additionally, many of the keywords associated with Weather NOTAMs such as runway and taxiway overlap with the
keywords referred to in Airport NOTAMs.

The Airspace NOTAM category includes but is not limited to NOTAMs that refer to conditions in the airspace.
Most of the NOTAMs in this category refer to restricted airspace or military operating areas. This is signified by top
keywords such as “airspace,” “moa” which stands for military operating airspace, “suaw” and “suac” which stand for
special use airspace west and special use airspace central respectively, “fl” which stands for flight-level, “ft” which
stands for feet commonly referring to the specific altitudes the NOTAM applies to, and “up to but not including” which
is a common phrase in these NOTAMs when referring to the altitudes that the NOTAM applies. Additionally, the top
three keywords in this category refer to specific FAA airspaces/air route traffic control centers.

These clustering results indicate that TF-IDF scores of the words in each NOTAM are an effective way to split
NOTAMs into different major categories with the use of k-means clustering.

1. Sub-Clustering
After initial clustering, the 5,000 random NOTAMs from the original data-set were separated by the cluster they

were split into. A new matrix was generated for each cluster by taking the corresponding rows for every NOTAM in
each cluster from the original TF-IDF matrix. This produced three different TF-IDF matrices for each of the different
clusters. The k-means clustering algorithm discussed before was run on each of these different matrices again with
different k values ranging from two to ten.

Table 4 Example Airspace NOTAMs in Each Cluster

Cluster Example NOTAM
MOA NOTAMs ...AIRSPACE ADIRONDACK C MOA ACT 100FT AGL UP TO BUT NOT INCLUDING FL180...

...AIRSPACE COLUMBUS 2 MOA ACT 8000FT UP TO BUT NOT INCLUDING FL180...
High Altitude Airspace NOTAMs ...AIRSPACE AR197L ACT FL200-FL220...

...AIRSPACE W237A HIGH ACT FL230-FL350...
Other NOTAMs ...AIRSPACE R3008B ACT 100FT-10000FT...

...AIRSPACE R6412C ACT SFC-9000FT...

Figure 5 shows results for k-means clustering with a k value of three for the airspace sub-cluster matrix. A k value
of three provided the most meaningful results. Based on observing the NOTAMs in each cluster, it is noted that the red
cluster mostly consists of NOTAMs that are issued for a military operating airspace (MOA). The green cluster contains
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Fig. 5 Visualization of Airspace sub-cluster NOTAMs based on TF-IDF matrix following dimensionality
reduction. Clusters are found using the k-Means clustering algorithm with a k-Value of 3.

special use airspace NOTAMs that tend to contain the phrase “FL###-FL###” where ### is a number that corresponds
to the altitudes that these NOTAMs would apply at. FL means flight level and can be calculated by dividing the altitude
in feet by 100. Flight level is generally used when discussing altitudes greater than 18,000 feet. Therefore, the green
cluster consists of special use airspace NOTAMs that only apply at altitudes above 18,000 feet. The remaining special
use airspace NOTAMs are represented by the blue cluster. These include NOTAMs that only apply at lower altitudes or
NOTAMs that may begin at a lower altitude but continue onto a high altitude. Table 4 shows example NOTAMs in each
cluster.

Fig. 6 Visualization of Airport sub-cluster NOTAMs based on TF-IDF matrix following dimensionality reduc-
tion. Clusters are found using the k-Means clustering algorithm with a k-Value of 4.

Table 5 Example Airport NOTAMs in Each Cluster

Cluster Example NOTAM
Airport/Aerodrome NOTAM ...AD AP ALL SFC WIP GRASS CUTTING...

...AD AP ALL SFC WIP SN REMOVAL...
Runway, Taxiway, Apron NOTAM ...TWY H2 CLSD...

...RWY 09l/27R CL MARKINGS OBSC...
...APRON PAPA PAD CLSD...

Tower, Light, and Select Airspace NOTAM ...OBST TOWER LGT (ASR 1002758) 393449.00N0862515.00W (10.1NM SW IND) 1249.0FT (419.0FT AGL) U/S...
...AIRSPACE UAS WI AN AREA DEFINED AS 0.5NM RADIUS OF 294641N950834.4W (7NM NW T41) SFC-340FT AGL...

Out of Service NOTAM ...NAV ILS RWY 28L OUT OF SERVICE...
...TWY B DIRECTION SIGN OUT OF SERVICE...

Figure 6 shows results for k-means clustering with a k value of four for the airport sub-cluster matrix. Results for a k
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value of four are shown here as this was able to find the most meaningful groupings in the airport sub-cluster. Table 5
shows example NOTAMs taken from each cluster and can be referenced to better understand the types of NOTAM that
were grouped into each cluster. The blue cluster mostly consists of NOTAMs that consist of the keywords “AD AP”
which stand for Airport and Aerodrome respectively. Therefore, this cluster mostly consists of NOTAMs that apply to
the entire airport. However, one thing that the red cluster reveals is that NOTAMs that related to “SN REMOVAL” or
snow removal and had the words “AP AD” were grouped into this cluster instead of with the other weather NOTAMs.
The grouping of weather NOTAMs consists mostly of wet, snow, and ice conditions on runways and taxiways. The
green cluster mostly consists of two distinct types of NOTAMs. The first are NOTAMs that refer to “OBST TOWER
LGT” or a tower light obstruction. The second are airspace NOTAMs that refer to obstacles in the airspace such as
Unmanned Aerial Systems (UAS) or Pyrotechnic Demonstrations. These airspace NOTAMs are different and have a
completely different structure compared to the airspace NOTAMs that refer to special use airspace or MOA which had
their own cluster in the initial clustering. These two NOTAM types were probably grouped into the same category due
to similar words as both try to describe a location of an obstruction mostly with latitude and longitude as well as an
altitude. The purple cluster mostly consists of NOTAMs that say “OUT OF SERVICE.” This could refer to runways,
taxiways, navigation, or entire airports/aerodromes. Finally, the remaining runway, taxiway, and apron NOTAMs that do
not contain the phrase “OUT OF SERVICE” are in the red cluster.

