
NASA/TM-2021-104606/Vol. 58 

Technical Report Series on Global Modeling and Data Assimilation, 
Volume 58 

Randal D. Koster, Editor  

Soil Moisture Active Passive (SMAP) Project Assessment 
Report for Version 5 of the L4_SM Data Product

Rolf H. Reichle, Qing Liu, Randal D. Koster, Joseph V. Ardizzone, Andreas 
Colliander, Wade T. Crow, Gabrielle J. M. De Lannoy and John S. Kimball

September 2021 



NASA STI Program ... in Profile 

Since its founding, NASA has been dedicated 

to the advancement of aeronautics and space 

science. The NASA scientific and technical 

information (STI) program plays a key part in 

helping NASA maintain this important role. 

The NASA STI program operates under the 

auspices of the Agency Chief Information Officer. 

It collects, organizes, provides for archiving, and 

disseminates NASA’s STI. The NASA STI 

program provides access to the NTRS Registered 

and its public interface, the NASA Technical 

Reports Server, thus providing one of the largest 

collections of aeronautical and space science STI 

in the world. Results are published in both non-

NASA channels and by NASA in the NASA STI 

Report Series, which includes the following report 

types: 

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compila-

tions of significant scientific and technical

data and information deemed to be of

continuing reference value. NASA counter-

part of peer-reviewed formal professional

papers but has less stringent limitations on

manuscript length and extent of graphic

presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain

minimal annotation. Does not contain

extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing  

and publishing research results, distributing 

specialized research announcements and 

feeds, providing information desk and personal 

search support, and enabling data exchange 

services. 

For more information about the NASA STI 

program, see the following: 

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199



NASA/TM-2021-104606/Vol. 58

September 2021

Technical Report Series on Global Modeling and Data Assimilation, 
Volume 58 

Randal D. Koster, Editor  

Soil Moisture Active Passive (SMAP) Project Assessment 
Report for Version 5 of the L4_SM Data Product

National Aeronautics and 
Space Administration 

Goddard Space Flight Center 
Greenbelt, Maryland 20771 

Rolf H. Reichle 
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD

Qing Liu 
Science Systems and Applications Inc., Lanham, MD

Randal D. Koster 
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD

Joseph V. Ardizzone 
Science Systems and Applications Inc., Lanham, MD

Andreas Colliander 
Jet Propulsion Laboratory, Caltech, Pasadena, CA

Wade T. Crow 
U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD

Gabrielle J. M. De Lannoy 
KULeuven, Leuven, Belgium

John S. Kimball 
University of Montana, Missoula, MT



Level of Review: This material has been technically reviewed by technical management.

Trade names and trademarks are used in this report for identification only. Their usage 
does not constitute an official endorsement, either expressed or implied, by the National 
Aeronautics and Space Administration.

Notice for Copyrighted Information
This manuscript has been authored by employees of the National Aeronautics and Space 

Administration, Science Systems and Applications, Inc. (SSAI) under contract 
NNG17HP01C, U.S. Department of Agriculture, Jet Propulsion Laboratory, KULeuven, 

and University of Montana with the National Aeronautics and Space Administration. The 
United States Government has a non-exclusive, irrevocable, worldwide license to prepare 

derivative works, publish, or reproduce this manuscript, and allow others to do so, for 
United States Government purposes. Any publisher accepting this manuscript for 

publication acknowledges that the United States Government retains such a license in 
any published form of this manuscript. All other rights are retained by the copyright owner. 

NASA STI Program
Mail Stop 148 
NASA’s Langley Research 
Center Hampton, VA 
23681-2199

National Technical Information 
Service 5285 Port Royal Road
Springfield, VA 22161
703-605-6000

Available from



TABLE OF CONTENTS 

EXECUTIVE SUMMARY .......................................................................................................... 3 

1 INTRODUCTION .................................................................................................................. 5 

2 SMAP CALIBRATION AND VALIDATION OBJECTIVES .......................................... 6 

3 L4_SM CALIBRATION AND VALIDATION APPROACH ........................................... 8 

4 L4_SM ACCURACY REQUIREMENT .............................................................................. 9 

5 L4_SM VERSION 5 RELEASE .......................................................................................... 10 
5.1 Process and Criteria.................................................................................................................. 10 
5.2 Processing and Science ID Version .......................................................................................... 10 
5.3 Summary of Changes from Previous Version ........................................................................ 11 

6 L4_SM DATA PRODUCT ASSESSMENT ....................................................................... 13 
6.1 Global Patterns and Features .................................................................................................. 13 
6.2 Core Validation Sites ................................................................................................................ 19 

6.2.1 Method ................................................................................................................................ 19 
6.2.2 Results ................................................................................................................................. 23 

6.3 Sparse Networks ........................................................................................................................ 25 
6.3.1 Method ................................................................................................................................ 25 
6.3.2 Results ................................................................................................................................. 27 

6.4 Satellite Soil Moisture Retrievals ............................................................................................. 28 
6.5 Data Assimilation Diagnostics .................................................................................................. 29 

6.5.1 Observation-Minus-Forecast Residuals .............................................................................. 29 
6.5.2 Increments ........................................................................................................................... 32 
6.5.3 Uncertainty Estimates ......................................................................................................... 34 

7 LIMITATIONS AND PLAN FOR FUTURE IMPROVEMENTS .................................. 36 
7.1 L4_SM Algorithm Calibration and Temporal Homogeneity ................................................ 36 
7.2 Impact of Ensemble Perturbations .......................................................................................... 36 
7.3 Precipitation Data ..................................................................................................................... 36 
7.4 L4_SM Algorithm Refinements ............................................................................................... 37 

8 SUMMARY AND CONCLUSIONS ................................................................................... 38 

ACKNOWLEDGEMENTS ....................................................................................................... 40 

APPENDIX .................................................................................................................................. 41 
Performance Metrics at Core Validation Site Reference Pixels ....................................................... 41 

REFERENCES .............................................................................................................................44 



2 



3 

EXECUTIVE SUMMARY 
This report provides an assessment of Version 5 of the SMAP Level 4 Surface and Root Zone Soil 

Moisture (L4_SM) product, which was first released on 27 August 2020.  The assessment includes 
comparisons of L4_SM soil moisture estimates with in situ measurements from SMAP core validation sites 
and sparse networks.  The assessment further provides a global evaluation of the internal diagnostics from 
the ensemble-based data assimilation system that is used to generate the L4_SM product, including 
observation-minus-forecast (O-F) brightness temperature residuals and soil moisture analysis increments.  
Together, the core validation site comparisons and the statistics of the assimilation diagnostics are 
considered primary validation methodologies for the L4_SM product.  Comparisons against in situ 
measurements from regional-scale sparse networks are considered a secondary validation methodology 
because such in situ measurements are subject to upscaling errors from the point-scale to the grid-cell scale 
of the data product.   

The Version 5 L4_SM algorithm was recalibrated to work with the substantially changed calibration 
of the assimilated Version 5 (R17) Level-1C brightness temperatures.  Specifically, the brightness 
temperature scaling parameters in the Version 5 L4_SM algorithm are based on five years of SMAP 
observations (April 2015 – March 2020) and no longer rely on data from the Soil Moisture and Ocean 
Salinity (SMOS) mission.  The Version 5 L4_SM algorithm also benefits from an updated calibration of 
the microwave radiative transfer model parameters.  Moreover, the land surface modeling system 
underpinning the L4_SM algorithm uses an improved surface aerodynamic roughness length formulation.  
Furthermore, an error in the fitting procedure used for one of the topography-related functions in the 
Catchment model was corrected.  This error potentially affected the simulation of soil moisture in about 
2% of all land surface elements in previous versions.  Finally, the Version 5 L4_SM algorithm includes 
major software infrastructure upgrades, including full compliance with the modular and extensible Earth 
System Modeling Framework, to facilitate future science algorithm development.   

An analysis of the time-average surface and root zone soil moisture shows that the global pattern of 
arid and humid regions is captured by the Version 5 L4_SM estimates.  Compared to Version 4, the Version 
5 surface and root-zone soil moisture is generally slightly drier, owing primarily to a bug fix in the ensemble 
perturbations algorithm.  The bug fix also removed an error in the long-term water balance of the Version 
4 product, which did not close even after accounting for the (small) effect of the soil moisture analysis 
increments.  Because of these climatological differences, the Version 4 and Version 5 products should not 

be combined into a single dataset for use in applications.  

Results from the core validation site comparisons indicate that Version 5 of the L4_SM data product 
meets the self-imposed L4_SM accuracy requirement, which is formulated in terms of the root-mean square 
(RMS) error after removal of the long-term mean error, i.e., ubRMSE≤0.04 m3 m-3, where the error is vs. 
the unknown true soil moisture.  Computed directly against core site in situ measurements at the 9 km scale, 
the average unbiased RMS difference of the 3-hourly L4_SM data is 0.040 m3 m-3 for surface soil moisture 
and 0.027 m3 m-3 for root zone soil moisture.  When factoring in the measurement error of the in situ data, 
the L4_SM product clearly meets the 0.04 m3 m-3 ubRMSE requirement.  The L4_SM estimates are an 
improvement compared to estimates from a model-only open loop (OL5030) simulation, which 
demonstrates the beneficial impact of the SMAP brightness temperature data.  Overall, L4_SM surface and 
root zone soil moisture estimates are more skillful than OL5030 estimates, with statistically significant 
improvements for surface soil moisture R and anomaly R values (based on 95% confidence intervals).  
Results from comparisons of the L4_SM product to in situ measurements from more than 400 sparse 
network sites corroborate the core validation site results.    

The instantaneous soil moisture analysis increments lie within a reasonable range and result in spatially 
smooth soil moisture analyses.  The long-term mean soil moisture analysis increments make up only a small 
fraction of the water budget.  The O-F residuals exhibit only small regional biases on the order of 1-3 K 
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between the (rescaled) SMAP brightness temperature observations and the L4_SM model forecast, which 
indicates that the assimilation system is reasonably unbiased.  The globally averaged time series standard 
deviation of the O-F residuals is 5.5 K, which reduces to 3.5 K for the observation-minus-analysis (O-A) 
residuals, reflecting the impact of the SMAP observations on the L4_SM system.  Regionally, the time 
series standard deviation of the normalized O-F residuals deviates considerably from unity, which indicates 
that regionally the L4_SM assimilation algorithm over- or underestimates the total (model and observation) 
error present in the system.  

In summary, Version 5 of the L4_SM product is sufficiently mature and of adequate quality for 
distribution to and use by the larger science and application communities.   
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1 INTRODUCTION 
The NASA Soil Moisture Active Passive (SMAP) mission provides global measurements of L-band 

(1.4 GHz) brightness temperature from a 685-km, near-polar, sun-synchronous orbit.  These observations 
are primarily sensitive to soil moisture and temperature in the top few centimeters of the soil.  SMAP data 
can therefore be used to enhance our understanding of processes that link the terrestrial water, energy, and 
carbon cycles, and to extend the capabilities of weather and climate prediction models (Entekhabi et al. 
2014).   

The suite of SMAP data products includes the Level 4 Surface and Root Zone Soil Moisture (L4_SM) 
product, which provides deeper-layer soil moisture estimates that are not available in the Level 2-3 retrieval 
products.  The L4_SM product is based on the assimilation of SMAP brightness temperatures into the 
NASA Catchment land surface model (Koster et al. 2000) using a customized version of the Goddard Earth 
Observing System (GEOS) land data assimilation system (Figure 1; Reichle et al. 2014a, 2017a,b, 2019).  
This system, which is based on the ensemble Kalman filter (EnKF), accounts for model and observational 
uncertainty through perturbations of select Catchment model forcing and soil moisture prognostic variables, 
propagates the surface information from the SMAP instrument to the deeper soil, and ultimately provides 
global, 3-hourly estimates of soil moisture and other land surface fields without gaps in coverage.  The 
publication latency of the L4_SM product is about 3 days.  This latency is driven by the availability of the 
gauge-based precipitation product used to force the land surface model (Reichle and Liu 2014; Reichle et 
al. 2014b, 2017a,b, 2021). 

The L4_SM product provides surface and root zone soil moisture (along with other geophysical fields) 
as 3-hourly, time-average fields on the global, cylindrical, 9 km Equal-Area Scalable Earth, version 2 
(EASEv2) grid in the “geophysical” (or “gph”) output Collection (Reichle et al. 2018a).  Moreover, 
instantaneous soil moisture and soil temperature fields before and after the assimilation update are provided 
every three hours on the same grid in the “analysis update” (or “aup”) output Collection, along with other 
assimilation diagnostics and error estimates.  Time-invariant land model parameters, such as soil porosity, 
wilting point, and microwave radiative transfer parameters, are provided in the “land-model-constants” (or 

“lmc”) Collection (Reichle et al. 2018a).   

For geophysical data products that are based on the assimilation of satellite observations into numerical 
process models, validation is critical and must be based on quantitative estimates of uncertainty. Direct 
comparison with independent observations, including ground-based measurements, is a key part of 
validation.  This assessment report provides a detailed description of the status of the L4_SM data quality 
for the Version 5 release of the L4_SM data product.  The L4_SM validation process and data quality of 
previous versions are discussed by Reichle et al. (2015, 2016, 2017a,b, 2018b, 2019, 2021).  

