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About the Instructor

Dr. Mark E. Pittelkau has been an independent consultant since 2005. He was previously with
the Applied Physics Laboratory, Orbital Sciences Corporation, CTA Space Systems, and Swales
Aerospace (the latter four now Northrop Grumman). His early career at the Naval Surface Warfare

Center involved target tracking, gun pointing control, and gun system calibration.

His experience in satellite systems covers all phases of design and operation, including conceptual

design, implementation, and testing of attitude control systems, attitude and orbit determination,
attitude sensor alignment and calibration, optimal slewing, control-structure interaction analysis, and

pointing error analysis. He has participated in post-launch support, including performance analysis,
attitude sensor calibration, and anomaly resolution on science spacecraft and high-performance
imaging spacecraft.

His current interests include precision pointing, precision attitude determination, and attitude
sensor calibration. He is also interested in embedded real-time systems, vision navigation, and

autonomous systems. Dr. Pittelkau earned the B.S. and Ph.D. degrees in Electrical Engineering
at Tennessee Technological University and the M.S. degree in EE at Virginia Polytechnic Institute

and State University. He has published several conference and journal papers on attitude sensor
calibration, gyro error modeling, pointing error metrics, and image motion optical transfer functions.
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Foreword (1/2)

This course was prepared by the author in support of the NASA GN&C Technical Discipline Team
(TDT). The purpose of this two-day course is to inform practicing GN&C engineers, and other system

and subsystem engineers, including payload engineers and mission analysts, of methodologies to analyze
the pointing performance of spacecraft and to write unambiguous pointing requirements that are relevant

to optical payload performance.

It is hoped that the seminar will contribute to a best-practices manual and contribute to accepted and
uniform means of requirements definition, validation, and verification.

The course material is designed to address the needs of not only practicing GN&C engineers, but also
system and subsystem engineers of other disciplines, payload engineers, mission analysts, and even
astronomers who need to understand how they interface to a GN&C subsystem. Much revision is

the direct result of active student participation during the presentations and from feedback obtained
through course evaluation forms.
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Foreword (2/2)

This course material is provided to attendees for their personal use. It is protected by copyright laws
and may not be modified, reproduced, scanned, or recorded by any electronic or mechanical means

without express written permission by the author. All data and equations are believed to be correct.
It is the responsibility of the user of this course material to verify that all data, equations, and results

derived therefrom are correct. The author shall not responsible for losses incurred by typographical
or other errors or omissions, regardless of whether or when the author has any knowledge of errors

or omissions, and the author shall not be obligated to notify the user of this course material of any
corrections nor to post corrections. When practical, this author will respond to students’ inquiries,

remarks, and suggestions after the course.

Dr. Mark E. Pittelkau
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What You Will Learn

The focus is on payload imaging performance due to pointing motion. Some historical background on
pointing performance analysis is given. The Optical Transfer Function (OTF) and Modulation Transfer
Function (MTF) are defined. The imaging performance due to pointing motion is measured by image

motion optical transfer functions (IM OTF). IM OTFs are defined for displacement, smear, and jitter
motions, which are all rigorously defined. Deterministic and Statistical IM OTFs are briefly derived

and graphically illustrated and compared. The IM OTFs are parameterized by pointing error metrics
(PEM), which are means and covariances of displacement, smear, and jitter. Emphasis is on procedures

and algorithms to evaluate the image motion optical transfer functions and pointing error metrics.
Three procedures are covered, which depend on whether the pointing error data is from time-domain

simulation, frequency-domain analysis, or stochastic modeling. A method to evaluate the relative
contribution of disturbance sources and to identify the most significant contributors is presented. The
presentation includes pertinent discussion of flexible structures and control-structure interaction.

No single book can adequately cover this subject, so a book is not required for the course. A list
of selected articles, reports, documents, and books is provided for reference and further study. Math
is kept to the minimum necessary to convey principles; lengthy derivations are left to the reference

material. Graphics are used to illustrate concepts. As with any such learning endeavor, the knowledge
gained will be retained and strengthened through actual practice.
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Introduction
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Introduction – Objectives of the Workshop

• This workshop is a follow-on to the GN&C TDT Jitter Workshop in Oct 2019. [1–5]

– Topics included Requirements Definition/Flowdown and
Programmatic/Contractual issues and barriers

– The image motion OTF and pointing metrics were presented, but more detail here

• This is an interactive interdisciplinary workshop whose main objectives are to

1. identify current NASA requirements definition and flowdown process(es) & issues

2. promote standards & processes for pointing requirements definition and verification

– mission-level and program level acceptance
– system-level and subsystem-level processes
– interdisciplinary/multidisciplinary processes

3. show how optical system performance is related to pointing performance

4. provide a formal set of pointing performance definitions and metrics
5. present methodologies for pointing performance analysis
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Objectives (cont’d)

Objectives also include

• Help Systems engineers, Control System engineers, and Optical System engineers
understand the physical and mathematical relationships between Pointing Performance
and Optical System performance via the Image Motion OTFs.

• Derive Pointing Performance Metrics (PPMs) as parameters in the Image Motion OTFs.

• Discuss Pointing Requirements from payload to structural and control system design
and analysis.

• Show how PPMs are used to analyze and manage pointing motion and its contributors.
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Introduction – Motivation

• Pointing performance definitions vary widely across programs, industry, agencies

– Loose connection with optical payload performance (risk of imaging performance)

– Hidden or excessive margin (risk of additional cost and schedule)

– Contractual, Programmatic, Organizational issues

• Tighter interdisciplinary/multidisciplinary engineering is needed as future performance
requirements become more challenging

– Need to more tightly couple Optical system design and analysis with
Pointing Control system design and analysis, including structural design

– Facilitate design of more complex systems – multiple optical instruments,
wide bandwidth image stabilization, advanced optical systems

– Inter-discipline communication and coordination

– Shorter concept-to-flight timelines and cost constraints
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Introduction – Approach

• Briefly review traditional definitions of pointing performance.

• Give a brief tutorial on optical system concepts and imageing performance.

• Present methods to evaluate image motion effects on imaging performance.

• Present relevant, consistent, and rigorous definitions and metrics for pointing perfor-
mance

– as a basis for requirements definition

– as a basis for verification

• Present methodologies for pointing performance analysis and verification

– deterministic and statistical methods of image motion OTF/MTF analysis

– methods of frequency domain and time-domain analysis of disturbance response

– a method of relative contributions to pointing metrics from disturbance sources
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Introduction – Approach (cont’d)

• Discuss how the IM OTF and corresponding metrics can be incorporated into NASA
programs at the program level and in requirements, and implemented into the system
engineering process and subsystem levels (GN&C, structures, thermal, optical payload).