2. Clustering Remarks
While initial clustering on the TF-IDF matrix was able to divide the NOTAMs into overarching categories,

sub-clustering was able to group NOTAMs by very specific phrases, topics, or structure. Sub-clustering results were
shown for airspace and airport NOTAMs. Sub-clustering results from weather NOTAMs were not as clear and distinct as
the results from the two categories displayed. There were some nuanced results which can be saved for later discussion.
Sub-clustering helps gain insight into the different types and reasons NOTAMs that are issued and provides one way
to separate NOTAMs into many smaller categories of similar NOTAMs. More importantly, this approach shows that
NOTAMs can effectively be separated into these smaller categories with a TF-IDF matrix and could pave the way
to many more applications such as supervised machine learning algorithms that could automatically categorize new
NOTAMs based on TF-IDF scores.

C. Latent Dirichlet Allocation

1. Topic Modelling
According to Kuhn [6], Latent Dirichlet Allocation, or LDA, is a generative probabilistic model that is used for topic

modeling. Topic modeling is the task of detecting hidden topics in a set of documents using unsupervised learning.
LDA inherently assumes that a document, or NOTAM in this case, is a probability distribution of several global topics,
with each topic containing a probability distribution of words.

In this study, scikit-learn’s decomposition module¶¶ is used to implement LDA to generate 3-topic, 4-topic, 5-topic,
and 7-topic models on the NOTAM dataset. Before the LDA models are trained on the NOTAMs, the TF-IDF statistical
technique mentioned in the Word Embedding section is used to generate a vector representation, or matrix, for every
NOTAM in a designated training set of 100,000 NOTAMs. In addition, certain hyperparameters are tweaked in order to
fine-tune the training process. Specifically, the max_iter hyperparameter is set to 5, the random_state hyperparameter is
set to 43, and the batch_size hyperparameter is set to 128. The n_components hyperparameter is also changed depending
on the number of desired topics to be generated for each model. After setting the hyperparameters, the training vectors
are passed into each of the LDA models, which generate n-number of topics for the entire training corpus. Initially,
every topic contains a temporary assignment of word probabilities, however as the training process proceeds, each LDA
model iteratively updates the probabilities corresponding to each word for every topic. As an additional step, the model
can also be evaluated after every iteration with the perplexity metric to determine if the predictions are converging.
After the total number of iterations specified by the max_iter hyperparameter is reached, n-number of topics, each with
a final assignment of word probabilities, is outputted.

After the 3-topic, 4-topic, 5-topic, and 7-topic LDA models are trained on the 100,000 NOTAMs, an intertopic
distance map, seen in Fig. 7, is used to visualize the semantic distance between the outputted topics for each model.
Figure 7 shows the intertopic distance map generated for the 5-topic LDA model and Table 6 depicts the top 10 keywords

¶¶https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
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in each of the 5 topics.

Fig. 7 Intertopic distance map created using pyLDAvis libary for the 5-topic LDA model.
https://pyldavis.readthedocs.io/en/latest/readme.html

Table 6 Top 10 Keywords for Generated LDA Topics

Topic Number Subject Top 10 Words
1 Weather Events on the Taxiway twy, sn, ficon, obs, dry, apron, clsd, 18in, wet, compacted
2 Weather Events on the Runway pct, rwy, 100, 555, wet, obs, ficon, nav, ils, service
3 Affected Airport Operations ap, ad, wip, agl, sfc, obst, lgt, tower, removal, asr
4 Airspace Operations act, airspace, moa, including, fl180, 11000ft, als, com, hart, 24
5 Affected Runway Operations rwy, clsd, papi, exc, 32, 25, cond, 13, frost, 28

The distribution of keywords in each topic helps to justify the visualization seen in the intertopic distance map. As
seen in Table 6, topic 1 primarily includes NOTAMs that refer to weather conditions on taxiways. This can be seen with
the top keywords in topic 1 such as “twy,” “sn” which stands for snow, “ficon” which stands for field conditions, “obs,”
and “dry.” Table 6 also shows that topic 2 primarily includes NOTAMs that refer to weather conditions that occur on
runways as its top words are “pct,” “rwy,” “wet,” and “ficon.” The topic also includes numbers such as 100 and 555.
100 corresponds to the observed snow percent and 555 comes from 5/5/5, which is a runway condition code (RCC)
that contains information regarding snow coverage and slipperiness on the runway. As both topic 1 and topic 2 refer
to weather conditions and events in areas of an airport, a correlation between the two topics can be expected, which
justifies why an overlap between them can be seen on Fig. 7.

The visualization also shows that topics 3 and 5 are relatively close together. Topic 3 includes keywords such as “ad”
and “ap,” “wip” which stands for work in progress, “agl” which stands for above ground level, “lgt” which stands for
light, and “tower.” Interestingly, the topic also includes “removal,” which is usually used when referring to the removal
of snow. This indicates that topic 3 describes airport operations in a general fashion and explains how they are affected
by conditions such as weather, which is similar to the findings with k-means clustering. Topic 5 includes keywords such
as “rwy,” “clsd,” “papi” which stands for precision approach path indicator, “cond” which stands for condition, and
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“frost.” Other top keywords include runway numbers such as 32 and 25, which could indicate that operations on these
runways are affected by weather. This shows that topic 5 focuses more towards how runway operations are affected by
weather conditions and which runways face a closure or change in their operations. This justifies why topics 3 and 5 are
in close proximity in Fig. 7 since both topics refer to how operations in areas of the airport, whether in a general or
specific manner, are affected by events such as weather.