Figure 1.  Schematic of the L4_SM algorithm. 
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2 SMAP CALIBRATION AND VALIDATION OBJECTIVES 
During the post-launch SMAP calibration and validation (Cal/Val) phase each science product team 

pursues two objectives: 

1. Calibrate, verify, and improve the performance of the science algorithm.
2. Validate the accuracy of the science data product as specified in the science requirements and

according to the Cal/Val schedule.

The overall SMAP Cal/Val process is illustrated in Figure 2.  This process was first formalized in the 
SMAP Science Data Cal/Val Plan (Jackson et al. 2014) and the SMAP L2-L4 Data Products Cal/Val Plan 
(Colliander et al. 2014).  Recently, many pioneering aspects of the SMAP Cal/Val process were 
incorporated into community standards for soil moisture product validation and good practices (Gruber et 
al. 2020; Montzka et al. 2020).  The present assessment report describes how the L4_SM team addressed 
the Cal/Val objectives for the Version 5 release.  The validation approach and procedures that apply 
specifically to the L4_SM product are further detailed in the Algorithm Theoretical Basis Document for the 
L4_SM data product (Reichle et al. 2014b). 

SMAP established unified definitions to address the mission requirements.   These are documented in 
the SMAP Handbook (Entekhabi et al. 2014), where calibration and validation are defined as follows: 

• Calibration: The set of operations that establish, under specified conditions, the relationship
between sets of values or quantities indicated by a measuring instrument or measuring system and
the corresponding values realized by standards.

• Validation: The process of assessing by independent means the quality of the data products derived
from the system outputs.

To ensure the public’s timely access to SMAP data, the mission was required to release validated data 
products within one year of the beginning of mission science operations.  The objectives and maturity of 
the SMAP validated release products follow the guidance provided by the Committee on Earth Observation 

Figure 2.  Overview of the SMAP calibration and validation process. 
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Satellites (CEOS) Working Group on Calibration and Validation (CEOS 2015), which can be summarized 
as follows (Colliander et al. 2021; their Appendix A): 

• Stage 1 Validation: Product accuracy is assessed from a small (typically < 30) set of locations and
time periods by comparison with in-situ or other suitable reference data.

• Stage 2 Validation: Product accuracy is estimated over a significant (typically > 30) set of locations
and time periods by comparison with reference in situ or other suitable reference data.  Spatial and
temporal consistency of the product, and its consistency with similar products, has been evaluated
over globally representative locations and time periods.  Results are published in the peer-reviewed
literature.

• Stage 3 Validation: Uncertainties in the product and its associated structure are well quantified over
a significant (typically > 30) set of locations and time periods representing global conditions by
comparison with reference in situ or other suitable reference data.  Validation procedures follow
community-agreed-upon good practices.  Spatial and temporal consistency of the product, and its
consistency with similar products, has been evaluated over globally representative locations and
time periods.  Results are published in the peer-reviewed literature.

• Stage 4 Validation: Validation results for stage 3 are systematically updated when new product
versions are released and as the interannual time-series expands.  When appropriate for the product,
uncertainties in the product are quantified using fiducial reference measurements over a global
network of sites and time periods (if available).

For the Version 5 release, the L4_SM team has completed Stages 1-4, including repeated publication 
of the latest validation results in the peer-reviewed literature (Reichle et al. 2017a,b, 2019, 2021; Colliander 
et al. 2021).  The Cal/Val program will continue over the SMAP mission life span.  Incremental 
improvements are ongoing as more measurements become available from the SMAP observatory.  Version 
5 data will be replaced in the archive when upgraded product versions become available.  
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3 L4_SM CALIBRATION AND VALIDATION APPROACH 
During the mission definition and development phase, the SMAP Science Team and Cal/Val Working 

Group identified the metrics and methodologies that would be used for L2-L4 product assessment.  These 
metrics and methodologies were vetted in community Cal/Val Workshops and tested in SMAP pre-launch 
Cal/Val rehearsal campaigns.  The following validation methodologies and their general roles in the SMAP 
Cal/Val process were identified: 

• Core Validation Sites: Accurate estimates at matching scales for a limited set of conditions.

• Sparse Networks: One point in the grid cell for a wide range of conditions.  

• Satellite Products: Estimates over a very wide range of conditions at matching scales. 

• Model Products: Estimates over a very wide range of conditions at matching scales. 

• Field Campaigns: Detailed estimates for a very limited set of conditions. 

Regarding the CEOS Cal/Val stages (section 2), core validation sites address Stage 1, and satellite and 
model products are used for Stage 2 and beyond.  Sparse networks fall between these two stages. 

For the L4_SM data product, all of the above methodologies can contribute to product assessment and 
refinement, but there are differences in terms of the importance of each approach for the validation of the 
L4_SM product.   

The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture 
estimates with in situ soil moisture observations from core validation sites and sparse networks.  Moreover, 
independent soil moisture retrievals from satellite radar observations are used to measure the contribution 
of the SMAP analysis to the anomaly time series correlation skill of the L4_SM product across much of the 
global land surface.  Finally, the assessment includes a global evaluation of the internal diagnostics from 
the ensemble-based data assimilation system that is used to generate the L4_SM product.  This evaluation 
focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments.   

The core site comparisons, the assessment of the anomaly correlation skill using independent radar 
soil moisture retrievals, and the statistics of the assimilation diagnostics are considered primary validation 
methodologies for the L4_SM product.  Comparisons against in situ measurements from regional-scale 
sparse networks are considered a secondary validation methodology because such in situ measurements are 
subject to upscaling errors from the point-scale to the grid-cell scale of the data product.   

Due to their very limited spatial and temporal extent, data from field campaigns play only a tertiary 
role in the validation of the L4_SM data product.  Note, however, that field campaigns are instrumental 
tools in the provision of high-quality, automated observations from the core validation sites and thus play 
an important indirect role in the validation of the L4_SM data product.  
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4 L4_SM ACCURACY REQUIREMENT 
There is no formal Level 1 mission requirement for the validation of the L4_SM product, but the 

L4_SM team self-imposed an accuracy requirement mirroring the one applied to the L2_SM_AP product.  
Specifically, the L4_SM surface and root zone soil moisture estimates are required to meet the following 
criterion: 

ubRMSE ≤ 0.04 m3 m-3 within the data masks specified in the SMAP Level 2 Science Requirements 
(that is, excluding regions of snow and ice, frozen ground, mountainous topography, open water, 
urban areas, and vegetation with water content greater than 5 kg m-2),   

where ubRMSE is the “unbiased” root-mean square (RMS) error, that is, the RMS error computed after 
removing long-term mean bias from the data (Entekhabi et al. 2010; Reichle et al. 2015, their Appendix A).  
(The ubRMSE is also referred to as the standard deviation of the error.)  This criterion applies to the L4_SM 
instantaneous surface and root zone soil moisture estimates at the 9 km grid-cell scale from the “aup” 

Collection.  It is verified by comparing the L4_SM product to the grid-cell scale in situ measurements from 
the core validation sites (section 6.2).  The criterion applies to the site-average ubRMSE, which is obtained 
by averaging across the ubRMSE values for all 9 km core site reference pixels that provide suitable in situ 
measurements (Reichle et al. 2015).   

L4_SM output fields other than instantaneous surface and root zone soil moisture are provided as 
research products (including surface meteorological forcing variables, soil temperature, evaporative 
fraction, net radiation, etc.) and will be evaluated against in situ observations to the extent possible given 
available resources.  

As part of the validation process, additional metrics (including bias, RMS error, time series correlation 
coefficient R, and anomaly R values) are also computed for the L4_SM output.  This includes computation 
of the metrics outside of the limited geographic area for which the ubRMSE≤0.04 m3 m-3 validation criterion 
applies.   

For the computation of the anomaly R metric, climatological values of soil moisture from a given 
dataset (i.e., the L4_SM product or the in situ measurements) at a given location are computed for each day 
of the year, thereby generating a local climatological seasonal cycle for that dataset.   Anomaly time series 
are then computed by subtracting this climatological seasonal cycle from the corresponding raw data.  The 
anomaly R metric is derived by computing the correlation coefficient between the L4_SM and the in situ 
anomaly time series (Reichle et al. 2015).  

The validation includes additional metrics that are based on the statistics of the O-F residuals and other 
data assimilation diagnostics (section 6.5).  Reichle et al. (2015) provide detailed definitions of all the 
validation metrics and confidence intervals used here.     
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5 L4_SM VERSION 5 RELEASE 

5.1 Process and Criteria 
Since the beginning of the SMAP science data flow on 31 March 2015, the L4_SM team has been 

conducting frequent assessments of the L4_SM data product and will continue to evaluate the product 
throughout the life of the SMAP mission.  These assessments are based on core validation sites, sparse 
networks, and assimilation diagnostics, and they capture a wide range of geophysical conditions.  The 
present report summarizes the status of this process.    

The validation of the Version 5 L4_SM product includes comparisons against output from two model-
only simulations that are based on the same land surface model and forcing data as the Version 5 L4_SM 
estimates but are not informed by SMAP brightness temperature observations (Table 1).  Any accuracy in 
these model-only estimates is derived from the imposed meteorological forcing and land model structure 
and parameter information.   

The first model-only simulation, the ensemble “open loop” (OL5030), employs 24 ensemble members 
and applies the same forcing and model prognostics perturbations that are also used in the Version 5 L4_SM 
algorithm, whereas the second model-only simulation, the “Nature Run,” version 8.3 (NRv8.3), is a single-
member land model simulation without perturbations (Table 1).  The different characteristics of the 
ensemble open loop and the unperturbed simulation are exploited in section 6.1, where we assess the impact 
of the ensemble perturbations on the climatology of the L4_SM soil moisture estimates.    

The OL5030 estimates were prepared for the SMAP period (31 March 2015 to present).  The NRv8.3 
estimates were generated for the period 1 January 2000 to present.  In addition to serving as a reference in 
the L4_SM assessment, the NRv8.3 estimates also provide the modeled climatological information required 
by the L4_SM assimilation algorithm (Reichle et al. 2014b).   

Table 1.  Overview of L4_SM products and model-only simulations. 

No. ensemble 
members 

Perturbations? SMAP 
Assimilation? 

Version 5 Version 4 

L4_SM Product 24 Yes Yes Vv5030 Vv4030 

Ensemble Open Loop 24 Yes No OL5030 OL4001 

Nature Run 1 No No NRv8.3 NRv7.2 

5.2 Processing and Science ID Version 
The L4_SM product version used to prepare this assessment report has Science Version ID Vv5030 

(Table 1; Reichle et al. 2020a,b,c).  The L4_SM Vv5030 algorithm assimilates operational data from the 
Version 5 SMAP L1C_TB brightness temperatures (CRID R17000 through 22 April 2021 and R17030 
from 23 April 2021 through present; Chan et al. 2020).   

The assessment period for this report is defined as the 6-year period from 1 April 2015, 0z to 1 April 
2021, 0z.  The start date matches the first full day when the radiometer was operating under reasonably 
stable conditions following instrument start-up operations.  The end date was selected to include the 
maximum possible number of full years at the time when the present report was prepared. 
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For illustrating select changes from the previous L4_SM product versions, this report also used 
published Version 4 L4_SM data (Science Version ID Vv4030; Reichle et al. 2018c,d,e), along with the 
corresponding Nature Run (NRv7.2) and ensemble open loop (OL4001) simulations (Table 1).  Because 
Version 4 production ceased before the end of the 6-year validation period, direct comparisons of Version 
4 and 5 data are conducted for the 4-year period from 1 April 2015, 0z to 1 April 2019, 0z. 

Like previous versions, Version 5 of the L4_SM algorithm ingests only the SMAP L1C_TB radiometer 
brightness temperatures, contrary to the originally planned use of downscaled brightness temperatures from 
the L2_SM_AP product and landscape freeze-thaw state retrievals from the L2_SM_A product.  The latter 
two products are based on SMAP radar observations and are only available for the 10-week period from 13 
April to 7 July 2015 because of the failure of the SMAP radar instrument.  The decision to use only 
radiometer (L1C_TB) inputs for the Version 5 release was made to ensure homogeneity in the longer-term 
L4_SM data record.   

In February 2021, the SMAP Level-1 team discovered that errors in the antenna scan angle (ASA) 
inputs affected ~1,600 L1C_TB half-orbit data granules on 55 data-days in 2019 (5 October–23 November) 
and 2020 (4-5 February, 9 April, 30 May, and 18 June).  The bad data exhibited geolocation errors up to 
~100 km in the along-scan direction that were not identified by data quality flags.  When the ASA errors 
were discovered, reprocessing of the L4_SM Vv5030 product was halted on data-day 4 October 2019 until 
nearly all of the 1,600 bad L1C_TB half-orbits were corrected.  However, the processing of the published 
L4_SM Vv5030 data for October 2019 inadvertently used 22 of the bad L1C_TB half-orbits.  To assess the 
impact of this processing error, we regenerated the Vv5030 L4_SM data for October 2019 under product 
counter 002 without ingesting the 22 bad L1C_TB half-orbits.  The differences between the published 
Vv5030 data and the Vv5030 data with product counter 002 are minimal.  There is virtually no impact on 
root-zone soil moisture, and the occasional differences in surface soil moisture dissipate very quickly.  It is 
impossible to tell with a reasonable amount of effort whether the published or the product counter 002 data 
are more correct.  For example, the antenna scan angle error might only impact the L1C_TB brightness 
temperature observations over ocean and ice; omitting the entire L1C_TB half-orbit from being used in 
L4_SM processing might then result in discarding good information over land.  For these reasons, we 
decided not to replace the published Vv5030 data for October 2019 with the product counter 002 version.  
In the meantime, an automated check for ASA errors was added to L1C_TB processing by the Level-1 team 
and placed into operations on 23 April 2021 (CRID R17030).  Future reprocessing of the L1C_TB and 
L4_SM data will therefore avoid a repeat of the aforementioned ASA processing errors.  