• Discuss how the method is applied

– as a design matures through phases of development, and

– depending on what information is available about the optical system.

• This presentation and discussions in the workshop may serve as an outline for a section
in a Pointing Performance Guidelines or Handbook.
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Scope

• The IM OTFs apply to isoplanatic (linear shift invariant, LSI) electro-optical systems
with incoherent (noncoherent) radiation geometrically projected onto a detector plane.

– The OTF for coherent radiation (e.g., laser light) is more complicated and is not
addressed in the present framework.

• A Wavefront Transfer Function (WTF) and Statistical WTF have not yet been
developed, pending some IR&D. The IM WTF deals with distortion due to motion
of optical elements.

• The Pointing Performance Metrics (means and covariances for displacement, smear,
jitter) are valid for pointing performance of any optical sensor and other payloads.
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Applicability of IM OTF and Pointing Performance Metrics

• Dynamic modeling and analysis of pointing and image motion.

– Various levels of fidelity/availability of an optical system model considered.

– Capability to incorporate updated optical system and structural models into the
performance analysis.

• The Pointing Performance Metrics have been used on several programs since 2002.

– or since the initial development at JPL in 1993

• The Pointing Performance Metrics have been revised to include smear motion.

• The Image Motion OTF links Pointing Performance to Image Quality

– Performance Requirements can now be derived and verified more rigorously.
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Two Formal Methodologies

• A statistical description of image motion effects on optical sensor performance

– Statistical Image Motion OTFs measure expected (mean) IM OTF performance

– IM OTFs are parameterized by pointing performance metrics (means and covari-
ances).

• A methodology to evaluate pointing performance metrics

– Frequency-domain analysis is an alternative to time-consuming time-domain
simulation and Monte Carlo iterations, thereby reducing time to conduct analyses
or permitting more detailed analyses.

– Relative contribution analysis

∗ reveals disturbance sources that are design drivers to pointing performance, and

∗ facilitates performance evaluation and updates as models improve.

These complement STOP analysis, which is performed using time-domain simulation.
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Benefits of these Formal Methodologies

• Systematic and more Integrated methodology

• Image Motion OTFs are directly relevant to Image Quality

– Well defined (physical and mathematical model)

– Clear path from Optical System Performance to Image Motion allocation, then
flow down to Pointing Performance Requirements

– Reduce excess and hidden margin (±) =⇒ Reduce performance and cost risk

• Displacement, Smear, Jitter Pointing Performance Metrics

– Equivalent representations in time domain & frequency domain

– Useful in pointing control system analysis and synthesis

• Windowed Stability metric measures image-to-image displacement (unrelated to IM OTF)
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Limitations

• The Statistical Image Motion OTFs augment, but may not replace traditional methods
of Image Motion OTF/MTF analysis

– Methods of numerical evaluation of IM OTF can still be applied.

– Deterministic IM OTFs are used for specific types of image motion.

• Non-stationary and transient effects may require time-domain simulation

– Deterministic IM OTFs can be used to evaluate the effect of transient motions.

• IM OTF analysis requires a camera model, which may range from low-fidelity pinhole
camera to high-fidelity structural-optical model

– same limitation in traditional STOP analysis

– IM OTF requirements can still be derived

– prior models & updates facilitate IM OTF analysis over the duration of a program

– camera models may not be available on some programs – may be mitigated
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Introduction – Outline

Part 1: Traditional Pointing Error Definitions and Metrics

Part 2: Image Motion Optical Transfer Functions (IM OTF)

Part 3: Requirements Definition, Flow Down, Interfaces, Model Updates

Part 4: Pointing Performance Metrics

Part 5: Reaction Wheel Disturbance Model

Part 6: Summary & Recommendations

Nomenclature & Definitions

Acronyms & Abbreviations

References
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Part 1: Traditional Pointing Error Definitions and Metrics
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Part 1: Traditional Pointing Error Definitions and Metrics

• Traditional Pointing Error Definitions

• Limitations and ambiguity of these definitions

• Stability/Jitter Analysis Software Tools

• Some Experiences and Motivation

• Research on Pointing Performance Metrics and Image Motion OTF
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Traditional Pointing Error Definitions

• Pointing error is traditionally specified in terms of “jitter”, “stability”, “quasi-static”,
and “static” pointing error.

• Jitter and stability are not consistently defined across and within programs [1, 6, 7, 12].
Various definitions exist.

• Line-of-sight (LOS) is not consistently defined.

• Pointing performance requirements must be

– clear, concise, consistent (not ambiguous, non-conflicting), technically correct, and

– traceable to [directly related to] (optical) payload performance requirements.

• Though many articles and presentations discuss pointing analysis and test, few discuss
pointing and payload requirements and how they are derived.
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Some Traditional Stability and Jitter Metrics

• Peak stability (jitter) of the attitude Θ(t) in a
sliding window of width T is

∆p(t) = max
τ∈[0,T ]

|Θ(t)− Θ(t− τ )|

• The peak stability (jitter) metric may be defined

∆p = max
t∈[−∞,∞]

∆p(t)

and is sometimes defined as

σ2
ps = E{(∆p(t))

2}

Θ(t)

∆
p

t

t
1
− Τ t

1

• A method of “pointing stability jitter analysis”, in which a probability distribution is
computed from a histogram of ∆p(t), and pointing accuracy is specified at 99.8% of
the distribution, is found in a patent [18] (filed 2003, awarded 2006).
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Pointing Error Definitions on GOES-I–M

”Pointing Stability – the peak-to-peak
variation of the actual pointing direction
over one orbit, per axis.”

“Pointing Jitter – the peak-to-peak vari-
ations of the actual pointing direction
over specific time interval as defined
above by each delta Tn, per axis.”

The Tn are image scan times.

The figure is attributable to John Sudey, Jr. (GSFC), who used it to explain what is
meant by pointing accuracy, stability, jitter, and knowledge. He was a proponent of jitter
testing. [6–8]
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Other Jitter and Stability Definitions

• Jitter is sometimes stated as an angular error over a frequency range. Example: 0.001◦

over f = 20 to 100 Hz (f ≥ 1/T , where T is the exposure time of the optical sensor).

