Comparative Assessment of Sound Generated Using Laser-Induced Plasma

Máté Szőke (VT), Christopher Bahr (NASA Langley), Louis Cattafesta (FSU), Karl-Stéphane Rossignol (DLR), Hiroki Ura (JAXA), Yang Zhang and Fernando Zigunov (FSU)

> Laser-induced plasma benchmark study 3rd Hybrid Anechoic Wind Tunnel Workshop August 2021

Contents

- > Overview of laser-induced plasma and its properties
- Design of laser-optical setup (best practices)
- List of facilities
- List of experimental setups
- Comparative study of acoustic signatures
- Health and safety measures
- > Application examples

Overview of laser-induced plasma (LIP)

Properties of LIP

- Tight-focusing of laser beam results in plasma formation once a sufficiently high energy density is reached
- Also generates an acoustic source
- Source is well localized

Repeatable

Good temporal characteristics

(initially supersonic propagation)

- Good omnidirectionality (no flow)
- With flow: convection effect (**Doppler** shift)
 - Can be accounted for (AIAA-2015-3146)

Suitable for high-frequency analysis

(2-100 kHz) + good signal-to-noise ratio (loud) Laser-optical requirements primarily rely on laser head (PIV) and secondarily on optics (also cost-wise) Observed waveform depends on instrumentation hence this collaborative effort.

 10^{4}

200 kFrames/sec (5 μ s) 1.62 μ s exposure time

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG Timespan: 100 µs $f_0 = f/(1 + M_0)$ [Hz]

FSU

Laser-optical design

*Phuoc, T.X.: Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases. Opt. Commun. 175(4), 419–423 (2000)

https://www.edmundoptics.com/knowledge-center/application-notes/lasers/beam-expanders/

Primary limitation: <u>spherical aberration</u> ~O(1) greater than diffraction (VT, DLR)

Laser-optical arrangments

OPTICAL/PLASMA PROPERTIES	VT SWT	NASA Langley QFF	DLR (AWB)	FSU	JAXA
Focal length	1200 mm	~500 mm (approx.)	500 mm	500 mm	1200 mm
Laser head	Quantel Evergreen 200	New Wave Gemini	New Wave Gemini	Quantel Evergreen 200	Thales SAGA 230
Laser energy (E _L)	200 mJ	120 mJ	120 mJ	200 mJ	1250 mJ
Laser pulse width	10 ns	3-5 ns	3-5 ns	10 ns	8 ns
Laser stability (% RMS)	2%	3.5%	3.5%	2%	1.2%
Wavelength	532 nm	532 nm	532 nm	532 nm	532 nm
Beam diameter (nominal)	6.35 mm	5 mm	5 mm	6.5 mm	13 mm
Laser repetition rate used	5/second	5/second	10/second	2/second	10/second
Calculated beam energy density at focal point (W/m²)	1.70E12	N/A	6.9E13	3.4E12	1.5E12 @ 120 mJ 4.8E12 @ 400 mJ (beam E _L measured)
Optical setup expenses	\$3000 - 2 pcs of Celestron AVX 6" telescopes (2x\$1500) \$200 - hardware \$1200 - smaller optics (f=200 mm)	 \$3500 – lenses and lens holders \$160 - photodetector \$550 - glass panel for use in QFF sidewall 	\$1200	\$920 - beam expander (\$600) + converging lens (\$120) +hardware (\$200)+ + Dantec beam expander (cost unknown)	N/A
M ² number used	20	N/A	30	6	9.6
front lens f number	8		12.5	4	8

Facilities overview

	VT SWT	NASA Langley QFF	DLR (AWB)	FSU	JAXA
Test section size (ft & m)	6' x 6' x 24' 1.83 m x 1.83 m x 7.3 m	2' x 3' x 6' 0.6 m x 0.91 m x 1.83 m	2.6' x 3.9' x 9.8' 0.8 m x 1.2 m x 3.0 m	3' x 4' x 10' 0.91 m x 1.22 m x 3 m	6.6' x 6.6' x 13.1' 2 m x 2 m x 4 m
Flow speed range	20 - 70 m/s	0 - 58 m/s	0 - 60 m/s	0 - 70 m/s	0-67 m
Reynolds number (max)	5 million/m	4 million/m	4 million/m	5 million/m	4.4 million/m
Typical test object size (e.g., chord)	0.6 - 0.9 m	0.2 - 0.5 m	0.2 - 0.5 m	0.2 - 0.5 m	1 m
Observer angles: polar (defined wrt. Mach vector)	40-140 deg	45-135 deg	~ +/- 180 deg		~ 45 – 135 deg
Observer angles: azimuth	~ +/- 30 deg	~ +/- 30 deg	~ +/- 60 deg		+/- 30 deg
Frequency range of interest	250 Hz - 20 kHz	~ 1 kHz - 80 kHz (5 - 50 nom.)	~ 1 kHz - 80 kHz (5 - 50 nom.)	250 Hz - 20 kHz	315 Hz – 80 kHz
Tunnel type(s):	Kevlar walls	Open-jet, Kevlar panel	Open-jet	Open-jet, Kevlar panel, glass panel	Kevlar walled test section Solid wall Gust wind test section Open jet test section

Facilities I.