Finally, topic 4 primarily includes NOTAMs that refer to airspace operations, which can be seen with keywords such
as “act” which stands for activated, “airspace,” “moa,” as well as “fl180” and “11000ft,” which indicate altitudes. This
explains why topic 4 is located the furthest from any other topic in Fig. 7 as it solely focuses on airspace operations
while other topics are more concerned about weather and affected operations in airports.

These results show that the 5-topic LDA model is effective at identifying distinguishable topics. When performing
similar analysis on the 3-topic and 7-topic model, it was found that these topic models were not as successful in
determining clusters among the data; the 3-topic model did not include topics regarding airport operations besides those
on the runway and taxiway and the 7-topic model showed repetition among certain topics. Although the 4-topic model
was able to identify distinguishable clusters, these clusters were not as meaningful. From this, it can be concluded that 5
is an optimal number for the n_components hyperparameter to get an accurate picture of the different categories of data
present in the 100,000 NOTAMs.

2. Topic Prediction
After analyzing the topic distributions to determining that 5 is the optimal number of topics, the 5-topic LDA model

is used to generate predictions for the 1,000 NOTAMs allocated for testing. To do this, first, all of the test NOTAMs are
vectorized using TF-IDF. Then, they are passed into the 5-topic LDA model, which generates a vector for each NOTAM
containing a list of probabilities. Each probability corresponds to the likelihood that a NOTAM belongs to a certain
topic. The maximum probability in an outputted vector is used to determine the dominant topic for a NOTAM. Figure 8
represents a process-flow diagram for making predictions with LDA, and Fig. 9 shows a prediction for a test NOTAM
made by the 5-topic LDA model.

Vectorized 
NOTAM

LDA Model (n-components)

Topic 2 
Probability

Topic 1 
Probability

Topic n 
Probability⋯

Fig. 8 Process-flow diagram for making predictions with LDA.

As seen in Fig. 9, the test NOTAM—comprising of keywords such as “airspace,” “moa,” “act,” “11000ft,”
“including,” and “fl180”—is predicted by LDA to have topic 4 or Airspace Operations as its dominant topic. When
looking at the keywords in topic 4, which contain many of those in the test NOTAM, this prediction makes sense.
Therefore, this demonstrates that the 5-topic LDA model is also effective at predicting the category that a NOTAM in
the dataset most likely falls under.
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Test NOTAM: !SUAW 02/055 ZTL AIRSPACE SNOWBIRD MOA ACT 11000FT UP TO BUT NOT INCLUDING
FL180 1902011700-1902011800

Fig. 9 Predicted topic distribution by a 5-topic LDA model for a test NOTAM.

3. Similarity Detection
Another application of LDA in regards to NOTAMs is similarity detection. Specifically, LDA is used to order

a list of NOTAMs based on their similarity to a specific reference NOTAM not part of the list. To accomplish this,
first, LDA is used to generate a probability vector for the reference NOTAM and all the NOTAMs in a given list. A
probability vector for a NOTAM represents its predicted topic distribution, and therefore, contains details regarding its
subject matter. The next step is to calculate the distance between each NOTAM in the list and the reference NOTAM. To
calculate the semantic distance between NOTAMs represented as LDA vectors, we use the SciPy implementation of
cosine distance metric∗∗∗. A smaller cosine distance indicates greater similarity and vice versa. The last step is to order
the NOTAMs in ascending order to arrange them from being most similar to least similar to the reference NOTAM.

Figure 10 provides a visual for the similarity predictions for a list of NOTAMs given a reference NOTAM using
the 5-topic LDA model. The test NOTAM used in this example is the NOTAM for which topic predictions were done
in Fig. 9 to determine that its dominant subject is Airspace Operations. Based on the graph, it can be seen that the
NOTAMs that have the smallest log(cosine distance) are those that also refer to operations in the airspace. Meanwhile,
the NOTAMs in the list that have the largest log(cosine distance) are those related to weather conditions in the airport.
This indicates that the 5-topic LDA model is effective at generating vectors for NOTAMs that encompass their subject
matter, allowing for metrics such as cosine distance to be used to accurately identify how similar a NOTAM is to another
NOTAM. The ability to perform similarity detection can especially be useful when the LDA model is unable to predict
a clear dominant topic for a NOTAM. In such a situation, the generated LDA vector for that NOTAM can be compared
using the cosine distance metric with the LDA vectors for NOTAMs that have the conflicting topics as their dominant
topics. The topic for which the greatest similarity score is obtained based on the cosine metric can be predicted to be the
dominant topic for the NOTAM. Using LDA in conjunction with similarity metrics to categorize data has already been
done with great success [34, 35], showing that this is a viable method of making topic predictions.