• Stability is often stated as

– as a rate, for example, 0.001 deg/sec

– as a rate over a frequency range, for example, 0.001 deg/sec over 0 to 0.1 Hz

• A maximum rate is often specified to limit smear during an exposure of a detector

• A method was developed at Draper Lab for the EOS-PM mission and is stated in
the NOAA I, J, K General Interface Requirements Document (GIRD) [15, 16] (1993,
1994). It measures the peak-to-peak amplitude of a single-harmonic motion over a
window of width T . It does not generalize to multiple harmonics.

• Pointing requirements are typically stated as “3σ pointing error” against one or more
of the foregoing criteria.
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Limitations and Ambiguity of these Definitions

• Known to be very conservative

• Not indicative of optical payload performance

• Difficult to analyze in the time domain

• No mathematical equivalent in the frequency domain

• Not informative – the metrics don’t:

– indicate which are the most offending disturbances

– reveal what modifications are needed to meet a
requirement

• Results can be inconsistent (ex: figures show the same
∆p, but the effect on optical performance is different)

• Ambiguous definitions: the words “jitter” and “stability”
are often used interchangeably.

Θ(t)

∆
p

t

t
1
− Τ t

1

Θ(t)

t
1
− Τ t

1

∆
p

t
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Stability/Jitter Analysis Software Tools

• A Matlab-based program PLATSIM [17] (Ver. 2.0, 1997) is a simulation and analysis
tool developed at LaRC that can

– Compute the time response and frequency response of a system, including flexible-
body modes and disturbance inputs.

– Evaluate the peak stability (jitter) metric. An efficient algorithm computes the
peak-to-peak change over a sliding window.

• The Analytic Pointing Performance (APP) tool, implements methods of the ESA
Pointing Error Handbook [49] (1993).

• Recent: EllipTool (Blaurock, Elliptical Engineering) has supported several high perfor-
mance NASA science programs. [5]

• Every organization, and sometimes different programs in an organization, has its own
simulation and evaluation software tools and methodologies, either standardized across
spacecraft programs, tailored to specific programs, or one-off custom-designed.
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Some Experiences and Motivation
• 1991–1993: NOAA I, J, K phase-A study

• 1999: GALEX (Orbital), peak stability metric

• 2000: SORCE (Orbital), 5 imaging instruments: SIM, SOL1, SOL2, TIM, XPS, plus
ST, IMU. Proposed weighting functions from Baiocco [28] for PDR.

• 2000: Studied reports on a new Stability Weighting Function by Sirlin, San Martin,
Lucke, Baiocco, Bayard (JPL) [26–29].

• 2001–2002: STEREO (APL) [12–14] Pointing requirements driven by the SECCHI
coronagraphs (COR1, COR2), EUVI imager (omitted image stabilization system, ISS,
that would remove low-frequency motion below 5 Hz); Guide Telescope (GT).

– Pointing requirements to keep an occulter on the Sun so that stray light is below
some level and to maintain resolution

N Requirements are based on the peak stability definition, but for radial error.

– JPL method proposed, but with stability & jitter distinct, windowed stability added.
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Research on Pointing Performance Metrics and Image Motion OTF

• “Definitions, Metrics, and Algorithms for Displacement, Jitter, and Stability”, 2003
[32, 33] defined jitter, stability, windowed stability, but did not discuss OTFs.

• “Definitions, Metrics, and Algorithms for Displacement, Jitter, and Stability”, 2012
[34] connected pointing to image motion OTFs. Smear idea from a diagram in a
G&Ski paper [31].

• “Optical transfer functions, weighting functions, and metrics for images with two-
dimensional line-of-sight motion”, 2016 [35] statistical image motion OTF in 2D with
non-zero mean smear. Includes a survey of the literature on Image Motion OTFs.
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Part 2: Image Motion Optical Transfer Functions (IM OTF)
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Image Motion Optical Transfer Functions (IM OTF)

1. Optical System concepts and technical performance measures

2. Image Motion Optical Transfer Functions

• Image Motion vs. Line-of-Sight Pointing Motion

• Camera Model, Geometric Optics

• Numerically Computed IM OTF

3. Statistical and Deterministic Image Motion OTFs

4. Summary Table of Image Motion OTFs and LSF
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1. Optical System Concepts and Technical Performance Measures

• Point Spread Function (PSF)

• Diffraction-limited optics, Resolution

• Spatial frequency response

– Optical Transfer Function (OTF)

– Modulation Transfer Function (MTF)

– Phase Transfer Function (PTF)

• Some optical system technical performance measures (TPMs)

– Modulation

– Contrast

– Resolution

– MTF Area

– Strehl Ratio
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Point Spread Function (PSF)

The Point Spread Function (PSF) is the image of a point source of light.

• Ideally the PSF is a Dirac delta function so that the image
of a sharp point is sharp.

• The PSF can be no smaller than the Fraunhofer diffraction,
which is due to the finite aperture of the optics.

• PSF is shaped (enlarged and distorted) by the optical path
(atmosphere, optics, detector) and by Image Motion.

• Image motion is potentially a limiting factor in the
performance of an optical system.

Fraunhofer diffraction

for a circular aperture.
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PSF for Diffraction-Limited Optics (Circular Aperture)

• The diffraction PSF = [2J1(πρ)/(πρ)]
2, where ρ is

normalized distance. This PSF is well approximated
by a Gaussian function G(ρ;σ2

psf), normalized so that

G(0;σ2
psf) = 1.

• The Airy Disc is the bright central region of the PSF.

• The Full-Width Half-Maximum (FWHM) of the PSF
is the diameter where G(x, σ2

psf) = 0.5, so we have
FWHM = 2.355σpsf.

• At the diffraction limit, σpsf = 0.4247 (σ2
psf = 0.18) for

a unit diameter FWHM (2.355σpsf = 1).

• Gaussian random jitter motion increases the σ2
psf
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Effect of Gaussian Random Jitter Motion—Spatial Domain

• In the presence of image motion p(t) with density function h(p), the resulting PSF is

Ge(r) =

∫ ∞

−∞
Gairy(x− p)h(p) dp

• For Gaussian random motion, h(p) = Gmotion(p;σ
2
J), we get another Gaussian,

Gr(x) = G(x, σ2
psf + σ2

J)

• The resulting FWHM is then

FWHM = 2.35(σ2
psf + σ2

J)
1/2

• The Gaussian random motion over an exposure interval T is called jitter.

• The relevant metric is the jitter variance σ2
J .