5.3 Summary of Changes from Previous Version 
This section provides a summary of algorithm changes between the previous L4_SM Version 4 

algorithm and the current Version 5 assessed here.     

Version 5 of the L4_SM algorithm uses the Catchment model version associated with NRv8.3, which 
includes minor updates from the previous version of the modeling system (NRv7.2).  Specifically: 

1.) NRv8.3 uses a revised formulation for the aerodynamic roughness length for consistency1 with the 
land model version used in the currently operational version of the GEOS Forward-Processing 

1Two differences between the land-related parameterizations in L4_SM and FP remain.  Specifically, the Version 5 L4_SM 
algorithm uses the Louis surface turbulence scheme (Louis 1979) and vegetation (tree) height inputs derived from space-borne 
Lidar measurements (Simard et al. 2011), as in Version 4, whereas the current FP system uses the Helfand surface turbulence 
scheme (Helfand and Schubert, 1995) and old look-up table vegetation heights.  The latter are used in FP because of a slight 
degradation in the medium-range forecast skill when the satellite-based vegetation heights were used in system development testing 
of the FP system (presumably owing to compensating errors).  The L4_SM algorithm still uses the older Louis surface turbulence 
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(FP) system (Koster et al. 2020; Lucchesi 2018).  The revised formulation includes a higher 
minimum surface roughness (which particularly affects turbulent fluxes in deserts) and applies 
estimates of stem area index along with leaf area index in the roughness calculation.  

2.) NRv8.3 corrects an error in the fitting procedure used for one of the topography-related functions 
in the Catchment model, which potentially affects the simulation of soil moisture in about 2% of 
all land surface elements (De Lannoy et al. 2014b). 

Moreover, the following changes impact the L4_SM brightness temperature analysis.  

3.) The microwave radiative transfer parameters are calibrated following De Lannoy et al. (2013, 
2014a).  The parameters used in the Version 5 algorithm were calibrated using the matching 
NRv8.3 modeling system and 10 years of SMOS brightness temperature observations (July 2010 
– June 2020).

4.) The calibration of the assimilated SMAP L1C_TB brightness temperatures changed substantially 
from Version 4 to Version 5.  Over land, L1C_TB brightness temperatures are colder by 2-3 Kelvin 
on average in Version 5 compared to Version 4 (Peng et al. 2020).  Consequently, the Version 5 
L4_SM algorithm was recalibrated to work with the substantially changed calibration of the 
assimilated L1C_TB brightness temperatures.  Specifically, the brightness temperature scaling 
parameters in the Version 5 L4_SM algorithm are based on five years of Version 5 SMAP 
brightness temperature observations (April 2015 – March 2020) and, unlike in previous versions, 
do not rely on SMOS data. 

5.) A bug in the ensemble perturbations of the photosynthetically active radiation (PAR) forcing was 
fixed in the Version 5 L4_SM algorithm.  In all previous L4_SM versions, this bug caused an error 
in the unstressed canopy resistance calculations, which resulted in an error in evapotranspiration 
primarily over arid regions and deserts, as well as a lack of closure of the water balance in these 
regions.  

Finally, the Version 5 L4_SM algorithm includes major software infrastructure upgrades. 

6.) Specifically, the Version 5 L4_SM algorithm is now fully compliant with the modular and 
extensible Earth System Modeling Framework (ESMF), to facilitate future science algorithm 
development.  

7.) The solar zenith angle calculations in the Version 5 L4_SM algorithm use ESMF utilities, which 
differ slightly from the legacy code that was used in the Version 4 algorithm. 

8.) In all previous L4_SM versions, there was a slight inconsistency in how ensemble averages of 
Catchment model diagnostic variables (such as soil moisture) were calculated.  Specifically, the 
model diagnostic variables in the “Geophysical Data” (gph) output files were derived from the 
ensemble average of the model prognostic variables (such as the Catchment model soil water 
excess and deficit variables), whereas model diagnostic variables in the “Analysis Update Data” 

collection were first derived separately for each ensemble member and then averaged across the 
ensemble.  In the Version 5 L4_SM algorithm, all model diagnostic outputs are first derived 
separately for each ensemble member and then averaged across the ensemble. 

scheme because this scheme includes an implicit treatment of the sensitivity of aerodynamic resistance to both temperature and 
humidity; such a treatment is important in the offline (land-only) L4_SM modeling system but is not yet implemented in the newer 
Helfand scheme (Helfand and Schubert, 1995) used in the current FP system.
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6 L4_SM DATA PRODUCT ASSESSMENT 
This section provides a detailed assessment of the Version 5 L4_SM data product.  First, global 

patterns and features are discussed briefly, including the impact of a bug in the ensemble perturbation 
algorithm in Version 4 that has been fixed in Version 5 (section 6.1).  Next, we present comparisons and 
metrics versus in situ measurements from core validation sites (section 6.2) and sparse networks (section 
6.3), followed by a brief discussion of the assessment versus satellite retrievals (section 6.4).  Thereafter, 
we evaluate the assimilation diagnostics (section 6.5) through an analysis of the O-F brightness temperature 
residuals, the soil moisture increments, and the data product uncertainty estimates.   

6.1 Global Patterns and Features 
Figure 3 shows global maps of time-averaged Version 5 L4_SM surface and root zone soil moisture 

for the 6-year validation period (April 2015 – March 2021).  The global patterns are as expected – arid 
regions such as the southwestern US, the Sahara Desert, the Arabian Peninsula, the Middle East, southern 
Africa, and central Australia exhibit generally dry surface and root zone soil moisture conditions, whereas 
the tropics (Amazon, central Africa, and Indonesia) and high-latitude regions show wetter conditions.  

Figure 3.  Time-average of Version 5 L4_SM (a) surface and (b) root zone soil moisture for April 2015 – March 
2021.  White shading indicates no-data-values (e.g., over the Greenland ice sheet). 
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Generally, the global patterns of absolute soil moisture values are dominated by soil parameters and 
climatological factors.  The influence of soil texture is noticeable in the coarse-scale patterns in the Sahara 
Desert, where little is in fact known about the spatial distribution of mineral soil fractions.  Areas with peat 
soil include, for example, the region along the southern edge of Hudson Bay and portions of Alaska.  In the 
land model, the soils in this region are assigned a high porosity value and show persistently wetter 
conditions than seen in other areas.  

Figure 4 shows global maps of the change in time-averaged soil moisture fields between the Version 
4 and 5 L4_SM products for the 4-year period April 2015 – March 2019.  Generally, the long-term mean 
soil moisture in Version 5 is slightly drier than in Version 4, by 0.008 m3 m-3 in the global average for both 
surface and root-zone soil moisture.  As will be explained in the following, these differences are the result 
of a complex interplay of the changes between Versions 4 and 5, listed in section 5.3 above.   

First, the revised aerodynamic roughness length formulation and the slight changes in the solar zenith 
angle calculations (items 1 and 7 of section 5.3) have only a minor impact on the mean surface and root-
zone soil moisture, which can be seen in the difference between the underlying NRv8.3 and NRv7.2 model-
only simulations shown in Figure 5a,c.  The curve fitting bug fix (item 2 of section 5.3) can result in larger 
differences locally, but these changes are limited to a small fraction of isolated tiles and are therefore not 
noticeable in Figure 5a,b. 

The primary reasons for the mean soil moisture differences between the Version 4 and 5 L4_SM 
products (Figure 4) are related to the perturbations used in the ensemble data assimilation system. 
Specifically, spatio-temporally correlated perturbations are applied to the surface meteorological forcing 
data and the Catchment model soil moisture prognostic variables such that the spread in the ensemble 
simulation provides a reasonable representation of the model uncertainty (Reichle et al. 2017a).   

The mean soil moisture differences between the Version 4 and 5 ensemble open loop simulations 
(Figure 5b,d) very closely resemble those between the Version 4 and 5 L4_SM products (Figure 4), which 
must therefore be related to the above-mentioned fixes of the PAR perturbations bug and the slightly 
inconsistent ensemble averaging order (items 5 and 8 of section 5.3).  This also implies that the mean soil 
moisture differences between the Version 4 and 5 products are not driven by the L1C_TB and RTM 
calibration changes (items 3 and 4 of section 5.3), which have at most a minor impact on the mean soil 
moisture.  (Section 6.5.2 below shows that the already small long-term mean soil moisture analysis 
increments of Version 4 have been further reduced in magnitude in Version 5.) 

Further insights can be gained by examining the impact of the perturbations on the long-term mean 
soil moisture in the modeling system.  Figure 6 shows, separately for each version, the mean surface and 
root-zone soil moisture differences between the ensemble open loop and unperturbed model-only 
simulations (see also Table 1).  As expected, in both versions the soil moisture perturbations result in 
increased mean surface and root-zone soil moisture in arid and semi-arid regions, where soil moisture is 
generally so dry that perturbations can often only add but not remove water.  Elsewhere, however, the 
perturbations have a net drying effect on surface soil moisture (Figure 6a,b).  The most striking discrepancy 
between Versions 4 and 5 is in the mean root-zone soil moisture differences between the ensemble open 
loop and unperturbed model simulations (compare Figure 6c,d).  In Version 4, the ensemble open loop root-
zone soil moisture is wetter than the unperturbed simulation across much of the globe, which is a direct 
consequence of the PAR perturbations bug (item 5 of section 5.3).  Fixing this bug in Version 5 brings the 
mean root-zone soil moisture of the ensemble open loop much closer to that of the unperturbed simulation.  

Further investigation revealed that the ensemble average of the perturbed precipitation forcing is 
smaller by ~0.5% than that of the unperturbed precipitation (Figure 7a), resulting in generally drier surface 
soil moisture when perturbations are used.  This small precipitation deficit is caused when the standard-
normal deviates, which are generated with an ensemble mean of zero and with outliers limited to 2.5 times 
the standard deviation, are nonlinearly converted into lognormal space for use in the multiplicative 
precipitation perturbations.  Similarly, the ensemble average of the multiplicatively perturbed downward 
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shortwave radiation forcing is ~0.2% less than without perturbations (Figure 7b).  Less shortwave forcing, 
however, should result in reduced evapotranspiration and thus wetter surface soil moisture conditions.  
Outside of arid and semi-arid regions and for the perturbation parameter settings employed in the L4_SM 
algorithm, the precipitation deficiency dominates and explains the slightly drier surface soil moisture 
conditions seen in the Version 5 ensemble open loop compared to the unperturbed simulation (Figure 6b). 
Generally, the gap between the mean of the (multiplicatively) perturbed forcing and the unperturbed forcing 
increases with increasing standard deviation of the perturbations and with tighter restrictions on outliers 
(not shown).  When the threshold for outliers is relaxed to 3 times the standard deviation, the nonlinear 
effect becomes negligible.  (Applying the threshold for outliers in lognormal space would require different 
thresholds for low and high outliers, owing to the strong asymmetry of the lognormal distribution.)  

Additionally, in the high latitudes and in high-elevation arid environments (including the Atacama 
Desert and the Tibetan Plateau), the ensemble average of the perturbed downward longwave radiation 
forcing differs by ~1-5 W m-2 from that of the unperturbed simulation (Figure 7c).  This discrepancy is 
caused by an air temperature-radiation consistency check that is applied to the (perturbed) longwave 
radiation.  This check is based on the Stefan-Boltzmann equation and pre-specified values for the minimum 
and maximum permissible emissivities of 0.5 and 1.0, respectively.  In the more extreme high-latitude and 
high-elevation environments, the perturbed longwave radiation is frequently reset to fall within the 
permissible range, thereby causing the discrepancy between the ensemble average of the perturbed 
downward longwave radiation and its unperturbed nominal value.     

The surface soil moisture difference between the ensemble open loop and the unperturbed simulation 
in the Version 4 modeling system (Figure 6a) can now be understood as the superposition of the artificially 
increased soil wetness caused by the PAR perturbations bug (seen in Figure 6c for root-zone soil moisture) 
and the wet/dry difference pattern caused by the nonlinear effects in the perturbations algorithm (seen in 
Figure 6b for the Version 5 modeling system).   

