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Modern jet airliners record nearly one gigabyte of raw data per flight, nearly double that 
recorded by the previous jet airliners brought into service less than ten years ago. Given this 
treasure trove of data, data analysis is an ever-important capability to convert these data into 
knowledge that permits understanding and achieving safe operations. The practice of Data 
Analytics involves applying Artificial Intelligence (AI) and Machine Learning (ML), among other 
approaches, to derive insights and identify meaningful relationships in the data.  
 
AI is the field of study focused on developing simulated human intelligence in computer-based 
agents. ML, a subdiscipline of AI, involves development of prediction or decision algorithms not 
explicitly programmed to predict or decide but rather that learn from data representing past 
predictions or decisions. You may have experienced ML-enabled capabilities such as customized 
recommendations in Netflix or Amazon. Virtual assistants, such as Apple’s Siri or Amazon’s 
Alexa, and partially or fully-autonomous vehicles are possible due to the ability of ML 
algorithms to learn from past operations. 
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Our team of NASA Data Scientists in the System-Wide Safety Project have been developing ML 
algorithms to discover patterns and relationships that were previously undetectable by 
exceedance-based methods or traditional simple statistical models. Figure 1 shows a high-level 
view of the process of identifying and mitigating safety issues. The steps involve using data 
sources to monitor operations, performing analyses that allow for assessing the nature of 
operations and determining if safety issues are present or likely to arise, and then taking 



actions to mitigate any safety issues. Currently, flight safety monitoring is mostly done using 
exceedances, which are rules, typically over a few variables that describe conditions that are 
best avoided, such as a drop in airspeed during takeoff or excessive speed on approach at 1,000 
feet altitude. Such exceedances are clearly effective at finding known safety issues, but are not 
designed to look for vulnerabilities, which are previously unknown safety issues. Additionally, 
exceedance thresholds may have been ideal when they were set but are not necessarily ideal in 
current operating conditions. 
 

Data analytics aims to “let the data speak” by using 
techniques from ML, data mining, statistics, and related 
fields to transform data into knowledge of the system that 
generated the data. Our team is developing ML algorithms 
for anomaly detection, which involves identifying those 
few data points that are unusual or “stick out” compared 
to most of the data that represent normal operations. 
These methods are relevant for vulnerability discovery 
because both known and unknown problems, which are 
operationally anomalous (see Figure 2), are relatively rare 
and therefore, are among the statistically anomalous data 
points that anomaly detection methods would find. The 
process of vulnerability discovery involves using an 
anomaly detection algorithm to find the statistical 
anomalies, removing those data points representing 
known problems, and examining the remaining statistical 
anomalies to separate the vulnerabilities (unknown 
problems) from the false alarms. The problem of having 

too many false alarms is a well-known problem in anomaly detection. One can choose to 
restrict the algorithm’s definition of statistically anomalous to reduce the number of false 
alarms, but this raises the chance of missed detections---operationally anomalous data points 
that are marked statistically normal---which is the problem with exceedance-based methods. 
 

Figure 2 (not to scale) 
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To reduce the problem of false alarms, we are working on the use of active learning methods to 
learn from domain experts how to distinguish operationally anomalous problems from false 
alarms. Active learning is an area of ML that accounts for the cost of getting labels for data---in 
this case, having domain experts spend time to label data points as operationally anomalous or 
false alarms---and only asks domain experts to label those data points that are most helpful in 
learning how to distinguish between the labels. After learning and during operations, new data 
points are processed as described in figure 3---each data point is passed to the anomaly 
detector. If the detector decides that the data point represents normal operations, then 
nothing more is done. If the data point is deemed statistically anomalous then it is passed to 
the classifier that results from active learning. The classifier determines whether the statistically 
anomalous point is also operationally anomalous or a false alarm. 
 
We would also like to identify precursors to known adverse events. These precursors are 
conditions after which the known adverse event is more likely to occur. For example, for 
excessive speed on approach at 1,000 feet, we may be able to identify a threshold on speed at 
top of descent beyond which the probability of violating the high-speed exceedance is 
unacceptably high. In figure 4, we would prefer to find the precursor depicted by p1, which is 
the earliest point at which one action has an unacceptably high probability of reaching the 
hazard state while the other action has a high probability of reaching the safe state. We are also 
interested in finding corrective actions, which correct for an action that could lead to a hazard 
state. We are developing algorithms that allow users to specify the hazard states vs. safe states 
and automatically find the precursors like p1.  
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Airlines invest significantly in collecting and storing data that describe many aspects of 
operations, including flight operations, airspace, and maintenance. These data can suggest how 
an airline is really operating versus how the airline thinks it is operating, as well as how the 
operations are changing over time. Data analytics methods, such as those described above, can 
contribute to this understanding. The examples given above are largely applied to numeric data 
such as FOQA and radar track data. We are collaborating with airlines on data analytics to 
extract knowledge from the substantial data that they collect, including not only FOQA, but also 
ASAP, LOSA, and others. The goal of this work is to:  
 

• Assess how beneficial different data sources can be at identifying vulnerabilities and 
precursors by themselves and jointly,  

• Determine what ML techniques can be used on these data sources,  
• Identify what visualization techniques we can use to reveal these vulnerabilities to 

domain experts (e.g., pilots, IOC personnel) in the most intuitive way possible, and  
• See how best to incorporate their feedback on the operational significance of the 

identified vulnerabilities and which subsets of the data are most relevant.  
 

The greater the number of data sources and amount of data examined, the greater the 
knowledge that can be gained and the more the different parts of an airline’s operations can 
coordinate to mitigate vulnerabilities. 
 
The data analytics work described so far is being done offline, on data representing operations 
that are not currently in progress, and will generate knowledge based on those data. A second 
aspect of our data analytics work involves using the generated knowledge, in the form of 
models generated by the ML techniques, to monitor operations in progress to identify potential 
vulnerabilities and precursors when or before they happen. This will require us to develop 
software that operates in the Integrated Operations Center (IOC), ingests data from the data 
feeds that the IOC receives, and runs the ML models on these data to indicate whether the data 
represent operationally significant anomalies or precursors. We will also develop software to 
allow IOC personnel to visualize the ML results and related data so that they can take 



appropriate actions. We will develop the tools needed to allow the results obtained during 
operations to inform and update the ML models developed offline. This will always be 
necessary as the nature of operations continually changes. 
 
Our Data Analytics collaboration will allow airlines to use the data already being collected to 
better understand how operations are proceeding, leading to more effective actions and 
mitigations of safety issues as well as a more accurate assessment of how beneficial these 
actions are and when these actions need to change. These analyses will be done while keeping 
the data resident on the airlines’ systems and maintaining confidentiality and anonymity of the 
data. We expect the collaboration to allow us to develop ML and Visualization tools and related 
software that are more helpful to U.S. commercial aviation than what they currently use and 
thereby yield greater value in terms of safety, efficiency, and passenger comfort. 