4. Anomaly Detection
Another application of LDA that is explored is anomaly detection, specifically the usage of LDA to detect the most

anomalous NOTAM among a small group of NOTAMs. The research done by Mahapatra, Amogh et al. demonstrates
the scalability of LDA in contextual anomaly detection in text data [36]. In their research, LDA was implemented to
generate n-number of topics for text logs, which are ranked using symmetrized KL (Kullback-Leibler) divergence, a
measure of distance between two probability distributions. Topics ranked above a certain threshold are considered to

∗∗∗https://docs.SciPy.org/doc/SciPy/reference/generated/SciPy.spatial.distance.cosine.html
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Test NOTAM: !SUAW 02/055 ZTL AIRSPACE SNOWBIRD MOA ACT 11000FT UP TO BUT NOT INCLUDING
FL180 1902011700-1902011800

Fig. 10 Predictions by the 5-topic LDA model on the similarity between a reference NOTAM and each of the
NOTAMs in a given list.

be normal. Topics ranked below this threshold represent potential anomalies. In order to obtain a more specific and
narrowed down list of anomalous topics, an anomaly score is calculated for each of the low-ranked topics. The first step
in calculating a score for a low-ranked topic is to sum the similarities between a word in that topic and each word in a
normal topic. The second step is to repeat the first step over all words in the low-ranked topic and all topics in the list of
normal topics. In the Mahapatra, Amogh et al. study, Normalized Google Distance (NGD) and WordNet are used to
detect similarity [36]. After the scoring process is complete, the low-ranked topics are sorted in ascending order based
on their score and the topics with the k lowest scores are reported as anomalous.

This study makes use of similar methods as Mahapatra, Amogh et al. to detect anomalies in text data, however
there are some differences. As this study aims to understand anomaly detection among the documents themselves and
not the topics, an additional step of using LDA to generate a probability vector for each NOTAM is implemented. In
addition, as NOTAMs are written in a unique language that is not present in commonly searched text [24], NGD and
WordNet cannot be used to evaluate similarity. Instead, SciPy’s implementation of the cosine distance metric††† is
used to determine the semantic distance between two NOTAMs represented as LDA vectors. The next step, similar
to Mahapatra, Amogh et al.’s implementation, is calculating a score for every NOTAM in the list. This is done by
summing the distances between an individual NOTAM and the other NOTAMs in the group, and then repeating for all
instances to get a list of scores. The NOTAMs are then sorted in descending order based on their calculated score. The
NOTAM with the highest score is considered to be the most anomalous in the group.

Figure 11 shows the anomaly predictions made for a list of NOTAMs using the 5-topic LDA model. As seen in this
example, the four NOTAMs with the lowest anomaly scores relate to airport operations, whether they are on the runway
or taxiway, while the NOTAM with the highest anomaly score refers to an airspace operation. This prediction makes
sense, as the NOTAM with the highest score was the only NOTAM in the list that depicted changes in the airspace,
causing it to be the most anomalous out of all of the five notices. This indicates once again that LDA can effectively
capture a NOTAM’s subject matter, allowing for anomaly detection operations to be accurately performed.

5. LDA Conclusion
These results show that the LDA statistical technique can be scaled to detect hidden global topics in a NOTAM

dataset. They also demonstrate that a trained LDA model can be used to effectively make predictions regarding
a NOTAM’s subject matter, which can further lead to other end-user applications such as similarity and anomaly
comparisons among a group of NOTAMs.

†††https://docs.SciPy.org/doc/SciPy/reference/generated/SciPy.spatial.distance.cosine.html
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Fig. 11 Predictions by the 5-topic LDA model on the anomaly scores for a list of NOTAMs.

V. Creating a Deeply Parameterized Dataset
Creating a dataset parameterized by different features in a NOTAM could be the start to understanding the structure

behind hand-written NOTAMs. Having an understanding of this structure could lead to better search engines or more
business rules for models like AIXM.

A single hand-written NOTAM contains one feature, the text that makes up the NOTAM. Certain attributes, such as
accountable/effective locations, NOTAM number, keyword, start, and end time, are all easily extractable using string
pattern matching, resulting in 7 features. However, even these are limited in the amount of information they give
regarding a NOTAM’s body. Recalling Fig. 2, NOTAMs can be separated into 16 features. One notable section listed
is the condition. This ranges from field conditions (FICON) for surfaces, to CLSD or OUT OF SERVICE for other
scenarios. The goal in the next section is to explain a methodology for extracting these features.

A. Named Entity Recognition
Named entity recognition, or NER for short, is a supervised natural language processing task that identifies keywords

within a document. In a more traditional approach, if a task required identifying all the airports within a document, then
a trained NER model would identify and highlight airports throughout the document (i.e., LAX would be tagged as an
airport by the model in the sentence “The aircraft departed LAX”).

According to Döhling and Leser [37], NER can also be used to extract patterns within text. That means a well-trained
NER model could find the patterns that distinguish each segment within a NOTAM. Therefore, each one of the structure
segments described in Fig. 2 can be unique keywords fed into a model and there will be a total of 16 different tags (see
Fig. 2 for details). These 16 tags will later be features within a dataset, each representing their respective part of the
NOTAM. As an example (see NOTAM that follows), the token FADED would be classified as a Condition feature
according to our model.

!EWR 01/020 EWR TWY EE HLDG PSN MARKINGS FOR ILS BTN RWY 04R/22L AND TWYM
FADED 2101041504-2106302300

Given that this methodology follows the structure in Fig. 2, FDC NOTAMs are excluded, as they contain information
outside of these 16 features.

B. Creating Annotations
Since NER is a supervised machine learning task, a corpus of annotated data must be created. For this task, an

open-source annotation tool called Doccano‡‡‡ is used. Doccano makes the task of annotating language data a more
‡‡‡https://github.com/doccano/doccano
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streamlined process for the user, as well as being a free tool that is easily accessible. Doccano offers many tools for
different NLP tasks, but in this case, the entity tagging tool is used. The entity tagging tool was created specifically for the
NER task. The software offers ways of creating new tags, tagging highlighted text with hotkeys, and importing/exporting
data in multiple different formats.