• Jitter widens the PSF and thus reduces the resolution of the optical system.
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Spatial Frequency

• The spatial frequency ξ (sometimes ν) in the two dimensions x and y on a
focal plane is

ξ =

[
ξx
ξy

]

cycles per unit length

• ξ = |ξ| is the reciprocal of the spatial wavelength λ

• The units of ξ are typically cycles/mm, also called line pairs per mm or lp/mm.

• The angular wavenumber k is defined by

k = 2πξ rad per unit length

• The magnitude of k is k = |k| = 2π

λ
.

• The units of k are typically rad/mm for λ in mm.
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OTF, MTF, PTF

Point Spread Function is the spatial impulse response of an optical sensor.

Optical Transfer Function (OTF) of an isoplanatic (linear shift invariant, LSI)
electro-optical system, OTFsystem(ξ), is the 2D spatial Fourier Transform (FT) of the
PSF for incoherent (noncoherent) radiation geometrically projected onto the detector
plane. (More simply, the OTF is the spatial-frequency response of an optical sensor.)

Modulation Transfer Function (MTF) is the magnitude of the OTF,

MTF(ξ) = |OTF(ξ) |
Phase Transfer Function (PTF) is the phase shift as a function of frequency,

OTF(ξ) = MTF(ξ) exp(−iPTF(ξ)) , PTF(ξ) ≡ Θ(ξ)

FT of an Image is the product of the system OTF and the FT of the object,

FTimage(ξ) = OTFsystem(ξ) FTobject(ξ)
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Modulation and Contrast

Modulation Depth is the amplitude of the irradiance variation divided by the average
irradiance, M = (Amax − Amin)/(Amax + Amin). Note Amax and Amin are positive.

Contrast is defined as the modulation depth M . The contrast is maximum when
M = 1, where Amin = 0. The contrast is zero when M = 0, where Amax = Amin.

Contrast Transfer Function (CTF) is the sensor’s response to a square wave input
signal comprising alternating white and black line pairs. The sensor’s response to the
line pairs has maximum and minimum intensities Amax and Amin. The CTF is related
to the MTF. The MTF is a function of sinusoidal lines, which are more difficult to
generate than a square wave input.
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Resolution Loss, Phase Reversal, and Low Contrast

Original sharp image Slightly defocused image
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Resolution

• Resolution can be defined as the smallest detail or the smallest
black and white line pair that can be distinguished. The line pair is
indistinguishable when Amax = Amin, where the contrast is zero.

• Sspatial resolution of the optical system limits the modulation
depth of the image. Resolution depends also on the MTF.

• Resolution can also be defined to be where FWHM = 0.5.

• Resolution is limited also by the detector’s sensitivity and noise.

• Resolution is limited also by the spatial sampling of the detector
array to approximately 2 pixels. The FWHM should not be greater
than about 1 pixel, so σpsf . 1 pixel.

• Resolution can be subjective in human perception.
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Resolution Depends on the MTF and Detector Noise

The limiting resolution of A and B is
the same, but the performance of A is
better than B.

The limiting resolution of C is less
than that of A and B, but its
performance is slightly better than A
in mid-frequencies.

NEM is the Noise Equivalent Modulation

MTF

spatial frequency, x

C

B

x

A

xC xA,B

0

1

NEM
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Image-Quality Performance Measured by MTF Area (MTFA)

Image-Quality performance can be
measured by the MTF Area (MTFA).

The MTFA is the area between the
MTF and the NEM curves over a
frequency range of interest, typically
from ξ = 0 up to ξA at the resolution
limit.

The best performance is achieved by
the system that has the largest MTFA.

MTF

spatial frequency, 

A

0

1

NEM

MTFA
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Strehl Ratio

The Strehl ratio S is a useful single-number performance specification. It compares the
actual optical performance to the diffraction-limited optical performance.

The Strehl ratio is defined as the ratio of actual intensity to diffraction-limited intensity I ,

S =
Iactual

Idiffraction
=

∫

ξ
MTFsystem(ξ) dξ

∫

ξ
MTFdiffraction(ξ) dξ

There is an equivalent calculation in the spatial domain can be made. (Omitted here.)

S ≥ 0.8 indicates excellent image quality (relative to the diffraction limit).

Note: The foregoing are not the only optical performance measures, but illustrate the
role of the OTF, which is our focus here.
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Previous Results for Pointing Error [Performance] Metrics

• PEMs for displacement and jitter originally developed at JPL by Sirlin and San Martin
(1990) [26], Lucke, Sirlin, San Martin (1992) [27], Bayard (2000, 2004) [29, 30].

• PEMs developed at APL, published in 2003, define Point-to-Point Stability and
Windowed Stability, and includes displacement and jitter [32, 33]. All are 1D.

• The PEMs defined in 2003 are included in the ESA Performance Error Engineering
Tool (PEET) [46–52]. The latest was published in 2012.
“Performance”, “pointing”, and “error” are used synonomously.

• Image Motion OTFs for 1D displacement, zero-mean smear, and new jitter. 2012, [34].

• This presentation includes results from SPIE paper published in 2016 [35].

– Extends results from 2012 to 2D and non-zero-mean Gaussian random smear.

– Main result is the 2D statistical smear OTF with new shift, smear, jitter PPMs.
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Deterministic Image Motion OTF
• Optical Engineering papers* derive the image motion OTF for

– uniform linear motion (smear)

– higher order smear – quadratic/parabolic (smile), cubic (frown), exponential

– pure tone/sinusoidal motion

� integral number of cycles per exposure
� non-integral number of cycles per exposure
� 0 to 2 sinusoidal cycles, including fractional cycles, with an initial phase angle

– Gaussian random motion (jitter)
– various other effects such as shutter and time delay integration (TDI)

• Smear and sinusoidal amplitude and phase are traditionally treated as deterministic.
• All image motion is analyzed in the time domain.
• Pointing system design and analysis are not considered directly.

* See [35] for citations.
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2. Image Motion OTF (outline)

• Image Motion vs. Line-of-Sight poomting motion

• Camera model, Geometric Optics

• Image motion model, displacement, smear, jitter

• Mathematical model for Image Motion OTF

• Numerical methods to compute the Image Motion OTF from time-domain data
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Image Motion vs. Line-Of-Sight (LOS) Pointing Motion

• Image motion on a focal plane is due to the relative motion of the observed object,
pointing motion of the optical sensor, and motion of its optical elements of the sensor.

