

Natural Language Processing (NLP) Analysis of NOTAMs for Air Traffic Management Optimization

Patrick Maynard, Stephen Clarke, Jacqueline Almache, Satvik Kumar, Swetha Rajkumar, Alexandra Kemp, and Raj Pai

NASA

AIAA Aviation Forum 2021

Restriction/

Research Motivation and Background

Background

Natural Language Processing (NLP)

Objective

- Use NLP to understand NOTAMs
- Explore AI/ML to digitize NOTAMs

Justification

- Increased volume of NOTAMs
 - Only 70% of NOTAMs are digitized
- Better understanding of airspace constraints
- Safer & Efficient NAS operations

Notice To Airmen (NOTAM)

!EWR 10/371 EWR RWY 04L FICON 5/5/5 100 PCT WET OBS AT 1910300331. 1910300331-1910310331

Plain English Translation

Issuing Airport: (EWR) Newark Liberty Intl

NOTAM Number: 10/371 Effective Time Frame

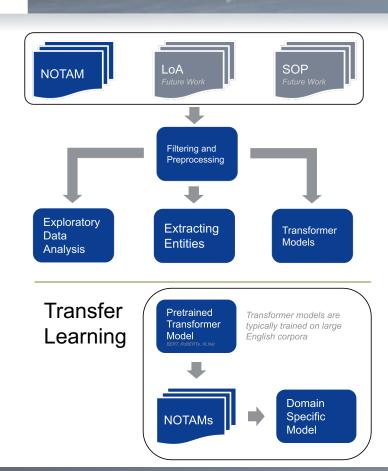
Beginning: Wednesday, October 30, 2019 0331 (UTC)

Ending: Thursday, October 31, 2019 0331 (UTC)

Affected Areas Runway: 04L

Condition: 5/5/5 100 PCT WET

Observation Time: Wednesday, October 30, 2019


Our Approach to using NLP

Prior NLP Research in Aviation

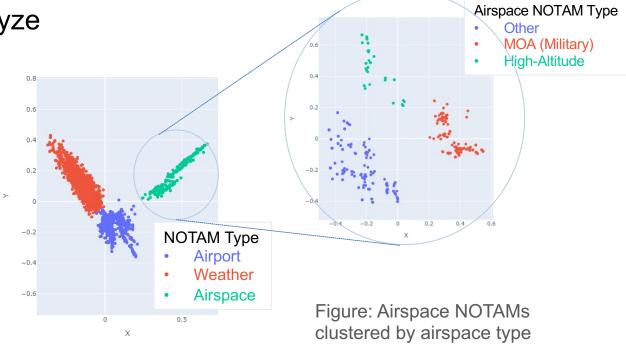
- Analysis of safety events (ASRS*)
- Analyze aircraft maintenance issues

Our Approach

- 1. Exploratory Data Analysis
- 2. Extract Entities
- 3. Evaluate Transfer Learning Techniques