Preprocessed 
NOTAMs

NOTAM Contexts

Doccano
Entity Tagger Tool - This 
tool allows efficient 
tagging of entities.

Train NER Model
Feed annotations thus far 
into a superficial or 
completed model.

Tagged Data
This data can be either 
extracted for analysis, or 
fed back into doccano for 
review.

Training and 
Annotation Loop

Finished Data

Fig. 12 NER Tagging Pipeline Using Doccano.

Figure 12 shows the method used for tagging entities. These NOTAMs are formatted to be imported into Doccano.
Then, a small batch of 100-250 NOTAMs are randomly picked from the entire NOTAM dataset. This small batch is
manually labeled using Doccano. Using this small batch as a training set, a superficial NER model is trained. This weak
model is then used to pre-tag a different batch of 100-250 NOTAMs. With these pre-tagged NOTAMs, the annotator
manually checks and fixes any mistakes the weak model has made. After fixing, the new batch is combined with the
previous to train a slightly stronger model. This cycle continues, and the task of annotating becomes easier as the
developing model trains on more data. This cycle stops when the model is trained to an acceptable F1-score, the metric
used to gauge performance. Although this cycle is not guaranteed to result in an acceptable F1-score, an empirical
observation after the first few batches suggested improving model performance with increasing data. Currently, 3000
NOTAMs are annotated. This resulting corpus of annotated NOTAMs is now ready for final training and creation of a
parameterized dataset.

C. Training
On first thought, using a large pre-trained transformer model, like BERT, to perform NER would be ideal since it

would require less training data and contains previously learned representations of words. However, since the NOTAM
language is a unique language [24], the previously learned representations on English appeared to make the model
perform worse. This could be a result of having to relearn new representations for the abbreviations and acronyms
which may have different meaning in general contexts. Because this model performs poorly on the task, a smaller yet
still accomplished model architecture by spaCy [38] is used. The spaCy tool offers multiple machine learning models
for different NLP tasks, however this section is focused on its NER deep convolutional neural network. Some attributes
that spaCy’s model offers that align with our task are its strong ability to recognize short entities [38] (entities that do
not span multiple words or sentences) which populate most of the entities found in the NOTAMs.
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D. Metrics
In order to evaluate the NER model three metrics are computed. Precision, as defined in Eq. 2, tells us what

proportion of the positively classified tags are true positives. This tells us how often our prediction method is correct.
[39]. Recall (Eq. 3) tells us what proportion of the true positive tags are correctly classified. Since the two metrics are
independent of each other and complementary, it is difficult to guarantee a high degree of precision and perfect recall.
For example, one can achieve perfect recall by classifying everything as true tags. This of course would lead to poor
precision. As a result, a common approach is to use the F1-score (4), which is the harmonic mean between precision
and recall, instead. [39].

Precision =
True Positive

True Positive + False Positive (2)

Recall =
True Positive

True Positive + False Negative (3)

F1-score =
2 ∗ Precision ∗ Recall
Precision + Recall (4)

E. Results

Fig. 13 Named entity recognition testing metrics.

Figure 13 shows the various metrics while training the spaCy NER model. The top left shows loss. This loss is
calculated internally by spaCy. This loss was created to optimize whole entity accuracy §§§. Loss is analyzed between
training and testing sets to understand if the model is under or overfitting. This loss shows a good fit after the first
couple of epochs, and does not diverge from the training loss significantly. The top-right shows three performance

§§§https://github.com/explosion/spaCy/blob/master/spacy/pipeline/ner.pyx
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metrics mentioned in the previous section. The model has a steep learning curve after the first few epochs, but then
starts to level off at epoch 10, settling at around 97-98 for each metric. Interestingly, the precision and recall converge
together at these higher epochs as well. The bottom left image shows F1-score of each individual tag. These tags are
analyzed individually to show where improvements can be made in the model, and identify individual tags that may
bring down the performance of the overall system. As seen by the distribution of label tags on the bottom right, tags that
did not have as many occurrences in the annotated corpus performed worse than those labels which occurred commonly.
However, there was still strong performance in even rarer tags with nearly 0.78 F1-score for the SURFACE_SEGMENT
tag which only contains 156 occurrences (5.2% of all NOTAMs).

Table 7 Parameterized NOTAM Dataset

Accountable NOTAM Number Location Identifier Keyword ... Condition Reason ... Start End
HON¶¶¶ 04/190 HON AD ... CLSD NaN ... 1904271015 1904272200
CYS17 10/052 CYS RWY ... FICON 10 PCT 1/8IN WET SN... ... 1904271015 1904272200
SUAW18 10/708 ZSE AIRSPACE ... ACT NaN ... 1904271015 1904272200
CMI19 01/644 CMI TWY ... FICON 1IN DRY SN BA MEDIUM ... 1904271015 1904272200

Table 7 shows some examples of the resulting NER dataset. As described earlier, each NOTAM is successfully
segmented into 16 different sections (only 7 shown in Table 7). Note that not all NOTAMs have the same structure, and
may not contain every segment. These instances are filled as “NaN” in the dataset. Refer back to Fig. 13 (bottom-left)
for the distribution of labels in the training data. This label distribution also holds true with the final tagged dataset, as
seen in Fig. 14. The sankey diagram in Fig 14 shows the distribution and structural flow of the tagged dataset. Each
vertical grey bar represents a column in the dataset, while the connections are colored by the “KEYWORD” column to
analyze different structures based on the type of NOTAM. As shown, NOTAM types such as RWY, TWY, and APRON
have a similar structure. This is thought to be primarily dominated by weather NOTAMs, as they typically follow the
structure:

KEYWORD −→ ATT_ACT_SD −→ CONDITION −→ REASON −→ REMARKS

Another notable structure are AIRSPACE NOTAMs which typically follow the structure:

KEYWORD −→ FACILITY_SERVICE −→ LOWER_LIM −→ UPPER_LIM −→ CONDITION

As a final remark, this solution is not the only way to extract specific information from NOTAMs. Digital NOTAMs
contain most, if not all, of this information in a formally structured XML format which is easy to query. Where this
method outperforms that solution is for NOTAMs that are not captured digitally (recall: 30% of NOTAMs are not
captured digitally). An example are AIRSPACE NOTAMs, which do not have specification by the digital NOTAM
format. They are a large portion that can now be partially explained by our proposed NER model.

Another use-case of our model is converting hand-written NOTAMs into the digital format. NOTAMs that follow
the digital NOTAM specification but were not created in NOTAM Manager are not recognized as digital NOTAMs, and
do not have the added benefits such as better querying and NOTAM format translation. Although our current model does
not recognize all of the scenarios posed by the digital NOTAM specification, it can bee seen as the first step in outlining
NOTAMs, before even more detailed information can be extracted and formatted into a formal digital NOTAM.

VI. Question and Answering Using Plain Language NOTAMs
Another application to NOTAMs explored is performing the Question and Answering task. In aviation, Q&A is not

new, and has been utilized by IBM’s Watson for general aviation service and maintenance [14]. However, this task has
not been utilized as much in air traffic management documents. Q&A could prove useful in querying information from
data if it is faster than a human reading and interpreting the data, and retrieves information that is not easily obtainable
using simple parsing techniques [40]. This makes NOTAMs a good candidate for the task since consumers of NOTAMs
may need to read through dozens to hundreds of NOTAMs to get the entire details of an airport or airspace condition.

¶¶¶!HON 04/190 HON AD AP CLSD 1904271015-1904272200
17!CYS 10/052 CYS RWY 27 FICON 10 PCT 1/8IN WET SN PLOWED AND SWEPT 100FT WID OBS AT 1910271928. 1910271928-

1910281928
18!SUAW 10/708 ZSE AIRSPACE R6714C ACT SFC-15000FT 1910201300-1910211300
19!CMI 01/644 CMI TWY D FICON 1IN DRY SN BA MEDIUM OBS AT 1901270950. 1901270950-1901280950
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Fig. 14 Sankey diagram: resulting NOTAM structure. Sampled from one million tagged NOTAMs.

The other benefit is that NOTAMs can be free-form, containing enough variation that simple parsing techniques do not
work as well as machine learning techniques could.

One of the first problems encountered with the NOTAM data is that NOTAMs are written in a special highly-
abbreviated language and there is no way to ask questions within this language. Gupta et al. [41] would classify the
NOTAM language as a resource-scarce language as opposed to a resource-rich language like English. Therefore the
solution would be to translate NOTAMs into English and utilize the tools English offers to ask meaningful questions.
This also allows us to reap the benefits of transformer models that are pretrained on large English corpora. Luckily, the
FAA Plain Language Program20 pushes aviation to offer plain language alternatives to all domain-knowledge heavy
documents, including NOTAMs. Because of this effort, AIXM digital NOTAM format supports the conversion of
digital NOTAMs into a plain language format. The downside is that AIXM does not capture all types of NOTAMs (as
reiterated many times). The original 3.7 million NOTAM dataset only contains a little over one million plain language
NOTAMs.

Q&A task is not necessarily a machine learning task. It could involve employing simple search engines to find
answers, use machine learning techniques, retrieve from an ontology and/or a mixture of all of the above [9]. However,
in this work, we focus on a machine learning approach because of the recent rise in deep transformer models. Q&A also
has a few different forms in machine learning. The specific type of Q&A being done in this research is extractive Q&A,
where the inputs to each model will be question and context pairs, while the outputs are the positional indices of where
the start and end of the answer are within the text. Figure 15 shows an example of how this extraction works. Both the
context and question are inputted to the model, and the model will return two lists of scores for both the starting and
ending position of possible answers.

Some downsides to this method are that the models cannot synthesize answers that do not appear in the text itself,
and the models must return an answer, even if there is no relevant answer to the question in the context provided. In
future work, we plan to build upon this research and explore variations of the Q&A tasks such as hybrid Q&A model
that utilizes both knowledge graphs along with deep learning techniques. These systems are useful as they allow the
speed and accuracy of a knowledge graph, with the benefit of free text/speech which is prevalent in the domain. Also,
this route is extremely viable since most NOTAMs are already modeled by a knowledge graph in the AIXM.

Three popular transformer models are studied and compared for their effectiveness in understanding the task:
Bidirectional Encoders from Representations (BERT) [8], Robustly optimized BERT Pretraining Approach (RoBERTa)
[42], and XLNet, a generalized autoregressive pretraining method for language understanding [43]. Each model is
trained and validated on identical data to find differences in performance and gauge their usefulness within NOTAM
data and possibly the broader air traffic management domain.

20https://www.faa.gov/about/initiatives/plain_language/

19

https://www.faa.gov/about/initiatives/plain_language/


Affected⋯ Areas Taxiway: EE (between ⋯

Question: What are the affected areas?