• Image motion due to changes in the aspect of the object is not considered here.

• LOS relative pointing motion and Image motion are synonymous, but are not the same!

– Image motion is interior to the sensor, on the focal plane of a camera or telescope.

– LOS relative pointing motion is exterior to the sensor (referenced to a boresight frame*).

– They differ not just geometrically, but possibly due to structural modes along the
optical path, as well as motion of articulated optical elements.

=⇒ We are primarily concerned with image motion on the focal plane.
=⇒ The relative LOS motion is caused by the relative rotational and translational motion
of the object and sensor.

*I demand that the boresight axis be labeled the z-axis by edict.
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Geometric Optical Sensor (Camera, Telescope) Model
• The image motion p(t) on the focal plane can be modeled by

p(t) =

[
x(t)
y(t)

]

= c
(
X(t),θ(t)

)

• The function c
(
X(t), θ(t)

)
is a camera model parameterized by relative translationX

and relative attitude θ motions. A pinhole camera is the simplest geometric model.
• More generally, the camera model comprises multiple moving elements involving
structural modes, multiple mirrors, lenses, prisms, mechanisms, and detectors.

p(t) =

[
x(t)
y(t)

]

= c
(
d(t)

)

d = Φd q is a vector of translational and rotational modal displacements,
Φd is a matrix of mode shapes and mode slopes at points along the optical path,
q is a vector of structural normal modes (including rigid body modes).

• There can be multiple optical sensors or multiple focal planes in an optical sensor.
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Image Motion Model / Relative LOS Pointing Motion Model
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po = po(t0) = displacement

vo = vo(t0) = smear rate

so = Tvo = smear

ψ(t) = jitter motion

p(t) = po + (t− t0)vo +ψ(t) t ∈ [t0 − T/2, t0 + T/2] ≡ I(t0)
p(t0 + α) = po + αvo +ψo(α) α ∈ [−T/2, T/2] , ψo(α) = ψ(t0 + α)
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Model Assumptions

• p(t) is either
◦ Gaussian and wide-sense stationary (WSS)

◦ Non-Gaussian and fourth-order stationary (FOS)

=⇒ po, vo, and ψ(t) are WSS or FOS Gaussian random variables.

• po, vo, and ψ(t) are independent.
• ψ(t) is zero mean.

• The displacement and smear rate depend on the centroid time t0,

po = po(t0)

vo = vo(t0)

• The coherence time τc of the jitter is short relative to the exposure time, τc ≪ T .
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Jitter Coherence Time (1/2)

• The coherence time is obtained from a second-order Taylor series approximation of the
autocovariance C(τc) of ψ(t),

τc =
[
−2Cψ(0)/C

′′
ψ(0)

]1/2

C ′′
ψ(τ ) is the second derivative of Cψ(τ ) with respect to τ .

• Another definition (not used here) is

τc =
1

Cψ(0)

∫ ∞

0

Cψ(τ ) dτ

• The coherence time is computed per-channel when Cψ is a matrix.
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Jitter Coherence Time (2/2)

• Compute the autocorrelations from the inverse Fourier Transform of the power spectral
density Sψ(ω) of ψ(t),

Cψ(τ ) =
1

2π

∫ ∞

−∞
Sψ(ω) e

−jωτ dω

C ′′
ψ(τ ) =

1

2π

∫ ∞

−∞
−ω2Sψ(ω) e

−jωτ dω

• Evaluating Cψ(τ ) and C
′′
ψ(τ ) at τ = 0 yields

Cψ(0) =
1

2π

∫ ∞

−∞
Sψ(ω) dω

C ′′
ψ(0) =

1

2π

∫ ∞

−∞
−ω2Sψ(ω) dω
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Model Parameters, aka Pointing Performance Metrics (PPM)

Model Parameters

Accuracy m = E{p(t)} ΣA = cov{p(t)}
Displacement µ = E{po} ΣD = cov{po}
Smear Rate ρ = E{vo} ΣR = cov{vo}
Smear s = Tρ ΣS = T 2ΣR

Jitter 0 = E{ψ(t)} ΣJ = cov{ψ(to)}

c© 2019–2021 Mark E. Pittelkau Part 2: Image Motion Optical Transfer Functions (IM OTF) — 24



System Optical Transfer Function

• Recall that the Point Spread Function (PSF) is the image of a point source of light
and is shaped by various effects in the optical path such as atmospheric effects, the
spatial frequency response of the optics and detector, and Image Motion.

• The OTF of an optical system is

OTFsystem(ξ) = OTFmotion(ξ) OTFdetector(ξ) OTFoptics(ξ) OTFatmosphere(ξ)

• The FT of the image is the product of the system OTF and the FT of the object,

FTimage(ξ) = OTFsystem(ξ) FTobject(ξ)

• Image Display OTF and Human Visual System (HVS) OTF are omitted here.

• Image restoration algorithms use an estimate of OTFmotion(ξ) and inverse filtering.

• ξ =
[
ξx
ξy

]

is the 2-D spatial frequency, typically in lp/mm (line pairs per millimeter)
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Single-Image Image Motion OTF

• The Image Motion OTF for a single image is

K(ξ, t0) =
1

T

∫ t0+T/2

t0−T/2

exp(i2πξTp(t)) dt

where ξ is the 2D vector of spatial frequencies. [35, §3, §3.1]
• The image motion OTF K(ξ, t0) depends on the image motion p(t) during a single
exposure over the interval I(t0).

• If an analytical form of p(t) is known,K(ξ, t0) can in principle be computed analytically

• If p(t) is a stochastic process, the Statistical Image Motion OTF can be evaluated,

OTFmotion(ξ) = E{K(ξ, t0)}

= E
{

1

T

∫ t0+T/2

t0−T/2

exp(i2πξTp(t)) dt

}
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Numerically Computed IM OTF
• The motion OTF can be computed numerically from time-domain data (simulated or
instrumentation – test or in-flight)

– Direct estimation of motions: smear, smile, frown, sinusoidal, etc., and their OTFs.

– Compute the 2D FT of the motion by integration and averaging.

– Approximate PSF as a 2D histogram of the motion. Compute the 2D FT of the PSF.

– Method of Moments.

• These numerical methods would have to be used with Monte Carlo simulation to obtain
a statistical smear OTF, which is time-consuming and may not be practical.

• A numerically computed IM OTF could be used to cross-check the closed-form
statistical IM OTF, derived next.