Kevlar walls

Open-jet

Kevlar panel

AIAA-2020-1253

6' x 6' x 24' (1.83 m x 1.83 m x 7.3 m) f = 1200 mm

7

2' x 3' x 6' (0.6 m x 0.91 m x 1.83 m) f \approx 500 m

Facilities II.

Facilities III.

3' x 4' x 10' (0.91 m x 1.22 m x 3 m) f = 500 mm Kevlar walls

Facilities IV.

6.6' x 6.6' x 13.1' (2 m x 2 m x 4 m) f = 1200 mm Kevlar walls

Instrumentation

INSTRUMENTATION	VT SWT	NASA Langley QFF	DLR (AWB)	FSU	JAXA
	GRAS 40 PH	B&K 4138 (6.5 Hz - 140 kHz);	GRAS 40 DP	GRAS 40BE (4 Hz - 80 kHz);	B&K 4939
Microphones available	(50 Hz - 20 kHz)	B&K 4938 (4 Hz - 70 kHz)	(6.5 Hz - 140 kHz)	B&K 4958 (10 Hz - 20 kHz)	(4 Hz - 100 kHz),
	General Standards Corp.	NI PXI 6120; NI PXIe 4480;	GBM Viper 48 Channels		
DAQ system	PCIe-16A64SSC	NI PXI-5122	(3X)	NI PXI-1045; NI PXI-4462	NI PXI-4462
		250 kS/s (800 nom.);			
		1.25 MS/s (20 streaming);			
Sampling rate	192 kS/s	100 MS/s	250 kS/s	204.8 kS/s	204.8 kS/s
Laser emission		Photodetector signal,			
detection	Photodetector signal	Q-switch	Q-switch	Photodetector signal	N/A
Filters	Low-pass 20kHz	Low-pass 100 kHz		Low-pass 80 kHz	
Flow speed range	0-70 m/s	0-58 m/s	0-65 m/s	0-70 m/s	0-65 m/s
	ranging between		variable within several		
LIP to observer distance	1.6 m and 2.5 m	variable within several meters	meters	< 2 m	1.865 m

Comparative study of acoustic signatures

- Ensemble-averaged time signature of the pressure wave for a single microphone (without flow)
- Fourier transform of the gated ensemble-averaged pressure wave signal of a single microphone (without flow)
- Uncertainty analysis of LIP arrival time and LIP sound level

Processing steps – Current study

Comparative study of acoustic signatures

Ensemble-averaged time signature of the pressure wave for a single microphone (without flow)

- Fourier transform of the gated ensemble-averaged pressure wave signal of a single microphone (without flow)
- > Uncertainty analysis of LIP arrival time and LIP sound level

14

Time signature of pressure wave I.

Time signature of pressure wave II.

Time signature of pressure wave III.

JAXA data B&K 4939 1/4", without gridcap LIP-to-mic distance: 1865 mm $f_s = 204.8$ kS/s

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

17

Comparative study of acoustic signatures

- Ensemble-averaged time signature of the pressure wave for a single microphone (without flow)
- Fourier transform of the gated ensemble-averaged pressure wave signal of a single microphone (without flow)
- Uncertainty analysis of LIP arrival time and LIP sound level

Frequency domain I.

Frequency domain II.

DLR data

GRAS 40DP 1/8" (6.5 Hz – 140 kHz) 2 kHz high-pass, 100 kHz low-pass 120 mJ New Wave Gemini laser

NASA Langley QFF data

B&K 4138 1/8" (6.5 Hz – 140 kHz) 2 kHz high-pass, 100 kHz low-pass 120 mJ New Wave Gemini laser

Frequency domain III.

Frequency response remains linear below 10 kHz, while levels increse with laser power (5 dB) High-frequency effects shift to lower frequencies with increasing laser power

Comparative study of acoustic signatures

- Ensemble-averaged time signature of the pressure wave for a single microphone (without flow)
- Fourier transform of the gated ensemble-averaged pressure wave signal of a single microphone (without flow)
- Uncertainty analysis of LIP arrival time and LIP sound level

Uncertainty analysis I.

Arrival time uncertainty

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Arrival time uncertainty

 $1/f_{\rm s} = 0.004 - 0.005 \, \rm ms$

(except for QFF:

 $1/f_{\rm s} = 0.0008 \, {\rm ms}$)

 $\delta_{\tau} = 1.96 \cdot \text{std}(\tau_a)$

Somewhat below limit (thanks to

Uncertainty increases with flow

PIV seeding increases temporal

speed: unsteady, turbulence effects

Kevlar shows reduced flow effects

LIP location becomes uncertain: $\pm 2 \text{ mm}$ ($\approx \pm 0.006 \text{ ms}$)

linear interpolation to find τ_a)

compared to open-jet

uncertainty (FSU)

 \succ

Limit:

Uncertainty analysis II.