Context

Answer Taxiway: EE

-8.93⋯ -9.57 8.39 -8.59 -10.15 ⋯Start Scores

-8.94⋯ -10.49 -6.35 14.90 -1.55 ⋯End Scores

Fig. 15 QA Extraction Example.

Note: This example was created using XLNet-Large, however the tokenization was compressed for readability (in
reality special characters and words will be broken up more).

A. Fine-tuning of Transformer Models
Each transformer model looked at has some version of unsupervised fine-tuning step which is used to initialize

weights of the model to particular data before training on a downstream task such as Q&A. BERT uses masked language
modeling (MLM) and next-sentence prediction [8] and RoBERTa uses dynamic MLM [42]. MLM is a fill in the blank
task, where a model uses the context words surrounding a mask token to try to predict what the masked word should be.
For an input that contains one or more mask tokens, the model will generate the most likely substitution for each [8]. A
difference between BERT and RoBERTa is that RoBERTa randomizes masks between epochs during training [42] (thus
the word ‘dynamic’) whereas BERT masks the labels once at the beginning of training. XLNet is slightly different and
uses permutation language modeling [43]. Although the outputs of all three models are the same, XLNet predicts the
masked input by calculating the output based on all permutations of the input sequence. This introduces bidirectionality
to an otherwise unidirectional model [43].

B. Preparing Context, Question, and Answering Pairs
We list the various methods used to create context-question-answer triplets below.
1) Manual annotation: this simple but tedious way is to have a human type out questions and answers given a

NOTAM and repeat this process thousands of times.
2) Generic question generation: this slightly less tedious method generates very common questions that could be

answered by reading any type of NOTAM. Some examples are “What is the NOTAM number?” or “What is the
affected area?” These questions can be asked many times, requiring the annotator to simply highlight the answer
instead of thinking about a more specific question to write down.

3) Context generation: another automated question technique that requires altering or synthesizing new NOTAMs
that have slightly different contents, but the same question-answer structure. An example would be regarding
the question “How much snow coverage is on the runway?” to the answer “100 PCT SNOW.” The context
surrounding the answer could be changed, such as the airport and runway pair. The answer could also be altered
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to be “50 PCT SNOW” while keeping the context the same, or performing all of these together.

Preprocessed Plain 
Language NOTAMs

NOTAM Contexts
Manual Question 
Generation
Doccano Seq2Seq

Manual Answer 
Tagging
Doccano Entity Tagger

Finished Data

Automatic 
Question 
Generation
Python

Context/Answer 
Generation
Python

Fig. 16 Question and answer annotation pipeline.

For the manual annotations, Doccano (as mentioned earlier) was used. Instead of using just the entity tagger, the
sequence-to-sequence feature was used in tandem with the entity tagger to create the annotations. An overview of the
workflow is displayed in Fig. 16. First, preprocessed plain language NOTAMs are imported into Doccano or Python.
Doccano is used to start the manual annotation process by displaying the contexts one by one and awaits new questions
in response. In Python, automated questions may be generated as mentioned above. These new question-context pairs
are then taking into Doccano for manual answer tagging. After manual answer tagging, some NOTAMs are then taken
for analysis of automatic context-question-answer generation. Those who follow similar format as mentioned earlier
will be duplicated and modified as context generation entries.

C. Metrics
Three common metrics used to evaluate the Q&A task are accuracy, exact match, and F1-score [9]. Accuracy, as

calculated in Eq. 5 gives a sense of how well the model is picking out relevant information. However, one problem
in Q&A systems is the large number of true negatives [9] since the correct answers are typically a small subset of
the larger context surrounding them. Exact match is evaluated simply by checking if the answer exactly matches the
expected result (Eq. 6). While this gives us an idea of how our model is performing, it has the issue of giving many
false-negatives since any partially correct answer is flagged as wrong. Finally, F1-score (Eq. 4) is used in a manner
similar to named entity recognition. As F1-score includes information about both recall and precision of each token in
the answer, it penalizes the model less for not getting the exact answer, but still recognizes partial answers as being
somewhat correct. Figure 17 gives an example of how true positive, true negative, false positive, and false negatives are
calculated in this context.

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative (5)

Exact Match =

{
1, if Prediction = Truth
0, if Prediction ≠ Truth

(6)

D. Results and Comparison
Table 8 gives the results of training all transformer models. Each model was trained on an NVIDIA Tesla P100

using their default configurations from Hugging Face21 with the exception of epochs, which is fixed at 10 for Q&A and
21https://huggingface.co/
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Fig. 17 NLP Classification Metrics

1 for fine-tuning, and batch size, which is fixed at 8 for the base cases and 4 for the large cases. Unfortunately, our
hardware did not allow any higher batch size without running into memory issues.

Table 8 Transformer Model Validation Results

Model LM Exact Match Q&A Accuracy Q&A Exact Match Q&A F1-score
BERT-Base-Uncased – 0.908 0.429 0.542

BERT-Base-Uncased (Fine-tuned) 0.879 0.939 0.546 0.724
BERT-Large-Uncased – 0.962 0.699 0.826

BERT-Large-Uncased (Fine-tuned) 0.885 0.945 0.576 0.712
RoBERTa-Base – 0.972 0.784 0.874

RoBERTa-Base (Fine-tuned) 0.890∗ 0.968 0.767 0.844
RoBERTa-Large – 0.976∗ 0.794∗ 0.883

RoBERTa-Large (Fine-tuned) 0.881 0.970 0.759 0.870
XLNet-Base-Cased – 0.974 0.769 0.884
XLNet-Large-Cased – 0.976∗ 0.772 0.889∗

Note: Each cell includes numbers reported from the best epoch of training. Scores labeled with a * symbol represent
the best score for a given metric.