• Numerical methods to compute an IM OTF are used for verification.
They do not help in writing pointing requirements based on an IM OTF allocation.
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Numerically Computed IM OTF

• It is incorrect to compute the IM OTF in x and y separately, and then multiply them.

– The smear OTF is not separable in x and y.

– The jitter OTF is separable under a (unknown) coordinate transformation.

• The numerical estimate is evaluated over K, N , and a fine 2D grid of frequencies.

N It is difficult to compute the Image Motion OTF this way!

– The numerical IM OTF requires significant computation, unless the number of
frequency points and time points are small.

– The required number of samples and the required sample rate are not clear.

– Multirate contributions to p(tn) require resampling.

– This OTF calculation requires a lot of time-domain data, does not make use of
temporal-frequency domain data, and does not reveal how pointing error sources
contribute to the Image Motion OTF.
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Numerically Computed IM OTF – Integration & Averaging (1/2)

• Compute the IM OTF from the spatial FT of image motion p(t).
Use rectangular integration of exp(i2πξTp(t)) and averaging

– Requires evaluation over a fine grid of frequencies and time average over many
Monte Carlo realizations of the pointing motion. Involves significant computation.

– The necessary number of samples and sample rate are not clear.

– Multirate contributions to the image motion p(t) require resampling.

– Does not make use of frequency domain data and does not reveal how error sources
contribute to the Image Motion OTF.
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Numerically Computed IM OTF – Integration & Averaging (2/2)

Before evaluating the statistical IM OTF, let’s look at a numerical estimate based on
time-domain samples of p(t), either measured or from a simulator.

• For 2N +1 discrete samples p(tn) in an exposure interval, numerical integration yields

H(ξ, tk) =
1

2N + 1

N∑

n=−N

exp(−j2πξTp(tk + αn)) , αn ∈ I(tn)

• The expectation can be approximated by a Monte Carlo ensemble average. If p(t) is
an ergodic process, use a time average from K intervals centered on centroid times tk,

OTFmotion(ξ) ≃
1

K

K∑

k=0

H(ξ, tk)

=
1

K(2N + 1)

K∑

k=0

N∑

n=−N

exp(−j2πξTp(tk + αn)) , αn ∈ I(tn)
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Numerically Computed IM OTF – Histogram Method

• The PSF (or LSF) can be computed by simulating the image motion (time domain).

– Observation: The PSF and LSF are probability density functions (PDF)

– Drop image motion points into the bins of a 2D (1D) histogram to approximate a
PSF (LSF).

– Compute the 2D (1D) Fourier Transform of the approximate PSF (LSF) to obtain
an MTF.

• See the literature survey and Refs 10–15 in [35].
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Numerically Computed IM OTF – Method of Moments

See Ref 16 in [35]

Expand the OTF in a Taylor series

OTF(ω) =
∞∑

n=0

1

n!

∂nOTF(ω)

∂ωn

∣
∣
∣
∣
ω=0

ωn

∂nOTF(ω)

∂ωn
=

∂n

∂ωn

∫ ∞

−∞
LSF(x) exp(−jωx) dx

∣
∣
∣
∣
ω=0

= (−j)n
∫ ∞

−∞
xn LSF(x) dx

= E{xn} = mn nth order moment of x
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Numerically Computed IM OTF – Method of Moments (cont’d)
We can compute the nth moment mn directly from x(t)

mn = E{xn} =
1

T

∫ ta+T

ta

xn(t) dt ≃ 1

M

K∑

i=1

xni

And finally the OTF can be approximated with a finite number of terms

OTF(ω) ≃
N∑

n=0

mn

n!
(−jω)n

Faster convergence if central moments are used (m = m0 or m = 1
2[maxi xi +mini xi])

Mn =
1

K

K∑

i=1

(xi −m)n

OTF(ω) ≃ exp(−jωm)

N∑

n=0

Mn

n!
(−jω)n

See the reference to calculate the truncation error and for other details.
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3. Statistical Image Motion OTF (IM OTF) (outline)

• Motivation to derive a statistical smear OTF

• Derive statistical Image Motion OTFs for

– shift (displacement, offset)

– smear

– jitter

– sinusoidal/harmonic motion

• Illustrate the IM OTFs

– parameterization in terms of Pointing Metrics (PM)

– characterization, frequency response

– compare to deterministic image motion OTFs

– derive a statistical smear line spread function (LSF)

• Summary Table of Image Motion OTFs and LSF
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Motivation for a Statistical Smear OTF

• Numerical methods to evaluate the PSF/IM-OTF are arduous and less informative.

• Smear specifications have been based on the deterministic smear OTF (sinc function).

– Deterministic smear OTF applies to individual images with known smear length.

• Specifications for deterministic smear are traditionally based on a known or specified
upper bound, or based on a 2σ or 3σ smear length.

– 2σ is typically specified. 3σ is too conservative. Upper bound may not be known.

– Can lead to margin on top of margin. (Margin is included in the OTF budget and
in a pointing budget)
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Motivation for a Statistical Smear OTF (cont’d)

• Statistical smear OTF describes the average smear effect of an ensemble of images or
on a single image with a priori unknown but random smear.

– A statistical description of the Image Motion OTF for random smear is more useful
than the deterministic smear OTF.

– A statistical description of the Image Motion OTF for sinusoidal motion is related
to both the statistical smear OTF and the jitter OTF.

• Smear should not be lumped in with jitter.

– Smear and jitter affect image quality differently.

– Pointing error metrics prior to 2012 modeled jitter with smear included.
Smear and jitter are now separated.
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Statistical Image Motion OTF (IM OTF)

• For α = t− t0 ∈ [−T/2, T/2] we have

exp(i2πξTp(t)) = exp(i2πξT
[
po + αvo +ψo(α)

]
)

= exp(i2πξTpo)
︸ ︷︷ ︸

displacement

exp(i2πξTαvo)
︸ ︷︷ ︸

smear

exp(i2πξTψo(α))
︸ ︷︷ ︸

jitter

• po, vo, and ψ(α) are independent random variables (more on this later)

• The Statistical Image Motion OTF is the time-average of E
{
exp(i2πξTp(t))

}

OTFmotion(ξ) = OTFD(ξ)
︸ ︷︷ ︸

displacement

OTFS(ξ)
︸ ︷︷ ︸

smear

OTFJ(ξ)
︸ ︷︷ ︸

jitter

• The image motion OTF for Gaussian random motion is the well known jitter OTF.

c© 2019–2021 Mark E. Pittelkau Part 2: Image Motion Optical Transfer Functions (IM OTF) — 37



Statistical Smear OTF

OTFS(ξ) =

√
π

2q
exp(−r2)ℜ(erfz(q + ir))

q2 =
1

2
π2ξTΣSξ , r2 =

(ξTs)2

2ξTΣSξ

erfz(·) is the complex error function (often denoted erf)

ℜ(·) is the real part of its complex argument

• OTFS(ξ) is not separable in the two coordinates.