Finally, Figure 8 shows the long-term soil water balance residuals for Versions 4 and 5.  The water 
balance residual is computed as (Sf – Si)/Δt – (P – ET – R) – ΔI, where Sf and Si are the final and initial 
total soil water storage, Δt is the averaging time interval (April 2015 – March 2019), P is the mean 
precipitation, ET is the mean evapotranspiration, R is the mean total runoff, and ΔI is the mean profile soil 

moisture analysis increment (in flux units).  As can be seen in Figure 8a, the water balance did not close in 
the Version 4 L4_SM product.  This lack of closure was primarily a consequence of the PAR perturbations 
bug, which caused inconsistent values of the unstressed canopy resistance term and thus erroneous ET 
values.  This error has been fixed in the Version 5 system (Figure 8b).  

In summary, Figures 6 and 8 clearly show that Version 5 is more consistent than Version 4 mainly for 
two reasons: (i) the ensemble average of the perturbed simulation is closer to the unperturbed simulation in 
Version 5 compared to Version 4 and (ii) the water balance closure violation seen in Version 4 has been 
removed in Version 5.   

Because of the climatological differences in soil moisture (Figure 4), the Version 4 and Version 5 
products should not be combined into a single dataset for use in applications. 

The L4_SM product also includes many output fields that are not subject to formal validation 
requirements.  Such “research” output includes the surface meteorological forcing fields, land surface 

fluxes, soil temperature and snow conditions, runoff, and error estimates (derived from the ensemble).  See 
Reichle et al. (2015, their section 6.1) for more discussion of the global patterns and features found in the 
L4_SM product.  
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Figure 4.  As in Figure 3 but for Version 5 minus Version 4 and April 2015 – March 2019. 
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Figure 5.  Time-average soil moisture differences between the Version 5 and Version 4 modeling systems: (a,b) 
surface and (c,d) root-zone soil moisture differences between (a,c) the unperturbed NRv8.3 and NRv7.2 
simulations and (b,d) the OL5030 and OL4001 ensemble open loop simulations for April 2015 – March 2019.  
White shading indicates no-data-values. 

Figure 6.  Time-average soil moisture differences between ensemble open loop and unperturbed simulations: (a,b) 
surface and (c,d) root-zone soil moisture difference between (a,c) OL4001 and NRv7.2 (Version 4) and (b,d) 
OL5030 and NRv8.3 (Version 5) for April 2015 – March 2019.  White shading indicates no-data-values. 
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Figure 7.  Time-average surface meteorological forcing difference between the ensemble mean of the open loop 
(OL5030) simulation and the unperturbed (NRv8.3) simulation for (a) total precipitation (b) downward shortwave 
radiation, and (c) downward longwave radiation for April 2015 – March 2019.  The bottom colorbar applies to 
both (b) and (c).  White shading indicates no-data-values.   

Figure 8.  Time-average soil water balance residual of the (a) Version 4 and (b) Version 5 L4_SM product for 
April 2015 – March 2019.  White shading indicates no-data-values.  In Version 4, the water balance did not close 
owing to a bug in the radiation forcing perturbations (see text for details). 
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6.2 Core Validation Sites 

6.2.1 Method 

This section provides an assessment of the L4_SM soil moisture estimates using data from SMAP core 
validation sites, which provide in situ measurements of soil moisture conditions at the scale of 9 km and 33 
km grid cells (Colliander et al. 2017a,b).  Like the L4_SM Version 4 assessment (Reichle et al. 2018b, 
2019), this report uses reference pixel data on the 33 km EASEv2 grid (defined through suitable aggregation 
of the 3 km EASEv2 grid), instead of the 36 km reference pixels used in earlier assessments (Reichle et al. 
2015, 2016, 2017a).  Additional details about the processing of the data and the validation methodology 
can be found in Reichle et al. (2015, their section 6.2.1).   

The status of the core validation sites is reviewed periodically.  The set of core sites that provide data 
for this assessment of the L4_SM product are listed in Table 2, along with the details of the 9 km and 33 
km reference pixels that are used.  The list of core sites matches that of the Version 4 assessment, but there 
are a couple of minor changes in the list of references pixels (Table 3).  The present (Version 5) L4_SM 
validation is based on a total of 48 reference pixels from 19 different core validation sites.  Surface soil 
moisture measurements are available for all 48 reference pixels, which include 18 reference pixels at the 
33 km scale from 18 different sites and 30 reference pixels at the 9 km scale from 18 different sites.  For 
root zone soil moisture, measurements are available for only 19 reference pixels from 8 different core sites, 
including 8 reference pixels at the 33 km scale from 8 different sites and 12 reference pixels at the 9 km 
scale from 7 different sites.  The 9 km reference pixels for root zone soil moisture belong to the core 
validation sites of Little Washita (Oklahoma), Fort Cobb (Oklahoma), Little River (Georgia), South Fork 
(Iowa), Tonzi Ranch (California), Kenaston (Saskatchewan), and TxSON (Texas).  The same 7 sites plus 
Yanco (Australia) provide root zone soil moisture data at the 33 km scale.  This very limited set obviously 
lacks the diversity to be fully representative of global conditions, but we are not aware of any other 
comparable datasets. 

The metrics are computed from 3-hourly data, provided at least 480 measurements, or about 2 months 
of data, are available after quality control.  The computation of the anomaly R value (section 4) further 
requires estimates of the 6-year mean seasonal cycle, for which we required a minimum of at least 240 
measurements for a given 31-day smoothing window across the 6-year validation period.  This requirement 
implies that the anomaly R metric is available for surface (root zone) soil moisture at only 17 (7) reference 
pixels at the 33 km scale.  At the 9 km scale, the anomaly R metric is available whenever the other metrics 
are also available.   

Table 3 also lists the depths of the deepest sensors that contribute to the in situ root zone soil moisture 
measurements.  The measurements from the individual sensors are vertically averaged with weights that 
are proportional to the spacing of the depth of the sensors within the 0-100 cm layer depth of the L4_SM 
root zone soil moisture estimates.  At all reference pixels except Little River and Yanco, the deepest sensors 
are at 40-50 cm depth.  At Little River and Yanco, the deepest sensors are at 30 cm and 75 cm, respectively, 
with Yanco’s second-deepest sensors being installed at 45 cm depth.  In all cases, the deepest sensors are 
therefore weighted most strongly in the computation of the vertical average.  To compute the vertically 
averaged root zone soil moisture at a given time from a given sensor profile, all sensors within the profile 
must provide measurements that pass the automated quality control. 
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Table 2.  Soil moisture core validation sites used in the present assessment. 

Site Name Country 
Climate 
Regime Land Cover 

Number of 9-km (33-km) 
Reference Pixels 

Reference 
Surface Soil 

Moisture 

Root-zone 
Soil 

Moisture 

REMEDHUS Spain Temperate Croplands 2 (1) - (-) 
Sanchez et al. 2012; Gonzalez-
Zamora et al. 2015 

Reynolds 
Creek 

USA (Idaho) Arid Grasslands 2 (1) - (-) Seyfried et al. 2001 

Yanco 
Australia (New 
South Wales) 

Arid 
Cropland / 
natural mosaic 

2 (1) - (1) Panciera et al. 2014 

Carman 
Canada 
(Manitoba) 

Cold Croplands 1 (1) - (-) McNairn et al. 2015 

Ngari Tibet Cold Barren / sparse - (1) - (-) Wen et al. 2014 

Walnut 
Gulch 

USA (Arizona) Arid Shrub open 3 (1) - (-) Keefer et al. 2008 

Little 
Washita 

USA 
(Oklahoma) 

Temperate Grasslands 3 (1) 2 (1) Cosh et al. 2006 

Fort Cobb 
USA 
(Oklahoma) 

Temperate Grasslands 2 (1) 2 (1) Cosh et al. 2014 

Little River USA (Georgia) Temperate 
Cropland / 
natural mosaic 

1 (1) 1 (1) Bosch et al. 2007 

St Josephs USA (Indiana) Temperate Croplands 1 (1) - (-) Heathman et al. 2012 

South Fork USA (Iowa) Cold Croplands 3 (1) 3 (1) Coopersmith et al. 2015 

Monte 
Buey 

Argentina Temperate Croplands 1 (1) - (-) Thibeault et al. 2015 

Tonzi 
Ranch 

USA 
(California) 

Temperate 
Savannas 
woody 

1 (1) 1 (1) 
Clewley et al. 2017; 
Moghaddam et al. 2016 

Kenaston 
Canada 
(Saskatchewan) 

Cold Croplands 2 (1) 1 (1) 
Rowlandson et al. 2015; 
Tetlock et al. 2019 

Valencia Spain Cold 
Savannas 
woody 

1 (-) - (-) 
Juglea et al. 2010; Khodayar 
et al. 2019 

Niger Niger Arid Grassland 1 (1) - (-) Galle et al. 2018 

Benin Benin Tropical Savannas 1 (1) - (-) Galle et al. 2018 

TxSON USA (Texas) Temperate Grasslands 2 (1) 2 (1) Caldwell et al. 2018 

HOBE Denmark Temperate Croplands 1 (1) - (-) 
Bircher et al. 2012; Jensen 
and Refsgaard 2018 

All Sites 30 (18) 12 (8) 
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Table 3.  Soil moisture core validation site reference pixels used in the present assessment.  The 33 km reference 
pixels are shown in boldface.  See Table 2 for core validation site characteristics. 

Min. Mean Max. Min. Mean Max.

03013302 41.29 -5.46 33 0.05 8 12.3 15 n/a n/a n/a

03010903 41.42 -5.37 9 0.05 4 4.0 4 n/a n/a n/a

03010908 41.32 -5.27 9 0.05 4 4.0 4 n/a n/a n/a

04013302 43.19 -116.75 33 0.05 7 7.0 7 n/a n/a n/a

04010907 43.19 -116.72 9 0.05 4 4.0 4 n/a n/a n/a

04010910 43.09 -116.81 9 0.05 4 4.0 4 n/a n/a n/a

07013301 -34.86 146.16 33 0.75 8 19.5 23 7 14.9 23

07010902 -34.72 146.13 9 0.05 8 8.6 9 n/a n/a n/a

07010916 -34.98 146.31 9 0.05 8 10.1 11 n/a n/a n/a

09013301 49.60 -97.98 33 0.05 8 18.0 20 n/a n/a n/a

09010906 49.67 -97.98 9 0.05 8 9.9 11 n/a n/a n/a

Ngari (NG) 12033301 32.50 79.96 33 0.05 6 6.0 6 n/a n/a n/a

16013302 31.75 -110.03 33 0.05 8 15.4 18 n/a n/a n/a

16010906 31.72 -110.09 9 0.05 8 9.2 11 n/a n/a n/a

16010907 31.72 -109.99 9 0.05 8 10.0 11 n/a n/a n/a

16010913 31.83 -110.90 9 0.05 6 6.0 6 n/a n/a n/a

16023302 34.86 -98.08 33 0.45 8 10.7 12 8 9.0 12

16020905 34.92 -98.23 9 0.05 4 4.0 4 n/a n/a n/a

16020906 34.92 -98.14 9 0.45 4 4.0 4 4 4.0 4

16020907 34.92 -98.04 9 0.45 4 4.0 4 4 4.0 4

16033302 35.38 -98.64 33 0.45 8 10.4 11 8 9.5 11

16030911 35.38 -98.57 9 0.45 4 4.0 4 4 4.0 4

16030916 35.29 -98.48 9 0.45 4 4.0 4 4 4.0 4

16043302 31.67 -83.60 33 0.30 8 17.1 19 8 15.6 18

16040901 31.72 -83.73 9 0.30 8 8.0 8 6 6.3 8

16063302 41.39 -85.01 33 0.05 8 8.3 9 n/a n/a n/a

16060907 41.45 -84.97 9 0.05 7 7.0 7 n/a n/a n/a

16073302 42.42 -93.41 33 0.50 8 17.6 19 8 12.4 16

16070909 42.42 -93.53 9 0.50 4 4.0 4 4 4.0 4

16070910 42.42 -93.44 9 0.50 4 4.0 4 4 4.0 4

16070911 42.42 -93.35 9 0.50 4 4.0 4 4 4.0 4

19023301 -32.91 -62.51 33 0.05 8 9.9 12 n/a n/a n/a

19020902 -33.01 -62.49 9 0.05 5 5.0 5 n/a n/a n/a

25013301 38.45 -120.95 33 0.40 8 13.1 20 8 14 10

25010911 38.43 -120.95 9 0.40 8 15.0 26 8 18 12

27013301 51.47 -106.48 33 0.50 8 27.0 30 8 23.8 30

27010910 51.39 -106.51 9 0.05 8 8.0 8 n/a n/a n/a

27010911 51.39 -106.42 9 0.50 8 13.0 14 8 11.7 14

Valencia (VA) 41010906 39.57 -1.26 9 0.05 7 7.0 7 n/a n/a n/a

45013301 13.57 2.66 33 0.05 6 6.0 6 n/a n/a n/a

45010902 13.57 2.66 9 0.05 4 4.0 4 n/a n/a n/a

45023301 9.83 1.73 33 0.05 7 7.0 7 n/a n/a n/a

45020902 9.77 1.68 9 0.05 5 5.0 5 n/a n/a n/a

48013301 30.35 -98.73 33 0.50 8 28.8 29 8 23.8 24

48010902 30.43 -98.81 9 0.50 8 9.9 10 8 8.9 10

48010911 30.28 -98.73 9 0.50 8 15.0 15 8 13.9 14

67013301 55.97 9.10 33 0.05 8 11.2 15 n/a n/a n/a

67010901 55.97 9.10 9 0.05 5 5.0 5 n/a n/a n/a

Reynolds Creek 

(RC)

REMEDHUS (RM)

Yanco (YC)

Carman (CR)

Walnut Gulch 

(WG)

Little Washita 

(LW)

Fort Cobb (FC)

Little River (LR)

St Josephs (SJ)

South Fork (SF)

HOBE (HB)

Monte Buey (MB)

Tonzi Ranch (TZ)

Kenaston (KN)

Niger (NI)

Benin (BN)

TxSON (TX)

Number of Sensors 

(Root Zone Profiles)

Reference Pixel

Site Name 

(Abbreviation) ID

Latitude 

[degree]

Longitude 

[degree]

Horizont

al Scale 

[km]

Depth of 

Deepest 

Sensor 

[m]

Number of Sensors 

(Surface Soil Moisture)
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Across the reference pixels listed in Table 3, the average number of individual surface soil moisture 
sensors that contribute to a given 33 km reference pixel ranges between 6.0 and 28.8, with a mean value of 
13.6.  The corresponding number of sensor profiles for root zone soil moisture ranges between 9.0 and 23.8, 
with a mean value of 15.4.  At the 9 km scale, 13 of the 31 reference pixels are based on just 4 individual 
sensor profiles, while most of the rest of the 9 km reference pixels consist of about 10 sensor profiles each.  
The mean value of surface soil moisture sensors per 9 km reference pixel is 6.8, and the corresponding 
number of root zone profiles is 7.2.  The sampling density (sensors per unit area) is therefore higher for the 
9 km reference pixels than for the 33 km reference pixels.   

