LEWICE2D and GlennICE Results for Ice Prediction Workshop

William Wright HX5, LLC Ice Prediction Workshop, July26-29 **Co-Authors** David Rigby, HX5 Eric Galloway, HX5 Mark Potapczuk, NASA

This material is a work of the U.S. Government and is not subject to copyright protection in the United States

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Simulation Process

LEWICE2D

- Use multi-time step potential flow for ice shapes
- Use 2D slice from FUN3D for impingement cases
- Ice Density=450 for swept wing cases

GlennICE

2

- Use grid supplied (no grid independence study)
- Residuals converged to 10⁻¹⁰
- Ice Density=450 for swept wing cases
- Transition = 1% with turbulent_htc_augmentation = 6

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

2D Ice Shapes

Four conditions

- Two 18" NACA23012 (two different temperatures)
- Two 72" NACA23012 (monomodal and bimodal)
- No AOA correction (2° AOA)

LEWICE2D Process

- Multi-time step cases with 2D potential flow
- GlennICE Process
 - Preset transition at 1% chord, turbulent_htc_augmentation=6

LEWICE2D Case 241

Time = 300 s V=103 m/s AOA=2° T=250.15 K LWC=0.42 g/m³ MVD=30 (7 bin dist)

GlennICE Case 241

LEWICE2D Case 242

Time = 300 s V=103 m/s AOA=2° T=266 K LWC=0.81 g/m³ MVD=15 (7 bin dist)

Other LEWICE2D Predictions on 18" NACA23012

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

GlennICE Case 242

LEWICE 2D Case 251

Time = 398 s V=103 m/s AOA=2° T=260.7 K LWC=1.64 g/m³ MVD=21.5 (7 bin dist)

GlennICE Case 251

LEWICE2D Case 252

Time = 398 s V=103 m/s AOA=2° T=260.7 K LWC=1.64 g/m³ MVD=21.5 (BiModal dist)

GlennICE Case 252

3D Ice Shapes

Six Cases

- Four 30-deg sweep NACA0012
 - Two different velocities
 - > For each velocity, two different temperatures
- Two 45-deg NACA0012
 - Two different temperatures
- LEWICE2D Process
 - ➢ Adjust velocity (V_{2D}=V_{3D}*cosφ)
 - Adjust T_{static} (keep T_{total} same)
- GlennICE Process
 - Preset transition at 1% chord, turbulent_htc_augmentation=6

3D Sweep Correction (LEWICE)

- Use coordinates normal to LE (NACA0012)
- > Use $V_{2D} = V_{3D} * \cos(\phi)$
- Match T_{tot} (T_{static} adjusted)
- No AOA correction (0° AOA)
- Multi-time step cases with 2D potential flow
- \succ Ice density = 450

LEWICE2D Case 361

Time = 1200 s V=89.2 m/s (103m/s orig) AOA=0° T=258.6 K (257K orig) LWC=0.5 g/m³ MVD=34.7 (7 bin dist) Ice density = 450 kg/m³

AM

GlennICE Case 361

LEWICE2D Case 362

Time = 1200 s V=89.2 m/s (103m/s orig) AOA=0° T=267.8 K (266K orig) LWC=0.5 g/m³ MVD=34.7 (7 bin dist) Ice density = 450 kg/m³

GlennICE Case 362

LEWICE2D Case 363

Time = 1062 s V=99.6 m/s (115 m/s orig) AOA=0° T=264.8 K (263K orig) LWC=0.5 g/m³ MVD=20.5 (7 bin dist) Ice density = 450 kg/m³

GlennICE Case 363

LEWICE2D Case 364

Time = 1062 s V=99.6 m/s (115 m/s orig) AOA=0° T=261.5 K (259.7K orig) LWC=0.5 g/m³ MVD=20.5 (7 bin dist) Ice density = 450 kg/m³

GlennICE Case 364

22

LEWICE2D Case 371

Time = 1200 s V=72.3 m/s (103m/s orig) AOA=0° T=261.5 K (257K orig) LWC=0.5 g/m³ MVD=32 (7 bin dist) Ice density = 450 kg/m³

GlennICE Case 371

24

LEWICE2D Case 372

Time = 1200 s V=72.3 m/s (103m/s orig) AOA=0° T=269.1 K (266K orig) LWC=0.5 g/m³ MVD=32 (7 bin dist) Ice density = 450 kg/m³