• The statistical smear OTF is the expected value (ensemble average) of the deterministic
smear OTF when the smear is random.

• The deterministic smear OTF applies to individual images with known smear. The
statistical smear OTF describes the average effect of random smear on many images.
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Statistical Smear OTF – 2D Illustrations
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Statistical Smear OTF – 1D Illustrations
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Statistical Smear OTF – Limiting Cases
Statistical Smear OTF, s = 0

OTFS(ξ) =

√
π

2q
erf(q)

q2 =
1

2
π2ξTΣSξ

Deterministic Smear OTF, ΣS = 0

OTFS(ξ) = exp(−r2) erfz(ir)

OTFSD(ξ) = sinc(πξTs)

MTFSD(ξ) =
∣
∣ sinc(πξTs)

∣
∣
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MTFS(ξ) with s = 0, σs = 4 (red dash line)

MTFSD(ξ) with s = 4, σs = 0 (solid blue line)

A worst case deterministic s corresponds to 1σs (not 2σs or 3σs) !
Optical engineers have used s = 2σs in the deterministic smear OTF, OTFS(ξ)
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Deterministic and Statistical Smear LSF

The Deterministic Smear LSF is a boxcar
function, length s = |s| = |vT |, height 1/s

LSFSD(x) =







1/s |x| < s/2
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The Statistical Smear LSF is an ensemble
average of Gaussian random boxcar functions.
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[
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Gaussian Jitter PSF

The Gaussian Jitter PSF is due to
Gaussian random motion.

The Gaussian PSF is

PSFJ(x) =
1

2π|ΣJ|
exp

(
−1

2
xTΣ−1

J x
)

By the Central Limit Theorem, a sum
of many independent random motions
of various distributions approximates a
Gaussian.

For random motion to qualify as jitter,
its coherence time must be much
shorter than the exposure time.
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The jitter LSF here is a 1D cross section of the 2D PSF.

LSFs are shown for σJ = 1 and σJ = 1/3.
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Statistical Jitter OTF

The Statistical Jitter OTF is the FT
of the Gaussian PSF.

The Gaussian Jitter OTF is

OTFJ(ξ) = exp
(
−2π2ξTΣJξ

)

By the Central Limit Theorem, a sum
of many independent random motions
of various distributions approximates a
Gaussian.

For random motion to qualify as jitter,
its coherence time must be much
shorter than the exposure time.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

O
T

F
J(ω

)

spatial frequency, ω

σ
J
 = 1 σ

J
 = 1/3

The jitter OTF here is a 1D cross section of the 2D PSF

OTFs are shown for σJ = 1 and σJ = 1/3.
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Statistical Smear and Jitter OTF Comparison

Statistical Smear OTF, s = 0

OTFS(ξ) =

√
π

2q
erf(q)

q2 =
1

2
π2ξTΣSξ

Statistical Jitter OTF

OTFJ(ξ) = exp
(
−2π2ξTΣJξ

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Spatial Frequency ξ, lp/mm

M
T

F

σ
S
 = 4.0 mm

σ
J
 = 1.0 mm
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• The jitter OTF is not separable in the two coordinates, except for a coordinate trans.

• In this example, smear and jitter pointing error almost equal, σS/
√
12 ≃ 1.15 ∼ σJ

• The statistical smear MTF is larger at higher spatial frequencies than the jitter MTF.

• Empirical evidence has shown that imaging systems tolerate smear better than jitter.
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Harmonic Motion LSF

1D harmonic motion

p(t) = d sinωt
The velocity is

v(t) = ωd cosωt
Exposure I(p) is inversely proportional to velocity

I(p) =
A

v
=

A

ωd cosωt
=

1

dπ
√

1− (p/d)2

We choose A = ωd so that
∫ d

−d I(p) dp = 1.
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harmonic motion, d = 1
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Harmonic Motion OTF (1/2)

• Suppose the image motion is due only to m cycles of a single-frequency vibration of
amplitude d (= a/2) along one direction during the exposure period T .

p(t) = d sin(ωt) , T =
2πm

ω
, m =

ωT

2π

– If m is an integer, the image motion OTF is a Bessel function [23, 24]

OTFH(ξ) = J0(2πξd) for integral m

– If m is not an integer, then [24, 25]

OTFH(ξ) → J0(2πξd) as m → ∞

• Single-frequency sinusoidal vibration with 0 to 2 cycles (and fractional cycles) and
various phase angles is analyzed in [25].
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Harmonic Motion OTF (2/2)
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Harmonic OTF for sinusoidal amplitudes

d = 0.5, 1, 2 lp/mm

Unpublished numerical results:

• The average OTFH for one sinusoid
with Gaussian random amplitude d,
σd = (s/2)/

√
2, is nearly OTFS.

• The OTFH for a sum of n & 3
sinusoids with r.m.s. amplitude
(s/2)/

√
2 is OTFJ with σj = s/4.

• Is the harmonic OTF separable from
the statistical smear OTF ?
(They may be tangled together in
an integrand when computing the
time average OTF.)
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Summary of Image Motion OTFs and LSF

Displacement OTF deterministic OTFD(ξ) = exp(−i2πξTµ)

Smear OTF statistical OTFS(ξ) =

√
π

2q
exp(−r2)ℜ(erfz(q + ir))

q2 = 1
2
(πT )2ξTΣRξ = 1

2
π2ξTΣSξ

r2 =
(ξTρ)2

2ξTΣRξ
=

(ξTs)2

2ξTΣSξ

Smear OTF statistical, s = 0 OTFS(ξ) =

√
π

2q
erf(q)

Smear OTF deterministic, ΣS = 0 OTFS(ξ) = sinc(πξTs)

Smear LSF (1D) statistical, s = 0 LSFS(x) =
1

σS
√
2π

[
−Ei(−2(x/σS)

2)
]

Jitter OTF statistical OTFJ(ξ) = exp
(
−2π2ξTΣJξ

)

Harmonic OTF deterministic OTFH(ξ) = J0(2πξd) , p(t) = d sin(ωt)
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4. A New Paradigm for V&V of System Performance

• The Statistical IM OTFs measure average OTF/WTF* performance and are useful for
requirements definition and verification.