For most reference pixels, individual sensor profiles occasionally drop out temporarily.  If the sensor 
that drops out is installed in a particularly wet or a particularly dry location (relative to reference pixel 
average conditions), not having this sensor contribute to the reference pixel average will result in an 
artificial discontinuity in the time series of the reference pixel average soil moisture.  In previous assessment 
reports, this effect was mitigated only for reference pixels with 8 or fewer individual sensor profiles; for 
these reference pixels, quality-controlled in situ measurements from all contributing sensor profiles needed 
to be available for the computation of the reference pixel average.   

The processing of the in situ measurements for the present assessment report includes an additional 
safeguard against discontinuities caused by temporary sensor dropout.  In the revised processing used here, 
the time series from each individual sensor is first converted from volumetric soil moisture units into 
standard-normal deviates, based on the time series mean and variance of the measurements at the individual 
sensor.  Next, a normalized reference pixel average time series is computed by averaging the standard-
normal deviate time series from each individual sensor.  Finally, the resulting normalized reference pixel 
average time series is converted back into volumetric units based on the reference pixel average of the soil 
moisture climatologies from the individual sensors.  By averaging the measurements from the individual 
sensors in the normalized space, the reference pixel average time series in volumetric units is less sensitive 
to the dropping out of sensors that are installed in a particularly wet or dry location (relative to reference 
pixel average conditions). 

Core site metrics are provided separately for the 9 km and 33 km reference pixels.  Metrics are 
computed directly against the (reference pixel average) in situ measurements.  Because the latter contain 
measurement error, we present the metrics as the mean difference (MD), RMS difference (RMSD), and 
unbiased RMS difference (ubRMSD), along with the (anomaly) correlation.  Because of the in situ 
measurement error, the metrics of interest – that is, the (absolute) bias, RMSE, and ubRMSE – are less than 
the (absolute) MD, RMSD, and ubRMSD, respectively.  Similarly, the (anomaly) correlation vs. the true 
soil moisture exceeds the (anomaly) correlation that is directly determined against the imperfect in situ 
measurements.   

Summary metrics are obtained by averaging across the metrics from all individual reference pixels at 
the given scale (Table 3).  For the 9 km metrics, we first average each metric across the 9 km reference 
pixels within each site, separately for each site and weighted by the number of measurements that contribute 
to the metric at a given 9 km reference pixel.  Second, we average the resulting individual site-average 
metrics across all sites.  This approach gives equal weight to each site and differs from the straight average 
over all 9 km reference pixels that was used in earlier assessments (Reichle et al. 2015, 2016, 2017a), which 
somewhat arbitrarily gave more weight to sites that had more 9 km reference pixels.  (We computed 
summary metrics using both methods and found the results to be close.  That is, the conclusions remain the 
same regardless of how exactly the average metric is computed.) 

Finally, in situ measurements are used for validation only when the model (or assimilation) estimates 
indicate non-frozen and snow-free conditions (Reichle et al. 2015, their section 6.2.1).  Because the soil 
temperature and snow states differ somewhat between the L4_SM product and the model-only (Open Loop) 
simulation examined here, in situ measurements were used only if both datasets indicate favorable 



23 

validation conditions.  This cross-masking ensures that the metrics are directly comparable across both 
datasets. 

6.2.2 Results 

In this section, we investigate the summary metrics for soil moisture at the core validation sites, which 
are illustrated in Figures 9 and 10.  Probably the most important result is that the average ubRMSE for 
surface and root zone soil moisture for the Version 5 L4_SM product at both the 9 km and the 33 km scales 
meets the accuracy requirement of ubRMSE ≤ 0.04 m3 m-3.   

For a more in-depth analysis, we first compare the skill of the L4_SM (Vv5030) product to that of the 
model-only Open Loop (OL5030) estimates.  For the ubRMSD metrics at the 9 km and the 33 km scales 
(Figure 9a), the surface and root zone soil moisture skill of the Version 5 product slightly exceeds that of 
OL5030, demonstrating the positive impact of assimilating SMAP brightness temperatures.  For example, 
at the 9 km scale the surface soil moisture ubRMSD is 0.040 m3 m-3 for Vv5030 surface soil moisture and 
0.042 m3 m-3 for OL5030.  However, the ubRMSD improvement of the L4_SM product over the model-
only simulation is not statistically significant at the 5% level, as indicated by the overlapping 95% 
confidence intervals.  (Note that the confidence intervals are themselves uncertain and only provide rough 
guidance.)     

When factoring in the measurement error of the reference pixel-average in situ observations, which 
Chen et al. (2019) conservatively estimate as ubRMSE~0.01-0.02 m3 m-3, the Version 5 L4_SM product 
clearly meets the above-mentioned accuracy requirement. 

The average MD (Figure 9b) and average absolute MD (Figure 9c) values for surface and root zone 
soil moisture tend to be slightly worse for the Version 5 product than for the model-only (OL5030) 
estimates.  The differences in the MD metrics are again not statistically significant and are in any case much 
smaller than the upscaling uncertainty (Chen et al. 2019). 

Across-the-board improvements are seen in the L4_SM product over the model-only Open Loop 
estimates in terms of R (Figure 10a) and anomaly R (Figure 10b) skill.  The improvements range from 0.04 
to 0.13 and are statistically significant for surface soil moisture at both the 9 km and 33 km scales.   

Next, we compare the skill values at 9 km to those at 33 km.  The L4_SM and Open Loop skill values 
at 33 km are better for all metrics than the corresponding values at 9 km (Figures 9 and 10), which is 
consistent with the fact that the model forcing data and the assimilated SMAP brightness temperature 
observations are all at resolutions of about 30 km or greater.  The information used to downscale the 
assimilated information primarily stems from the land model parameters, which are at the finer, 9 km 
resolution; this information is expected to have a modest impact at best.  It is therefore not a surprise that 
the estimates at 33 km are more skillful than those at 9 km. 

Finally, we compare the skill of the surface estimates to that of the root zone estimates.  Across both 
scales, for nearly all metrics and for both the L4_SM and Open Loop estimates, the skill of the root zone 
soil moisture estimates is better than that of the surface estimates.  This result makes sense because there is 
much more variability in surface soil moisture.  It is important to keep in mind, however, that the root zone 
metrics are computed from only a subset of the sites used for the computation of the surface metrics.  

Generally, the results presented here, which are based on up to 6 years of core site measurements, 
are consistent with those of the Version 4 product and model-only estimates, which were based on a 
validation period of 3 years (Reichle et al. 2017a).  In summary, the results discussed here demonstrate that 
Version 5 of the L4_SM product is of sufficient maturity and quality for dissemination to the public.    
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Figure 9.  Surface and root zone soil moisture (a) ubRMSD, (b) MD and (c) absolute MD averaged across (left) 
9 km and (right) 33 km core site reference pixels for Version 5 Open Loop (OL5030) estimates and the Version 
5 L4_SM (Vv5030) product.  
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6.3 Sparse Networks 

6.3.1 Method 

The locally dense networks of the core validation sites are complemented by regional to continental-
scale “sparse” networks.  The defining feature of the sparse networks is that there is usually just one sensor 
(or profile of sensors) located within a given 9 km EASEv2 grid cell.  Such point-scale measurements are, 
of course, generally not representative of the grid cell average conditions that the L4_SM algorithm is trying 
to estimate.  Although sparse networks are not ideal for soil moisture validation for this and other reasons, 
they offer in situ measurements in a larger variety of environments and provide data quasi-operationally 
with very short latency.  See Reichle et al. (2015) for further discussion of the advantages and limitations 
of using sparse networks in the L4_SM validation process.   

This assessment report focuses on metrics obtained from a direct comparison of the L4_SM product 
to in situ measurements, that is, metrics derived without using triple collocation approaches that attempt to 
correct for errors in the in situ measurements (Chen et al. 2016; Gruber et al. 2016).  The values of the time 
series correlation metrics provided here are thus lower than those that would be obtained with the aid of 
triple collocation, and they are therefore conservative estimates of the true skill.  Note also that the relative 

performance of the products under investigation does not depend on the use of triple collocation approaches 
(Dong et al. 2020). 

Figure 10.  As in Figure 9 but for (a) time series correlation coefficient (R) and (b) anomaly R. 
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The skill of the L4_SM estimates was computed using all available in situ measurements (after quality 
control) at 3-hourly time steps, and this skill was compared to that of the model-only Open Loop estimates.  
For sparse networks, we used the same requirements for the minimum number of data values as for core 
validation sites (section 6.2).  Note that quality control generally excludes in situ measurements when the 
ground is frozen (see Reichle et al. 2015, Appendix C).  Instantaneous L4_SM data from the “aup” 

Collection and corresponding Open Loop data were taken directly from the standard 9 km EASEv2 grid 
cell that includes the sensor location (that is, the data product estimates are not interpolated bilinearly or 
otherwise to the precise location of the in situ sensor locations).  Metrics were computed for surface and 
root zone soil moisture against in situ measurements from the SCAN, USCRN, OK Mesonet, OZNet-
Murrumbidgee, and SMOSMania networks (Table 4).  The average metrics were computed based on a 
clustering algorithm that assigns the weights given to each location based on the density of sites in the 
surrounding region (De Lannoy and Reichle 2016).   

Table 4.  Overview of sparse networks, with indication of the sensor depths, number of sites, and data periods used 
here.  Values in parentheses indicate the number of sites for which the anomaly R metric was computed.  The anomaly 
R metric was only available for sites with sufficient data to compute a seasonally varying climatology.  Count of 
USCRN (OK Mesonet) sites includes 4 (1) site(s) with undetermined IGBP land cover classification.  

Measurements used for L4_SM validation cover most of the contiguous United States (SCAN, 
USCRN, OK Mesonet), parts of the Murrumbidgee basin in Australia (OZNet), and an area in south-
western France (SMOSMania).  The in situ measurements from the sparse network sites were subjected to 
extensive automated and manual quality control procedures by the L4_SM team following (Liu et al. 2011), 
which removed spikes, temporal inhomogeneities, oscillations, and other artifacts that are commonly seen 
in these automated measurements.  In our experience, the manual inspection and quality control is an 
indispensable step in the process.  Table 4 also lists the number of sites with sufficient data after quality 
control. 

A total of 428 sites provided surface soil moisture measurements, and 304 provided root zone soil 
moisture measurements.  Most of the sites are in the continental United States, including about 100 each in 
the USCRN and SCAN networks, and another ~100 sites in Oklahoma alone from the OK Mesonet.  The 
OZNet network contributes 43 sites with surface soil moisture measurements, of which 19 sites also provide 
root zone measurements.  Finally, 21 sites with surface and root zone soil moisture measurements were 
used from the SMOSMania network.  For most networks, around ~30% of the sites do not have sufficient 
numbers of measurements for the computation of the climatology that is needed to determine the anomaly 
R skill.   

