









# AEROELASTICITY



Walter Silva NASA Langley Research Center August 2<sup>nd</sup>, 2021



AIAA Aviation 2021



# OUTLINE

- Objectives
- Brief Tutorial (What is Aeroelasticity?)
- Criticality (Why does Aeroelasticity matter?)
- Recent Developments at NASA (What's new in Aeroelasticity?)
- Challenges (What are the needed advancements in Aeroelasticity?)
- Concluding Remarks

## **OBJECTIVES**

- Provide basic Tutorial on Aeroelasticity (concepts, terminology)
- Identify critical and important areas of research
- Share recent advances at NASA
- Significant levels of excellent work being performed at other national and international organizations but cannot properly address during this presentation
- Provide a forward vision for advances in Aeroelasticity



### Aeroelasticity: Videos = 10,000 words



KTH Wind-Tunnel Model – Flutter Test



TTBW Wind-Tunnel Model – Flutter Test

Aeroelasticity is critical for efficient flight performance and flight safety

### Aeroelasticity: Feedback Mechanism

#### At a given flight condition:



- Gain typically dynamic pressure or velocity
- Nature of feedback depends on nature of Structural Dynamic and Unsteady Aerodynamic systems: LINEAR or NONLINEAR??

### Aeroelasticity: Linear Assumptions



• Pros: computationally fast and efficient; excellent insight into mechanisms

7

Cons: limited to flight conditions where linearity assumptions are valid

### Aeroelasticity: Linear Assumptions



- Pros: computationally fast and efficient; excellent insight into mechanisms
- Cons: limited to flight conditions where linearity assumptions are valid

### Aeroelasticity: Linear/NL Assumptions



- · Pros: used to simulate effect of complex flow physics on structure
- Cons: computationally expensive, difficult to gain insight into mechanisms

### Aeroelasticity: Linear/NL Assumptions



- Pros: used to simulate effect of complex flow physics on structure
- Cons: computationally expensive, difficult to gain insight into mechanisms

### Aeroelasticity: Reduced-Order Model (ROM)



- Pros: computationally efficient, provides insight into mechanisms
- Cons: validity and accuracy might be limited to specific amplitude ranges

### Aeroelasticity: Integral to NASA Missions



### Aeroelasticity's Importance to NASA's Strategic Thrusts

#### **Ultraefficient Subsonic Transports**

- <u>Transonic flow regimes can produce stability boundaries (flutter)</u> which are very complex and hard to predict
- <u>Advanced material concepts</u> allow for more-flexible wings and rotors
- <u>Novel configurations</u> can have aeroelastic problems not experienced with traditional designs

#### Safe, Quiet, and Affordable Air Vehicles

- <u>Potential whirl flutter</u>: coupling of wing flexibility with the propeller motion
- <u>Rotor vibration</u>  $\rightarrow$  ride comfort and acoustics

#### **Commercial Supersonic Aircraft**

- <u>Static aeroelastic deflections might affect supersonic boom</u>
  shaping
- <u>Aeroservoelasticity</u> a potential concern







#### Aeroelasticity poses a critical challenge to novel and advanced configurations

### **Recent Developments**

- FUN3D GPU port for ~18x faster analysis
- FUN3D Linearized Frequency Domain (LFD) Solver
- AEROM Development and Applications
- Applications Using KESTREL CFD code
- Structural and Design Optimization Tools







#### We are developing state-of-the-art tools for use by NASA and the larger aerospace community

### **Aeroelastic Prediction Workshop**

- An open forum for code-to-code and code-to-experiment comparisons
- Studying aeroelastic problems most critical to design of future aircraft





Highly flexible wings





Transonic flutter





X-56A body freedom flutter (BFF)

Confidence in computational predictions is built by community participation and thorough verification and validation



X-57 Aeroelasticity

X-57's thin wing and added propellers present unique aeroelastic challenges, even for state-ofthe-art analysis tools. Ground Vibration Test (GVT)



NASA's aeroelastic expertise applied to ensure X-57 is safe to fly

00000

### X-59 Aeroelasticity



 <u>Cruise static shape</u> critical for success of lowboom experiment



- Unique geometry presents aeroelastic/ASE challenges
- <u>Close collaboration</u> with Lockheed-Martin (LM)
- <u>Close collaboration</u> with Flight Dynamics
- <u>NASA providing independent verifications</u> and unique analyses methods

#### AeroServoElasticity (ASE)



• ASE sensitivity identified



NASA's aeroelastic/ASE expertise essential for success of X-59 project

### **Challenges and Future Directions**



18

### **Challenges and Future Directions**



### **Challenges and Future Directions**



## **Concluding Remarks**

- Aeroelasticity is an evolving, multidisciplinary field involving the interaction of (and feedback between) structural dynamic and unsteady aerodynamic models
- Inclusion of active controls (Aeroservoelasticity) and thermal effects (Aerothermoelasticity) are also prominent disciplines that can be included in an aeroelastic analysis
- Significant and important contributions in Aeroelasticity being performed by many national and international organizations; too many to cover adequately in this presentation
- Recent developments and contributions within NASA research and flight projects presented
- Future Directions in Aeroelasticity include applications beyond RANS-based CFD codes, where larger levels of separated flow can be properly computed
- Future Challenges include application of nonlinear structural dynamics with nonlinear unsteady aerodynamics, beyond local linearizations
- The origins of Aeroelasticity are deeply set in linear concepts: eigenvalues, root locus, modal structural models; a fully nonlinear structural dynamic model coupled with a fully nonlinear unsteady aerodynamic model will required analysis tools beyond these linear concepts