Pressure level uncertainty

Mach number

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

limited
 Increases with flow speed
 QFF vs. VT results with flow

suggest insufficient temporal resolution ($f_s \approx 200$ kS/s) to resolve unsteady effects below M=0.1

Pressure level uncertainty

At M = 0, instrumentation

 $\delta_n = 1.96 \cdot \text{std}(10\log_{10}(E))$

PIV seeding increases pressure uncertainty, too

Uncertainty analysis III.

Pressure level uncertainty

Mach number

Pressure level uncertainty

 $\delta_p = 1.96 \cdot \text{std}(10\log 10(E))$

Pressure level uncertainty is dramatically higher for openjet configuration (almost by a factor of 5)

Kevlar + BL and sound interaction is significantly weaker than shear-layer and sound interaction

25

Health and safety (H&S) measures (QFF, DLR, VT)

Approached H&S as a PIV experiment (laser safety)

Personnel exposure

- Participants must take laser safety training prior to testing
- Minimize personnel in chamber
- Wear laser safety glasses at all times
- Hearing protection was not required

Experimental setup

- Warning signs and lights tied to laser interlock
- > Optical barricades, CCTV camera, microphone
- Cover and clear laser beam path, verify sufficient beam divergence for "safe" reflections w.r.t. ablation, combustion when beam is not covered
- Develop remote operation of laser
- Interlocks tie access door to laser power (open door = power cut off)
- Padlocked auxiliary doors only approved operators or facility coordinator/safety head can lock/unlock these
- Always keep the area around the focal point (LIP) clear
- 26 see Appendix for extra details on H&S

Application examples

Shadowgraph analysis of seeding effect (FSU)

Sparks without and with PIV seeding

Application examples: DLR

Triggering acoustic channel modes under no flow conditions (DNW-NWB, 2021)

Application examples: DLR

Calibration of flush-mounted microphones using a reference microphone (AWB, 2019)

Application examples: VT

Calibrating a B&K 4138 (1/8") flush-mounted **pinhole microphone** at high-frequencies using another flush-mounted B&K 4138 (1/8") as a reference (gridcap) microphone.

Application examples: VT

Measuring **Kevlar transmission loss at high-frequencies** using two B&K 4138 (1/8") microphones: (a) one inside the test section and (b) one behind the Kevlar. *Comparing a given LIP formation across identical types of microphone pairs.*

Potential future work

- Effects of laser power on acoustics & quantifying laser power level at the focal point
- \blacktriangleright Instrumentation effects (microphones used, incidence angle, sampling rate etc).
- Convection effect on plasma formation (high-speed shadowgraph)

Potential discussion items

- What % of threshold to use for detecting arrival time?
- Alternative windowing options for data processing?
- Is there an interest in performing a benchmark analysis of LIP?

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

35

Facilities - Extra

Uncertainty analysis IV.

1.2 1 පු 0.8 Virginia Tech Pressure level, o 9.0 QFF, open-jet ▲ QFF, Kevlar ×FSU, no seeding ж ×FSU, seeded JAXA 0.2 + DLR 0 0 0 50 100 150 200 250 300 350 400 450 Laser beam energy, mJ

Pressure level uncertainty

Pressure level uncertainty vs.

More investigations required

to quantify laser beam energy effect on LIP acoustic signature

Might shed light on optimal

laser beam energy

energy-density.

37

QFF safety operating plan

- Personnel exposure
 - Minimize personnel in chamber
 - Laser safety glasses at all times
- Facility and Interlocks
 - Interlocks tie access door to laser power (open door = power cut off)
 - > Warning signs/lights tied to door interlock
 - Padlocked auxiliary doors only approved operators or facility coordinator/safety head can lock/unlock these
 - No windows from facility exterior to test section
- Beam path verify sufficient beam divergence for "safe" reflections w.r.t. ablation, combustion

QFF safety operating plan

Normal operational procedures

- Ensure only essential personnel is present
- Personnel equip safety eyewear
 (if required to be in test chamber)
- Activate interlocks, closing and locking doors & turning on warning lights
- Activate laser
- Start experiments
- > Turn off laser when complete
- Disengage interlocks
- Remove eyewear

Health and safety measures: DLR

- Ensure only **essential personnel** present
- Operating personnel must receive **training** prior to using the laser
- Non-operating personnel must be **informed about safety measures** prior to tests
- Use safety eyewear when inside the perimeter of possible laser light emission at all times
- Interlock on main power line to the laser
- Warning signs and lights tied to laser interlock
- No windows
- Ensure **beam path** is cleared
- **Remote** operation of the laser possible

Sampling rate analysis

Downsampling VT's results of June 2021 Acquired using o-scope and B&K 4138 1/8" (with gridcap)

Shadowgraph analysis of seeding effect (FSU)

Sparks without seedings

- 'Phase locked' frames
- Averaged from 100 images per time delay
- Initial time delay at 0s.

Sparks with seedings

Shadowgraph analysis of seeding effect (FSU)

Statistics of the spark center location

- (x,y) = (0,0) represents the mean center of the no seeding cases
- 100 samples in the no seeding case vs. 180 samples in the seeding case
- Only one of the spark center is identified for the 'double-spark' in the seeding cases.
- Spark location with no seeding is significantly more consistent than that of the seeding cases.