Table 4 also lists the sensor depths that were used to compute the in situ root zone soil moisture.  As 
with the core validation sites, vertical averages for SCAN, USCRN, and OK Mesonet are weighted by the 
spacing of the sensor depths within the 0-100 cm layer corresponding to the L4_SM estimates, and the 

SCAN USA 0.05, 0.10, 0.20, 0.50 135 (134) 109 (107) 04/01/2015 - 03/31/2021 Schaefer et al. 2007

USCRN USA 0.05, 0.10, 0.20, 0.50 111 (111) 78 (76) 04/01/2015 - 03/31/2021

Bell et al. 2013; 

Diamond et al. 2013

OK Mesonet Okla. USA 0.05, 0.25, 0.60 118 (116) 77 (76) 04/01/2015 - 05/01/2018 McPherson et al. 2007

OZNet Australia 0.04, 0.45 43 (43) 19 (19) 04/01/2015 - 09/01/2020 Smith et al. 2012

SMOSMania France 0.05, 0.20 21 (21) 21 (21) 04/01/2015 - 12/31/2019 Calvet et al. 2007

428 (425) 304 (299)

ReferenceNetwork Region Sensor Depths (m)
Period  

(MM/DD/YYYY)

All Networks

Number of Sites

Root ZoneSurface
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average is only computed if all sensors within a given profile provide measurements after quality control.  
For SCAN and USCRN sites, some measurements at 100 cm depth are available, but these deeper layer 
measurements are not of the quality and quantity required for L4_SM validation and are therefore not used 
here.  For OZNet and SMOSMania, in situ root zone soil moisture is given by the measurements at the 45 
cm and 20 cm depth, respectively; that is, no vertical average is computed.   

6.3.2 Results 

Figure 11 shows the average L4_SM and Open Loop metrics across all sparse network sites.  When 
validated against the sparse network measurements, both versions of the L4_SM products show generally 
lower ubRMSD and higher R and anomaly R values than the corresponding Open Loop estimates, with 
improvements that are statistically significant at the 5% level for the surface soil moisture correlation 
metrics.  This again demonstrates the additional information contributed by the assimilation of the SMAP 
brightness temperature observations in the L4_SM system.   

As with the core site validation results, the ubRMSD and MD values vs. the sparse network 
measurements are smaller (better) for root zone soil moisture than for surface soil moisture, which again 
reflects the fact that root zone soil moisture generally varies less in time than surface soil moisture. 

As with the core validation sites, the validation of the L4_SM and Open Loop estimates vs. sparse 
network measurements is within regions where the surface meteorological forcing takes advantage of high-
quality, gauge-based precipitation measurements.  Larger improvements from the assimilation of SMAP 
observations can be expected in areas where the CPCU precipitation product is based on fewer gauges. 

Overall, the evaluation of skill for the sparse network sites yields results that are very similar to those 
obtained for the core validation sites.  The beneficial impact of assimilating SMAP brightness temperature 
observations is greatest for surface soil moisture, with smaller improvements in root zone soil moisture 
estimates.  Finally, it is important to keep in mind that all of the skill metrics presented here underestimate 
the true skill because these metrics are based on a direct comparison against in situ measurements (which 
are subject to error).  Therefore, the sparse network ubRMSD values suggest that the L4_SM estimates 
would meet the formal accuracy requirement across a very wide variety of surface conditions, beyond those 
that are covered by the relatively few core validation sites that have been available to date for formal 
verification of the accuracy requirement.  One caveat, however, is that the sparse network results do not 
provide an entirely independent validation because SCAN and USCRN measurements were used to 
calibrate an earlier version (NRv7.2) of the model (Reichle et al. 2018b).  Nevertheless, the sparse network 
results provide additional confidence in the conclusions drawn from the core validation site comparisons. 
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6.4 Satellite Soil Moisture Retrievals 
Reichle et al. (2021) quantified the contribution of the SMAP brightness temperature analysis to the 

anomaly time series correlation skill of the L4_SM product based on the instrumental variable (IV) method 
and independent soil moisture retrievals from the Advanced Scatterometer (ASCAT; Wagner et al. 2013), 
an active microwave (radar) instrument.  In a nutshell, the IV method obtains the difference in skill (vs. the 
unknown true soil moisture) between the L4_SM and model-only estimates through the respective sample 
correlation skill values vs. the independent ASCAT satellite observations.  Reichle et al. (2021) validated 
the ASCAT-based IV approach at the SMAP core validation sites using the grid cell-scale in situ 
measurements (their Figure 4).  For the Version 4 L4_SM product, Reichle et al. (2021) find that, in the 
global average, the SMAP brightness temperature analysis increases the surface soil moisture anomaly 
correlation by 0.11 (their Figure 5b), compared to an increase of just 0.03 from the CPCU-based 
precipitation corrections (their Figure 5c). The contrast is particularly strong in central Australia, where the 
CPCU precipitation product is known to have considerable errors and O-F brightness temperature residuals 
are larger when CPCU precipitation is used.  

For the present report, we repeated the Reichle et al. (2021) assessment using the Version 5 L4_SM 
product.  The improvement in the anomaly correlation of the Version 5 L4_SM product over the model-
only (OL5030) estimates is very similar to that seen in Version 4 (Reichle et al. 2021; their Figure 5b).  
Moreover, the global mean of the anomaly correlation skill between the Version 4 and 5 L4_SM products 
is unchanged.  Consequently, the graphics for the Version 4 system presented by Reichle et al. (2021) still 
apply to Version 5 and are therefore not repeated here. 

Figure 11.  Skill metrics for Version 5 Open Loop (OL5030) estimates and the Version 5 L4_SM product 
(Vv5030) over the sparse network sites listed in Table 4.  (a) ubRMSD, (b) MD, (c) time series correlation 
coefficient (R), and (d) anomaly R.   
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6.5 Data Assimilation Diagnostics 
This section provides an evaluation of the L4_SM data assimilation diagnostics, including the statistics 

of the observation-minus-forecast (O-F) residuals, the observation-minus-analysis (O-A) residuals, and the 
analysis increments.  Because the L4_SM algorithm assimilates brightness temperature observations, the 
O-F and O-A diagnostics are in terms of brightness temperatures (that is, in “observation space”).  The
analysis increments are, strictly speaking, in the space of the Catchment model prognostic variables that
make up the “state vector”, including the “root zone excess”, “surface excess”, and “top-layer ground heat
content” (Reichle et al. 2014b).  For the discussion below, the soil moisture increments have been converted
into equivalent volumetric soil moisture content in units of m3 m-3 and into water flux terms in units of mm
d-1.

A key element of the analysis update is the downscaling and inversion of the observational information 
from the 36 km grid of the assimilated brightness temperatures into the modeled geophysical variables on 
the 9 km grid, based on the modeled error characteristics, which vary dynamically and spatially.  An 
example and illustration of a single analysis update can be found in Reichle et al. (2017b, their section 3b). 

6.5.1 Observation-Minus-Forecast Residuals 

Figure 12 shows the total number of L1C_TB observations that were assimilated at each grid cell in 
Version 5 during the assessment period (April 2015 – March 2021).  This count includes H- and V-pol 
observations from ascending and descending orbits.  The average data count across the globe is 
approximately 2,361 for the 6-year (2,192-day) period.  The corresponding (3-year) map for Version 4 is 
very similar (Reichle et al. 2019, their Figure 5a).  Few or no SMAP brightness temperatures are assimilated 
in high-elevation and mountainous areas (including the Rocky Mountains, the Andes, the Himalayas, and 
Tibet), in the vicinity of lakes (such as in northern Canada), and next to major rivers (including the Amazon 
and the Congo).  In the high latitudes, the much shorter warm (unfrozen) season also results in lower counts 
of assimilated brightness temperature observations, although this is somewhat mitigated by SMAP’s polar 
orbit, which results in more frequent revisit times there.  The remaining gaps in coverage might reflect a 
lack of sufficient numbers of SMAP observations to provide the required climatological information for the 
computation of the (seasonally varying) brightness temperature scaling parameters during the times of the 
year when conditions are suitable for a soil moisture analysis.  Note, however, that the L4_SM product 
provides soil moisture estimates everywhere, even if in some regions the L4_SM estimates are not based 
on the assimilation of SMAP observations and rely only on the information in the model and forcing data.  

Next, Figure 13 shows the global distributions of the time series mean and standard deviation of the 
O-F brightness temperature residuals.  The time mean values of the O-F residuals are typically small and
mostly range from -3 to 3 K, with an overall bias of just 0.06 K and a mean absolute bias of just 0.29 K
(Figure 13a).  The latter represents a reduction of about 50% from the (3-year) mean absolute bias of 0.56
K seen in the Version 4 system (Reichle et al. 2019, their Figure 6a) and reflects the improved Version 5
algorithm calibration (section 5.3).



30 

The time series standard deviation of the O-F residuals ranges from a few Kelvins to around 15 K 
(Figure 13b).  The highest values are found in central North America, southern South America, southern 
Africa, the Sahel, central Asia, India, and (particularly) Australia.  These regions have sparse or modest 
vegetation cover and typically exhibit strong variability in soil moisture conditions.  The O-F residuals are 
generally smallest in more densely vegetated regions, including the eastern United States, the Amazon 
basin, and tropical Africa.  Small values are also found in the high latitudes, including Alaska and Siberia, 
and in the Sahara Desert.  The global (spatial) average of the O-F standard deviation is 5.5 K in Version 5, 
which is less than the (3-year) value of 5.7 K in Version 4 (Reichle et al. 2019, their Figure 7a) and suggests 
that the Version 5 modeling system is slightly better able to predict the observed brightness temperatures 
just prior to each analysis.  The spatially averaged time series standard deviation of the O-A residuals is 3.5 
K (not shown), which again reflects the impact of the SMAP observations in the L4_SM system.   

Finally, Figure 14 shows the standard deviation of the normalized O-F residuals, which measures the 
consistency between the expected (modeled) errors and the actual errors.  Specifically, the O-F residuals 
are normalized with the standard deviation of their expected total error, which is the sum (in a covariance 
sense) of the error in the observations (including instrument errors and errors of representativeness) and the 
error in the brightness temperature model forecasts (Reichle et al. 2015, their Appendix B).  The parameters 
that determine the expected error standard deviations are key inputs to the ensemble-based L4_SM 
assimilation algorithm.  If they are chosen such that the expected errors are fully consistent with the actual 
errors, the metric shown in Figure 14 should be unity everywhere.  If the metric is less than one, the actual 
errors are overestimated by the assimilation system, and if the metric is greater than one, the actual errors 
are underestimated.    

Figure 12.  Number of L1C_TB observations used in the L4_SM algorithm (Vv5030) during the 6-year validation 
period (April 2015 – March 2021).  Data counts include H-pol and V-pol data from ascending and descending 
half-orbits.  White shading indicates no-data-values. 
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The global average of the metric in Version 5 is 1.07, which suggests that, on average, the modeled 
errors are slightly underestimating the actual errors (Figure 14).  The metric, however, varies greatly across 
the globe.  Typical values are either too low or too high.  In the Amazon basin, the eastern US, tropical 
Africa, and portions of the high northern latitudes, values are around 0.5, and thus errors there are 
considerably overestimated.  Conversely, in central North America, the Sahel, southern Africa, India, 
portions of central Asia and most of Australia, values range from 1.5 to 3, meaning that errors in these 
regions are considerably underestimated.  In Version 4, the global pattern of low and high values of the 
normalized O-F standard deviation was very similar, but with a global average metric of 1.13 (Reichle et 
al. 2019, their Figure 8a).  That is, the slight underestimation of the actual errors in Version 5 represents an 
improvement from that of Version 4.  More work is needed to further improve the calibration of the input 
parameters that determine the model and observation errors in the L4_SM system.  

Figure 13.  (a) Mean and (b) standard deviation of the O-F residuals from the L4_SM algorithm (Vv5030) for 
April 2015 – March 2021.  White shading indicates no-data-values.   
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6.5.2 Increments 

Figure 15 shows the average number of increments that the L4_SM algorithm generated per day during 
the validation period.  The global mean is 0.77 per day, which means that there are approximately four 
increments applied every five days on average, either from an ascending or a descending overpass.  The 
overall pattern of the increments count follows that of the count of the assimilated observations shown in 
Figure 12.  The figure also reveals the diamond patterns resulting from SMAP’s regular 8-day repeat orbit.  
The corresponding (3-year) map for Version 4 is very similar (Reichle et al. 2019, their Figure 5c). 

Next, Figure 16 shows the time mean values of the analysis increments for surface and root zone soil 
moisture.  In the global average, the net increments are only -0.012 mm d-1 for surface soil moisture and 

Figure 14.  Standard deviation of the normalized O-F residuals from the L4_SM algorithm (Vv5030) for April 
2015 – March 2021.  White shading indicates no-data-values.   

Figure 15.  Average number of increments per day generated by the L4_SM algorithm (Vv5030) during the 
validation period (April 2015 – March 2021).  The result applies equally to all elements of the control vector, 
including the model prognostic variables related to surface soil moisture, root zone soil moisture, surface 
temperature, and top-layer soil temperature.  White shading indicates no-data-values.   
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0.017 mm d-1 (or ~6 mm per year) for root zone soil moisture.  Regionally, however, the mean increments 
can be larger and constitute a non-negligible fraction of the water balance.  The average absolute increment 
is about 0.030 mm d-1 for surface soil moisture and 0.055 mm d-1 for root zone soil moisture.  For surface 
soil moisture, the central US, eastern South America, southeastern Africa, India, portions of central Asia, 
and southeastern Australia experience net drying increments in surface soil moisture, whereas central 
Australia experiences net wetting increments.  The spatial pattern is different for root zone soil moisture 
increments, which have a net wetting effect in the central US, eastern South America, and all of Australia 
and a net drying effect in the eastern US, western and central Africa, and southeast Asia. Generally, the 
pattern of the net surface soil moisture increments reflects the long-term mean bias in the O-F residuals 
(Figure 13a).  The long-term mean increments in Version 5 are typically smaller by a factor of two than 
those in Version 4 (not shown), which again reflects the improved calibration of the Version 5 algorithm 
(section 5.3). 