*ASRS – Aviation Safety Reporting System

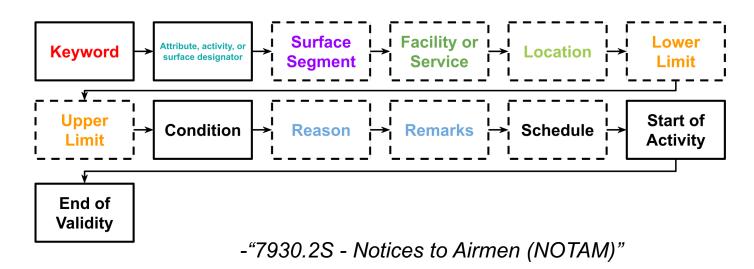
Exploratory Data Analysis Results


Understand distribution of published NOTAMs

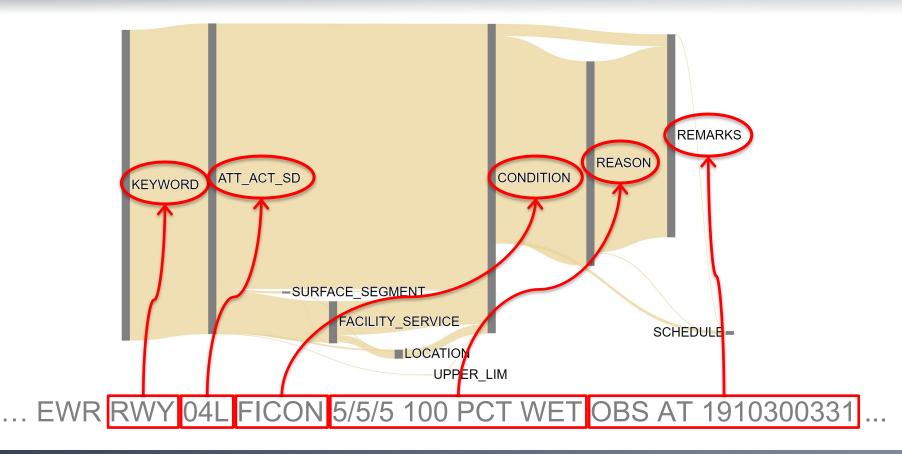
Restriction/

Understand & Analyze

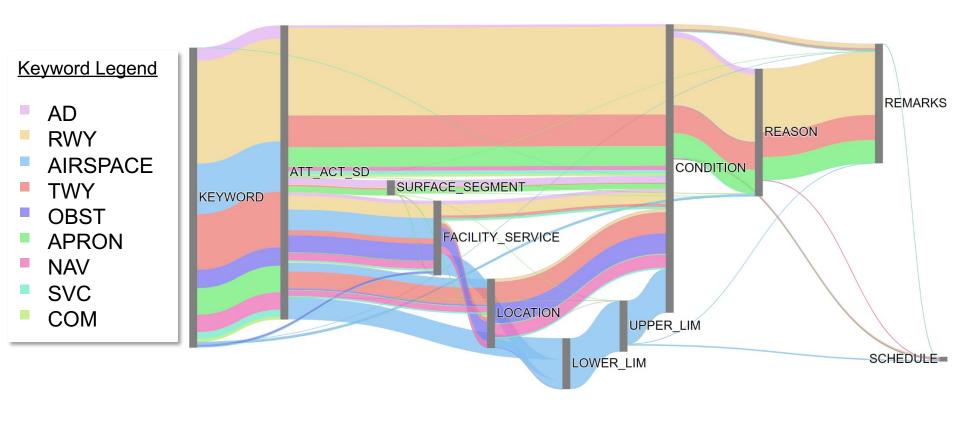
NOTAM Similarity


- Anomaly detection

Entity Extraction and Structure Analysis

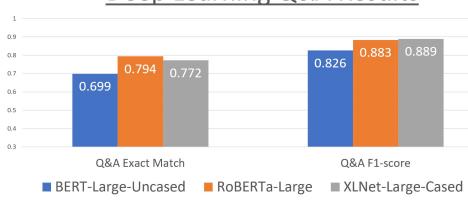

- Creation of a deeply parameterized dataset
 - Using Named Entity Recognition (NER)
- Gain a deep understanding of NOTAM structure

Restriction/



Sample RUNWAY NOTAM Structure

Sample Visualization of Full NOTAM Data Set


Restriction/

Exploration of Prebuilt Transfer Learning Models

Evaluate Transfer Learning

Deep Learning Q&A Results

$$Exact Match = \begin{cases} 1, & \text{if } Prediction = Truth \\ 0, & \text{if } Prediction \neq Truth \end{cases}$$

$$F1\text{-}score = \frac{2 * Precision * Recall}{Precision + Recall}$$

Example Context

Issuing Airport: (EWR) Newark Liberty Intl

NOTAM Number: 10/371

Effective Time Frame

Beginning: Wednesday, October 30, 2019 0331 (UTC)

Ending: Thursday, October 31, 2019 0331 (UTC)

Affected Areas

Runway: 04L

Condition: 5/5/5 100 PCT WET

Observation Time: Wednesday, October 30, 2019 0331

Results - XLNet-Large-Cased Model

Question: What is the condition of runway 04L at

EWR?

Answer (No training): 'Thursday, October 31, 2019'

Answer (Fine-tuned): '5/5/5 100 PCT WET'

Summary & Learnings

- ➤ Explored Analysis of Historical NOTAMs
- ➤ Digitally Extracted Entities in NOTAMs
- > Evaluated transfer learning models
- ✓ Opportunity to use NLP & digitize global NOTAM datasets
- ✓ Opportunity to provide holistic view of airspace constraints for all users
- ✓ Leading to safer and more efficient NAS operations

Future Work

- Expand training of NLP models with larger NOTAM data sets
- Explore adapting similar NLP techniques and workflows for
 - Letters of Agreement (LoA)
 - Standard Operating Procedures (SoP)

Thank You

Q&A