Fine-tuning consisted of performing each model’s respective fine-tuning task on 200,000 NOTAMs for training and
20,000 NOTAMs for testing. More fine-tuning data is possible in the future with better hardware. The final annotated
Q&A dataset consisted of 4,015 question-answer-context triplets, which was split 90-10 for training and testing (3,614
train, 401 test).

The best results for each metric are highlighted with a * symbol. We observed that RoBERTa-Large and XLNet-
Large-Cased performed best in accuracy, RoBERTa-Large performed best in exact match, and XLNet has the best
F1-score. These results align relatively well with what was expected, with the larger models tending to outperform the
smaller ones. Where the results misaligned with our expectations are the results of the fine-tuned models. We expected
that fine-tuning each model on a large number of NOTAMs would help the models get a deeper understanding of the
structure of each plain language NOTAM. However, as the results show, every model other than BERT-Base-Uncased
took a hit in performance. One possible explanation of this trend could be the number of training examples fed into the
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model. Due to time and hardware constraints, only 200,000 out of 3.7 million NOTAMs were used for fine-tuning. If
more data were made available for fine-tuning, we expect to see an improvement over the base models.

Table 9 Q&A Examples

Context NOTAM
Issuing Airport: (EWR) Newark Liberty Intl
NOTAM Number: 01/020
Effective Time Frame
Beginning: Monday, January 4, 2021 1504 (UTC)
Ending: Wednesday, June 30, 2021 2300 (UTC)
Affected Areas
Taxiway: EE (between RWY 04R/22L and TWY M)
Marking Type: Holding position markings for ILS
Status: Faded

Model Answer Score
Question: What is the affected area?
BERT-Large-Uncased Taxiway: EE 0.413
RoBERTa-Large Taxiway: EE 0.999
XLNet-Large-Cased Taxiway: EE 0.687
Question: What is the status of the holding position markings?
BERT-Large-Uncased Faded 0.979
RoBERTa-Large Faded 0.999
XLNet-Large-Cased Faded 0.998
Question: What is the affected airport?
BERT-Large-Uncased (EWR) Newark Liberty Intl 0.142
RoBERTa-Large (EWR) Newark Liberty Intl 0.998
XLNet-Large-Cased (EWR) Newark Liberty Intl 0.949
Question: Where is taxiway EE closed?
BERT-Large-Uncased between RWY 04R/22L and TWY M 0.690
RoBERTa-Large between RWY 04R/22L and TWY M 0.997
XLNet-Large-Cased between RWY 04R/22L and TWY M 0.917

Note: Example results of three different trained models.

Table 9 shows some examples of different questions asked to the same context NOTAM. The best of each model is
shown: BERT-Large-Uncased, RoBERTa-Large, and XLNet-Large-Cased. Although all models perform well and give
correct answers, there are differences in the scores each model gives to the answer.

VII. Summary and Future Research Direction
In this research work, we have investigated the application of supervised and unsupervised machine learning

techniques to gain a deeper understanding of the patterns, structure, and content of existing NOTAMs. Some of the
unique patterns we discovered can help better classify NOTAMs, detect variations and anomalies among NOTAMs, and
help guide advanced NOTAM query systems for individual user or system needs.

In summary, key results and learnings from our work are included below.
1) Exploratory Data Analysis

Using TF-IDF embeddings and k-means clustering, NOTAMswere successfully categorized into three overarching
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clusters: Airport (NOTAMs pertaining to Airport conditions), Weather, and Airspace. These broad clusters
could be sub-clustered into more specific clusters. Using those same learned embeddings, LDA was used to
find hidden topics and demonstrated the ability to make effective predictions of a NOTAM’s subject matter and
degree of similarity to other NOTAMs.

2) Creating a Deeply Parameterized Dataset
Using manually annotated NOTAMs, a NER model was successfully trained to an F1-score of 98%. The tags
generated from this process also led to deeper insights regarding the structure of NOTAMs with different contexts.

3) Question and Answering Using Plain Language NOTAMs
Along with understanding plain language NOTAMs, we have evaluated the use of deep natural language
transformer models within the domain of NOTAMs. We see that both RoBERTa and XLNet are great candidates
for performing tasks, especially the question answering task.

While most NOTAMs are captured digitally and understood via a standardized model (AIXM), our effort helps gain
an understanding of the NOTAMs not currently digitized. As a future research goal, we plan to build a system that can
auto-convert current hand-written NOTAMs into a digital NOTAM specification.

Question and answering has been used in this work to evaluate the performance of modern deep learning models.
There are other NLP tasks that can be explored and optimized for use in the context of NOTAMs. One potential future
research topic will be to expand extractive question answering to more generalized (applicable) tasks in air traffic
management. Performing this Q&A task can be useful, especially when utilizing end-user tools like voice assistants.
However, current models can only extract information from one NOTAM at a time. To make the Q&A model more
effective, a document-retrieval system could be made that gathers relevant NOTAMs for the Q&A model to extract
answers. Additionally, hybrid Q&A tasks mentioned by Soares and Parreiras [9] could be utilized. An extractive Q&A
model in conjunction with AIXM could both provide an interface for natural language interaction as well as contain the
highest data quality required by the aviation community.

Along with NOTAMs, we hope to apply similar NLP methods to extract insights and patterns from other heritage air
traffic management documents such as Letters of Agreement (LoAs) and Standard Operating Procedures (SOPs). This
work will inform and facilitate future NAS operations as the airspace becomes increasing complex with diverse users,
diverse operations, and diverse flying systems.
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