Figure 16.  Time series mean of the increments for (a) surface soil moisture and (b) root zone soil moisture from 
the L4_SM algorithm (Vv5030) for Apr 2015 – March 2021 in equivalent flux units (mm d-1).  White shading 
indicates no-data-values.  
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Finally, Figure 17 shows the time series standard deviation of the increments in surface and root zone 
soil moisture.  This metric measures the typical magnitude of instantaneous increments.  Typical increments 
in surface soil moisture are on the order of 0.02-0.03 m3 m-3 in the central US, the Sahel, southern South 
America, southern Africa, India, portions of central Asia, and most of Australia.  In the same regions, root 
zone soil moisture increments are typically on the order of 0.003-0.005s m3 m -3.  Over densely vegetated 
regions, in particular the tropical forests, surface and root zone soil moisture increments are generally 
negligible, reflecting the fact that in those areas the measured SMAP brightness temperatures are mostly 
sensitive to the dense vegetation and are only marginally sensitive to soil moisture. 

6.5.3 Uncertainty Estimates 

The L4_SM data product also includes error estimates for key output variables, including surface and 
root zone soil moisture as well as surface soil temperature.  These uncertainty estimates vary dynamically 
and geographically because they are computed as the standard deviation of a given output variable across 
the ensemble of land surface states at a given time and location.  (The ensemble is an integral part of the 
ensemble Kalman filter employed in the L4_SM algorithm, and the ensemble average provides the estimate 

Figure 17.  As in Figure 16 but for time series standard deviation of the increments in units of m3 m-3. 
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of the variable under consideration (Reichle 2008).)  By construction, the uncertainty estimates represent 
only the random component of the uncertainty.  Bias and other structural errors such as errors in the dynamic 
range are not included.  

Figure 18 shows the temporal mean of the uncertainty estimates for the validation period.  Across the 
globe, surface soil moisture uncertainty typically ranges from 0.02 to 0.04 m3 m-3 in Version 5, with larger 
uncertainties in regions where the lowest number of SMAP brightness temperatures are assimilated (Figure 
12), including northwestern North America, northeastern Asia, and the Tibetan Plateau, which are subject 
to frozen or snow-covered conditions for a large part of the year.  The less frequent brightness temperature 
analysis in these regions implies less reduction in ensemble spread.  The uncertainty in root zone soil 
moisture exhibits a similar pattern, albeit with uncertainty estimates typically ranging from 0.01 to 0.02 m3 
m-3.  The lower uncertainty estimates in root zone soil moisture primarily reflect the fact that root zone soil
moisture is less variable in time than surface soil moisture.  The Version 5 uncertainty estimates are very
close to those of Version 4 (Reichle et al. 2018b, their Figure 20).

Figure 18.  L4_SM (Vv5030) uncertainty estimates for (a) surface soil moisture and (b) root zone soil moisture 
averaged across the validation period (April 2015 – March 2021).  Uncertainty estimates are computed as the 
standard deviation across the model ensemble that is used in the L4_SM assimilation algorithm.  White shading 
indicates no-data-values.   
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7 LIMITATIONS AND PLAN FOR FUTURE IMPROVEMENTS 
Several limitations and avenues for future development are revealed by the assessment of the Version 

5 L4_SM product presented above and by Version 4 validation results (Reichle et al. 2018b, 2019, 2021) 
that still apply to Version 5.  

7.1 L4_SM Algorithm Calibration and Temporal Homogeneity 
Compared to earlier versions, the calibration of the Version 5 L4_SM algorithm utilized longer records 

of (i) model-only brightness temperature data and (ii) SMAP brightness temperature observations.  Unlike 
in earlier versions, SMOS brightness temperature data were not used to derive the brightness temperature 
scaling parameters in Version 5.  These changes improved the Version 5 algorithm calibration and further 
reduced the residual bias between the predicted brightness temperatures from the L4_SM modeling system 
and the (rescaled) SMAP observations, resulting in a less biased analysis than in Version 4.  There are, 
however, still regions with a modest bias in the brightness temperature O-F residuals (Figure 13a), which 
in turn leads to non-zero long-term mean soil moisture analysis increments (Figure 16).   

Eventually, further improvements in the L4_SM algorithm calibration will be facilitated by an even 
longer record of SMAP observations and matching model-only brightness temperature estimates.  However, 
version changes in the GEOS FP system (Lucchesi, 2018) during the SMAP period adversely impact the 
homogeneity of the surface meteorological forcing data that are needed to calibrate the L4_SM algorithm 
and to generate the L4_SM data product.  A forthcoming GEOS reanalysis product for the 21st century 
(“R21C”) is expected to be available in 2023.  This new reanalysis dataset will provide a more homogeneous 
record of surface meteorological forcing data during the SMAP period and will also be more consistent 
with the operational FP version that provides the surface meteorological forcing data for L4_SM forward 
processing.  Once the R21C reanalysis is available, we plan to use the R21C data in future L4_SM versions 
for both calibration and L4_SM processing.  

7.2 Impact of Ensemble Perturbations 
Section 6.1 revealed that nonlinearities in the generation of the perturbations applied to the precipitation 

and shortwave forcing contribute to a small bias in L4_SM soil moisture when compared to the unperturbed 
model climatology.  Now that the mechanism has been identified, it should be relatively straightforward to 
reduce this bias by relaxing the limit for outliers to a maximum of 3 times the standard deviation.  
Alternatively, approximate correction terms could perhaps be added into the ensemble perturbations 
scheme. 

It is unclear, however, if anything can be done to reduce the wet soil moisture bias in arid regions that 
stems from the fact that at the dry end, soil moisture perturbations can only be positive (wetting).  Reducing 
the standard deviation of the perturbations would reduce this bias, but it would also make the L4_SM 
algorithm insensitive to errors in the model forecast soil moisture (for lack of sufficient ensemble spread in 
the EnKF analysis).    

7.3 Precipitation Data 
Gauge-based precipitation data from the NOAA Climate Prediction Center Unified (CPCU) product 

provide an important contribution to the skill of the L4_SM soil moisture estimates (Reichle et al. 2021).  
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The same gauge-based precipitation data are also used in the MERRA-2 reanalysis (Gelaro et al., 2017; 
Reichle et al., 2017c).  In both MERRA-2 and L4_SM, CPCU-based precipitation corrections are not 
applied in Africa and the high latitudes, owing to the sparsity of the precipitation gauge network there. 
Moreover, monitoring of the L4_SM O-F residuals and a verification of the L4_SM precipitation against 
independent observations revealed that the quality of the CPCU product is relatively poor in central 
Australia and in Myanmar (Reichle et al. 2017b, 2021).  Finally, routine monitoring of the L4_SM and 
MERRA-2 data revealed a recent uptick in occurrences of erratic data values in the CPCU product in South 
America and Eurasia.   

Ongoing L4_SM development efforts target the replacement of the CPCU inputs with satellite-based 
precipitation data from the NASA IMERG suite of products (Tan et al. 2019).  IMERG, however, offers 
only data that are, at best, informed by monthly totals from precipitation gauges, and the gauge-corrected 
IMERG data have a latency of several months, which makes them suitable only for retrospective processing 
of L4_SM.  Forward-processing would have to rely on satellite-only precipitation estimates.  Preliminary 
results suggest that using IMERG instead of CPCU precipitation inputs improves the anomaly correlation 
skill of L4_SM soil moisture estimates in the Southern Hemisphere, including much of Africa and central 
Australia, even when just the satellite-only IMERG product is used.   

7.4 L4_SM Algorithm Refinements 
Recent research into improving the Catchment model parameterization for peat soils (Bechtold et al. 

2019) and brightness temperature data assimilation in peatlands (Bechtold et al. 2020) provided 
encouraging results.  Additional research suggests that relatively simple model revisions can improve the 
Catchment model skill in permafrost regions (Tao et al. 2017, 2019).  Implementing these model advances 
in the L4_SM algorithm should improve the skill of the L4_SM product in the high latitudes, where the 
coupling with the carbon cycle is of particular interest in the context of the SMAP science objectives.  

Research by the SMAP Level-2 (L2) soil moisture algorithm development team resulted in important 
advances in the skill of the retrievals from the dual-channel algorithm.  This algorithm retrieves vegetation 
optical depth (VOD) along with surface soil moisture.  This removes the dependency of the SMAP L2 
retrievals on a pre-specified climatology of the normalized vegetation difference index (NDVI), which is 
based on optical data and from which VOD can only be determined approximately.  Preliminary research 
by the L4_SM team is exploring the use of a climatology of L2-retrieved VOD in the L4_SM L-band 
brightness temperature radiative transfer model.  While this would not change the use of climatological 
VOD information in the L4_SM algorithm, it would at least remove the dependency of the L4_SM 
algorithm on optical (NDVI) data to estimate VOD in the SMAP brightness temperature analysis.    
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8 SUMMARY AND CONCLUSIONS 

This report provides an assessment of Version 5 of the SMAP L4_SM product.  The validation covers 
the period from 1 April 2015, 0z to 1 April 2021, 0z.  The Version 5 L4_SM algorithm was recalibrated to 
work with the substantially changed calibration of the assimilated Version 5 (R17) Level-1C brightness 
temperatures.  The calibration of the L-band microwave radiative transfer model parameters was updated 
using a longer record of SMOS observations and the latest (NRv8.3) land model version.  Moreover, longer 
records of SMAP observations and simulated brightness temperatures were used to improve the brightness 
temperature scaling parameters.  Bug fixes in Version 5 address (i) an error in the Catchment model soil 
hydraulic parameters that potentially affected the simulation of soil moisture in about 2% of all land surface 
elements and (ii) an error in the perturbations of the photosynthetically active radiation that adversely 
impacted the model’s water balance.  Moreover, the Version 5 also includes minor changes in the 
Catchment model’s surface turbulence calculations and major software infrastructure upgrades.   

The Version 5 L4_SM product was validated using in situ soil moisture measurements from SMAP 
core validation sites and sparse networks.  The product was further evaluated through an assessment of the 
data assimilation diagnostics generated by the L4_SM algorithm, such as the observation-minus-forecast 
residuals and the increments.  

An analysis of the time-averaged surface and root zone soil moisture shows that the global pattern of 
arid and humid regions is captured by the Version 5 L4_SM estimates.  Surface and root zone soil moisture 
is generally drier by 0.008 m3 m-3 in Version 5 compared to Version 4.  This climatological difference is 
caused by the complex interplay of the Version 5 system changes and bug fixes (section 6.1).  Because of 
these climatological differences, the Version 4 and 5 products should not be combined into a single dataset 
for use in applications.  

When compared to core validation site measurements, the Version 5 surface soil moisture ubRMSD 
is 0.040 m3 m-3 at the 9 km scale and 0.037 m3 m-3 at the 33 km scale.  For root zone soil moisture, the 
ubRMSD is 0.027 m3 m-3 at the 9 km scale and 0.024 m3 m-3 at the 33 km scale.  When factoring in the 
measurement error of the in situ measurements (conservatively estimated to be ~0.01-0.02 m3 m-3), the 
Version 5 L4_SM surface and root zone soil moisture clearly meets the product accuracy requirement 
(ubRMSE ≤ 0.04 m3 m-3).  It is important to keep in mind that whereas the surface soil moisture in situ 
measurements are typically at ~5 cm depth, the L4_SM estimates are for the 0-5 cm soil layer.  As with the 
error in the in situ measurements themselves, this mismatch in layer depths adversely impacts all given 
validation metrics.   

 The assimilation of SMAP brightness temperatures in the L4_SM algorithm is beneficial for surface 
and root zone soil moisture estimates, with improvements over the model-only open loop (OL5030) that 
are consistent across the 9 km and 33 km scales and across the ubRMSD and R metrics.  For surface soil 
moisture, the correlation improvements are statistically significant (based on 95% confidence intervals).  
The comparison with in situ measurements from a global set of sparse networks corroborates the results 
obtained for the core validation sites.   

The data assimilation diagnostics further broaden the validation to the global domain and indicate that 
the L4_SM system is nearly unbiased in the global average sense.  The time mean, globally averaged 
analysis increments in surface and root zone soil moisture are very small.  Regionally, however, time mean 
increments can be as large as 0.5 mm d-1.  These biases are caused by modest biases in the observation-
minus-forecast residuals of brightness temperature in the L4_SM product that can be up to ±3 K in small 
regions.  The assimilation diagnostics further reveal that, on a regional basis, the errors in brightness 
temperature are typically over- or underestimated considerably by the L4_SM system.  However, the 
Version 5 assimilation diagnostics are generally improved over those of Version 4.  The long-term mean 
absolute O-F brightness temperature residuals and soil moisture increments are reduced by 30-50% on 
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average.  Moreover, the time series standard deviation of the O-F brightness temperature residuals is 
reduced from 5.7 K in Version 4 (3-year statistic) to 5.5 K in Version 5 (6-year statistic).   