GlennICE Case 372

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

26

Impingement on NACA64A008 Wing

> Two cases

- > 21 micron and 92 micron
- > 27 bin distributions
- > AOA=6°
- LEWICE2D Process
 - Collection efficiency is horizontal, not normal to LE
 - Horizontal slice used
 - No adjustment to velocity
 - Read 2D slice from 3D flow into LEWICE2D
 - Adjustment needed for beta

$$\succ \quad \beta_{3D} = \beta_{2D} \frac{\sqrt{\Delta x^2 + \Delta y^2}}{\sqrt{\Delta x^2 + \frac{\Delta y^2}{\cos^2 \phi}}}$$

Process for Using FUN3D in LEWICE2D

- Load solution into Tecplot
- Take 2D slice at Z-location of data
 - Based on case orientation, sometimes the slice is a Y-location
- > Add 2D Cartesian zone (5000x2000)
- Interpolate flow variables to cartesian grid
- Export 2D geometry, grid and flow variables
- Run cases in LEWICE2D

LEWICE2D Swept Tail Collection Efficiency MVD = 21

Time = N/A V=78.7 m/s AOA=6° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

GlennICE Swept Tail MVD=21

LEWIICE2D Swept Tail Collection Efficiency MVD = 92

Time = N/A V=78.7 m/s AOA=6° T=291.2 K LWC=N/A MVD=92 (27 bin dist)

GlennICE Swept Tail MVD=92

Impingement on Multi-Element Airfoil

Two cases

- > 21 micron and 92 micron
- > 27 bin distributions
- ➢ AOA=4°
- LEWICE2D Process
 - Read 2D slice from 3D flow into LEWICE2D

LEWICE2D Multi-Element Airfoil (Slat) MVD = 21

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

GlennICE Multi-Element Airfoil (Slat) MVD = 21

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

LEWICE2D Multi-Element Airfoil (Main) MVD = 21

Time = N/A	
V=78.7 m/s	
AOA=4°	
T=291.2 K	
LWC=N/A	
MVD=21 (27 bin dist)	

AMERICA

GlennICE Multi-Element Airfoil (Main) MVD = 21

Time = N/A
V=78.7 m/s
AOA=4°
T=291.2 K
LWC=N/A
MVD=21 (27 bin dist)

LEWICE2D Multi-Element Airfoil (Flap) MVD = 21

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

GlennICE Multi-Element Airfoil (Flap) MVD = 21

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

LEWICE2D Multi-Element Airfoil (Slat) MVD = 92

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

GlennICE Multi-Element Airfoil (Slat) MVD = 92

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

LEWICE2D Multi-Element Airfoil (Main) MVD = 92

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

GlennICE Multi-Element Airfoil (Main) MVD = 92

AMER

LEWICE2D Multi-Element Airfoil (Flap) MVD = 92

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

GlennICE Multi-Element Airfoil (Flap) MVD = 92

Time = N/A V=78.7 m/s AOA=4° T=291.2 K LWC=N/A MVD=21 (27 bin dist)

Impingement on Axi-symmetric Inlet

Two cases

- Two mass flows through inlet
- > AOA=15°, so results are not symmetric
- LEWICE2D not performed
- GlennICE 7-Bin Results presented

GlennICE Case 131 Theta=0°

GlennICE Case 131 Theta=45°

Time = N/A V=78.7 m/s AOA=4° T=283.2 K Mass Flow = 7.8 kg/s MVD=21 (7 bin dist)

GlennICE Case 131 Theta=90°

Time = N/A V=78.7 m/s AOA=4° T=283.2 K Mass Flow = 7.8 kg/s MVD=21 (7 bin dist)

GlennICE Case 131 Theta=135°

GlennICE Case 131 Theta=180°

Time = N/A V=78.7 m/s AOA=4° T=283.2 K Mass Flow = 7.8 kg/s MVD=21 (7 bin dist)

GlennICE Case 132 Theta=0°

GlennICE Case 132 Theta=45°

Time = N/A V=78.7 m/s AOA=4° T=283.2 K Mass Flow = 10.4 kg/s MVD=21 (7 bin dist)

GlennICE Case 132 Theta=90°

Time = N/A V=78.7 m/s AOA=4° T=283.2 K Mass Flow = 10.4 kg/s MVD=21 (7 bin dist)

GlennICE Case 132 Theta=135°

GlennICE Case 132 Theta=180°

Conclusions – LEWICE Results

- LEWICE underpredicted heat transfer coefficient on NACA23012 airfoil
- Constant Ice Density leads to inconsistent results for swept wing cases
- Splashing model is tuned to potential flow, not Naviér-Stokes flows
- Use of cartesian grid lead to noise in collection efficiency prediction

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

57

Conclusions - GlennICE

- Use of constant heat transfer enhancement and constant ice density led to inconsistent results
- Used the grids supplied
 - Lack of time to perform grid sensitivity study for multi-element airfoil and inlet could cause discrepancy in results