Uncertainty estimates for the analyzed surface soil moisture, root zone soil moisture, surface 
temperature, and top layer soil temperature are also provided with the product.  These uncertainty estimates 
are designed to reflect the random error in key geophysical product fields.  There are no relevant differences 
between the Version 4 and 5 uncertainty estimates.      

Based on the results presented in this report, the public release of Version 5 of the L4_SM data product 
is recommended.  The results, however, also uncovered limitations in the Version 5 product and possible 
avenues for future development, including the use of a forthcoming GEOS reanalysis that will provide a 
more temporally homogeneous record of surface meteorological forcing data (section 7.1), the use of 
IMERG precipitation products to replace the CPCU gauge-based inputs (section 7.2), the reduction of the 
nonlinear effects of the multiplicative ensemble perturbations to precipitation and shortwave forcing on the 
simulated soil moisture climatology (section 7.3), and the use of improved Catchment model physics for 
peatlands and permafrost (section 7.4).  Moreover, calibration of the system with longer records should 
further reduce the residual regional bias in the observation-minus-forecast brightness temperature residuals 
and the resulting impact of non-zero long-term mean analysis increments on the water balance.  Similarly, 
longer records of in situ measurements will permit more extensive validation.  Additionally, the expected 
public availability of tower flux measurements for the SMAP period will support the evaluation of L4_SM 
latent and sensible heat flux estimates.  These developments will be addressed in future work.    
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APPENDIX 

Performance Metrics at Core Validation Site Reference Pixels 
Tables A1-A2 in this Appendix provide a complete listing of the performance metrics, including ubRMSD, MD, 

R, and anomaly R, for all 9 km and 33 km core site reference pixels.  Metrics are provided for surface and root zone 
soil moisture for the L4_SM Vv5030 product and the model-only OL5030 estimates.  



42 

Table A1.  Surface soil moisture metrics at individual reference pixels and averaged over 33 km and 9 km reference 
pixels, including average and average absolute MD (bottom rows labeled “All”).  Information for 33 km reference 
pixels is shown in bold font.  Italics indicate Version 5 L4_SM metrics.  See Table 3 for full site names.  
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03013302 33 0.028 0.037 0.005 0.043 0.046 0.007 0.82 0.82 0.05 0.69 0.75 0.05

03010903 9 0.029 0.036 0.004 0.127 0.142 0.005 0.62 0.63 0.08 0.61 0.66 0.08

03010908 9 0.038 0.047 0.007 -0.015 -0.013 0.010 0.74 0.70 0.08 0.56 0.60 0.07

04013302 33 0.042 0.041 0.011 -0.010 -0.003 0.015 0.62 0.68 0.18 0.61 0.68 0.24

04010907 9 0.041 0.041 0.008 -0.027 -0.023 0.012 0.63 0.67 0.15 0.61 0.71 0.18

04010910 9 0.048 0.046 0.014 -0.022 -0.021 0.018 0.70 0.74 0.14 0.52 0.67 0.17

07013301 33 0.045 0.036 0.008 -0.014 -0.022 0.011 0.87 0.90 0.04 0.82 0.90 0.04

07010902 9 0.075 0.061 0.014 -0.057 -0.056 0.019 0.84 0.88 0.05 0.73 0.84 0.06

07010916 9 0.052 0.045 0.011 -0.010 -0.019 0.015 0.82 0.86 0.06 0.77 0.85 0.06

09013301 33 0.037 0.049 0.007 -0.021 -0.021 0.009 0.68 0.64 0.08 0.62 0.66 0.07

09010906 9 0.031 0.048 0.006 0.034 0.034 0.008 0.67 0.68 0.08 0.58 0.70 0.08

NG 12033301 33 0.030 0.030 0.006 -0.017 -0.015 0.008 0.66 0.66 0.13 0.46 0.47 0.14

16013302 33 0.026 0.029 0.002 0.024 0.031 0.003 0.74 0.80 0.05 0.70 0.78 0.05

16010906 9 0.027 0.028 0.002 -0.006 0.005 0.003 0.65 0.72 0.05 0.61 0.70 0.05

16010907 9 0.028 0.031 0.002 0.021 0.031 0.003 0.66 0.72 0.05 0.61 0.70 0.05

16010913 9 0.030 0.037 0.003 0.092 0.094 0.004 0.75 0.81 0.06 0.73 0.81 0.05

16023302 33 0.037 0.030 0.003 -0.043 -0.043 0.004 0.73 0.85 0.04 0.70 0.85 0.04

16020905 9 0.048 0.042 0.004 -0.005 -0.001 0.006 0.66 0.75 0.05 0.61 0.72 0.05

16020906 9 0.043 0.037 0.004 -0.015 -0.015 0.005 0.68 0.79 0.05 0.66 0.80 0.04

16020907 9 0.040 0.034 0.005 -0.046 -0.047 0.007 0.69 0.81 0.06 0.68 0.79 0.06

16033302 33 0.038 0.036 0.003 -0.034 -0.033 0.005 0.71 0.84 0.04 0.67 0.84 0.04

16030911 9 0.050 0.040 0.005 -0.056 -0.052 0.007 0.66 0.81 0.04 0.64 0.83 0.04

16030916 9 0.037 0.033 0.003 -0.035 -0.032 0.004 0.70 0.82 0.04 0.70 0.82 0.03

16043302 33 0.041 0.040 0.003 0.002 0.002 0.004 0.70 0.74 0.05 0.67 0.72 0.05

16040901 9 0.033 0.031 0.003 0.074 0.081 0.004 0.79 0.80 0.05 0.77 0.79 0.04

16063302 33 0.044 0.040 0.006 0.132 0.129 0.008 0.63 0.71 0.11 0.45 0.67 0.10

16060907 9 0.047 0.041 0.014 0.062 0.056 0.018 0.63 0.72 0.16 0.41 0.66 0.13

16073302 33 0.055 0.048 0.007 0.029 0.027 0.010 0.62 0.73 0.07 0.67 0.80 0.05

16070909 9 0.061 0.054 0.007 -0.012 -0.013 0.009 0.56 0.68 0.07 0.64 0.78 0.05

16070910 9 0.062 0.055 0.007 0.033 0.031 0.009 0.53 0.66 0.08 0.59 0.75 0.06

16070911 9 0.065 0.057 0.007 0.047 0.045 0.010 0.50 0.63 0.08 0.53 0.70 0.07

19023301 33 0.039 0.036 0.007 -0.068 -0.071 0.010 0.57 0.76 0.05 0.60 0.78 0.05

19020902 9 0.042 0.036 0.009 -0.060 -0.071 0.012 0.55 0.79 0.08 0.61 0.81 0.08

25013301 33 0.039 0.034 0.011 0.012 0.014 0.015 0.92 0.94 0.04 0.67 0.73 0.07

25010911 9 0.042 0.037 0.010 0.006 0.007 0.014 0.90 0.92 0.05 0.64 0.70 0.07

27013301 33 0.042 0.038 0.008 0.020 0.019 0.011 0.58 0.72 0.09 0.64 0.74 0.07

27010910 9 0.032 0.029 0.006 -0.013 -0.005 0.008 0.62 0.75 0.09 0.65 0.75 0.08

27010911 9 0.041 0.036 0.007 -0.040 -0.037 0.010 0.63 0.76 0.08 0.64 0.73 0.08

VA 41010906 9 0.029 0.027 0.006 0.066 0.066 0.009 0.55 0.65 0.18 0.65 0.73 0.17

45013301 33 0.041 0.038 0.006 0.036 0.058 0.009 0.32 0.55 0.21 n/a n/a n/a

45010902 9 0.041 0.039 0.005 0.045 0.067 0.007 0.25 0.48 0.18 0.16 0.44 0.15

45023301 33 0.051 0.047 0.009 0.126 0.128 0.013 0.68 0.73 0.11 0.32 0.47 0.13

45020902 9 0.051 0.047 0.010 0.124 0.127 0.013 0.74 0.78 0.10 0.32 0.47 0.13

48013301 33 0.034 0.028 0.004 0.032 0.030 0.006 0.83 0.91 0.04 0.78 0.88 0.04

48010902 9 0.039 0.036 0.004 0.068 0.067 0.006 0.74 0.83 0.05 0.67 0.79 0.05

48010911 9 0.038 0.032 0.004 0.077 0.076 0.006 0.79 0.87 0.05 0.72 0.84 0.05

67013301 33 0.034 0.031 0.008 -0.012 -0.014 0.010 0.78 0.82 0.05 0.68 0.77 0.05

67010901 9 0.045 0.045 0.021 -0.015 -0.013 0.026 0.83 0.83 0.10 0.46 0.63 0.17

Average 33 0.039 0.037 0.002 0.013 0.015 0.002 0.69 0.77 0.02 0.63 0.73 0.02

Average 9 0.042 0.040 0.002 0.021 0.023 0.002 0.67 0.75 0.02 0.58 0.71 0.02

Avg. Abs. 33 0.037 0.039 0.002

Avg. Abs. 9 0.047 0.049 0.002

All

BN

TX

HB

Same as average.Same as average.

SJ

SF

MB

TZ
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NI

YC
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WG

LW
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LR

R (dimensionless) Anomaly R (dim.-less)

Surface soil moisture

RM

RC

Site 

name

Reference pixel ubRMSD (m3 m-3) MD (m3 m-3)



43 

Table A2.  As in Table A1 but for root zone soil moisture. 
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03013302 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

03010903 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

03010908 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

04013302 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

04010907 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

04010910 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

07013301 33 0.010 0.007 0.006 -0.111 -0.100 0.007 0.90 0.96 0.21 n/a n/a n/a

07010902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

07010916 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

09013301 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

09010906 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

NG 12033301 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16013302 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16010906 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16010907 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16010913 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16023302 33 0.030 0.027 0.004 -0.035 -0.034 0.006 0.73 0.80 0.10 0.68 0.82 0.09

16020905 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16020906 9 0.030 0.026 0.004 -0.010 -0.010 0.006 0.64 0.74 0.13 0.60 0.75 0.12

16020907 9 0.034 0.031 0.008 -0.032 -0.033 0.011 0.70 0.78 0.14 n/a n/a n/a

16033302 33 0.029 0.023 0.004 0.027 0.039 0.005 0.71 0.82 0.11 0.66 0.81 0.11

16030911 9 0.034 0.028 0.005 -0.012 0.001 0.007 0.70 0.82 0.11 0.64 0.81 0.10

16030916 9 0.025 0.023 0.003 -0.012 -0.002 0.005 0.70 0.78 0.10 0.62 0.76 0.09

16043302 33 0.030 0.029 0.003 0.066 0.066 0.004 0.65 0.66 0.12 0.60 0.63 0.11

16040901 9 0.027 0.027 0.003 0.093 0.097 0.005 0.61 0.60 0.15 0.66 0.65 0.13

16063302 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16060907 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

16073302 33 0.034 0.035 0.006 0.010 0.010 0.008 0.62 0.61 0.19 0.75 0.87 0.11

16070909 9 0.038 0.038 0.006 -0.045 -0.045 0.008 0.56 0.58 0.18 0.72 0.86 0.10

16070910 9 0.038 0.038 0.005 0.032 0.032 0.007 0.42 0.44 0.20 0.61 0.83 0.11

16070911 9 0.037 0.036 0.005 0.024 0.023 0.007 0.44 0.44 0.19 0.57 0.78 0.12

19023301 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

19020902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

25013301 33 0.026 0.028 0.015 0.032 0.032 0.018 0.93 0.92 0.11 0.79 0.79 0.18

25010911 9 0.027 0.029 0.013 0.032 0.033 0.016 0.92 0.90 0.13 0.79 0.80 0.16

27013301 33 0.025 0.021 0.013 -0.017 -0.015 0.015 0.79 0.85 0.24 0.84 0.89 0.17

27010910 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

27010911 9 0.027 0.022 0.008 -0.039 -0.034 0.011 0.82 0.88 0.15 0.82 0.89 0.12

VA 41010906 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45013301 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45010902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45023301 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

45020902 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

48013301 33 0.023 0.020 0.006 0.047 0.049 0.008 0.91 0.94 0.08 0.89 0.93 0.08

48010902 9 0.026 0.022 0.005 0.111 0.112 0.007 0.79 0.85 0.13 0.72 0.81 0.13

48010911 9 0.020 0.017 0.004 0.107 0.109 0.006 0.90 0.93 0.08 0.88 0.93 0.07

67013301 33 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

67010901 9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Average 33 0.026 0.024 0.002 0.002 0.006 0.003 0.78 0.82 0.05 0.74 0.82 0.05

Average 9 0.029 0.027 0.002 0.024 0.027 0.003 0.72 0.76 0.05 0.70 0.80 0.05

Avg. Abs. 33 0.043 0.043 0.003

Avg. Abs. 9 0.049 0.047 0.003
Same as average. Same as average.

KN

NI
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TX
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All
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RM
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name

Reference pixel

Root zone soil moisture

ubRMSD (m3 m-3) MD (m3 m-3) R (dimensionless) Anomaly R (dim.-less)
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