• The Statistical IM OTFs and Pointing Performance Metrics** (PPMs), along with
a methodology and procedures to evaluate the PPMs, enable a multidisciplinary and
integrated design and analysis methodology (or paradigm) to couple optical (payload)
engineering with mechanical and control systems (bus) engineering.

• It does not purport to automatically or completely replace other established method-
ologies for performance analysis, including the use of well-known deterministic IM
OTF/WTF, but augments our portfolio of methodologies.

* A Statistical Wavefront Transfer Function (WTF) has not yet been developed.

** “Pointing Error Metrics” (PEM) is a misnomer in the context of Image Motion. It seems
appropriate to call them Pointing Metrics (PMs). Pointing Performance Metrics (PPMs) can refer
to the IM OTFs or the PMs.
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Part 3: Requirements Definition, Flow Down, Interfaces,
Model Updates
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Requirements Definition, Flow Down, Interfaces, Model Updates

• Requirements Validation & Verification

• What is the Pointing Requirements Definition Process?

• Where does a Pointing Requirement apply?

• Payload-Bus Interfaces

• Pointing, More Generally

• How does the New Paradigm fit into the Real World?

• Image Motion MTF Allocation from an MTF budget

• OTF, IM OTF, and Pointing Requirements Definition

• Optical Model Availablity, Fidelity, and Updates
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Requirements Validation & Verification [11, §4]
Definitions

• Validation and validate mean to show that something is appropriate to a purpose.
• Verification and verify mean to show that something performs as intended.

Document Rationale for the Requirements

• Reason for the Requirement
• Relationships (to expected operations, conops)

• Assumptions
• Constraints

Valid Technical Performance Requirements

• Written Correctly
• Technically Correct
(traceable, valid assumptions, essential)

• Satisfy Stakeholders
• Complete

• Feasible (achievable)
• Verifiable
• Consistent (not ambiguous or conflicting)
• Unique (not redundant)
• Necessary (not over-specified)
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What is the Pointing Requirements Definition Process?

• Discuss current practice and compare with the New Paradigm.

• Pointing performance requirements are derived from optical performance requirements.

– How? By whom? [Mission scientists, CONOPS, MRD, Optical or Systems Engr]

– What assumptions are made?

– [How] is image motion allocated from an image performance requirement?

– [How] is a pointing requirement derived from an image motion requirement?

– Can the pointing requirement and image motion allocation be verified?

• It should be understood that a pointing requirement, however stated, may be verifiable,
but may not verify the image motion allocation to the image performance requirement.

– Image motion effects depend on characteristics of the pointing motion.

– The pointing requirements may not indicate true image performance, or may be
too conservative, thus incurring risk to performance, cost, and schedule.
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Where does a Pointing Requirement apply?

• Pointing requirements are referred to some physical interface between the bus and
payload. Definitions vary . . .

– pointing defined by a LOS fixed to some mechanical reference frame

– designated body-fixed (bus) coordinate frame defined for attitude determination

– coordinate frame defined at the bus-payload mechanical interface, with one axis
(notionally) aligned to an optical boresight axis

– optical system boresight axis, defined externally

– optical system focal plane, geometric camera model, simple or complex

• Coordinate frame definitions can be important to in-flight alignment calibration.
Intermediate body-fixed frames are not observable.

• Image motion may be evaluated by optical system engineers, separately from GN&C,
but they need particular data to do so.
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Payload–Bus Interfaces

• Separate payload and bus structural model:

– requirements may include forces and torques or displacements and rates

– LOS pointing established at the payload-bus interface for GN&C pointing analysis

• Combined payload and bus structural model:

– structural damping and frequencies can be much different in separate structures
than in a combined structure

– bus and optical payload structural models are updated periodically, usually not at
the same time or same frequency

c© 2019–2021 Mark E. Pittelkau Part 3: Requirements Definition, Flow Down, Interfaces, Model Updates — 6



Pointing, More Generally

• Think of “Pointing” in a more abstract sense.

– Pointing is not the orientation of a single element, but of a collection of elements
along an optical path from detector to target, including the detector.

– Pointing motion is not the motion of a single element, but the motion of elements
along an optical path from detector to target, including motion of the detector.

– LOS Pointing can be defined as a ray from the perspective center of the optical
detector to a point on a target.

• Image motion is computed from structural motion and a geometric camera model.

– Equivalent to STOP analysis. STOP analysis uses optical element displacements
and ray tracing to obtain PSF motion and WFE (distortion) in the time-domain.

– The image motion OTF is the spatial frequency-domain equivalent.

– The image motion OTFs are analytical forms that are useful to define performance
requirements and to evaluate performance.
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How does the New Paradigm fit into the Real World?

The practical utility of the New Paradigm may be fairly questioned

• Who uses it?

• Will the methodology be accepted across NASA programs? How do we encourage it?

• If we put it into a Pointing Guidelines Handbook, will it be ignored?

• The New Paradigm seems to require a high-fidelity geometric camera model. Is it
practical to base pointing requirements on it?

• How does the New Paradigm work with established inter-disciplinary and multi-disciplinary
processes?

• Is the New Paradigm supported by established processes?

We have to examine the current requirements definition and verification processes to find
out how requirements are derived from optical payload performance requirements.
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Image Motion OTF Complements Traditional STOP Analysis

Image Motion

OTF, WTF

Simulation

frequency domain

Performance

Metrics

Simulation

time domain

Traditional

STOP
PSF, WFE

FT

• Frequency domain analysis has an advantage of speed, and often accuracy, over
time-domain analysis
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Image Motion OTF Allocation from an MTF budget

• Optical engineers derive pointing
requirements from an Image Motion
allocation from a system OTF.

• Image Motion MTF results from
various motions: displacement,
smear, smile, frown, harmonic, jitter.

• These motion effects may be
removed, to some extent, from an
image in post-processing, provided
sufficient detail exists in the image.

• A fast steering mirror (FSM) can
remove some image motion, but
introduces other optical problems.

MTF

spatial frequency, x

x

xA

0

1

NEM

image motion

PSF distortion

diffraction

atmosphere

system

margin

• MTFs are multiplied, not added!

• The optical system MTF is the product of
contributing MTF effects.

• The system MTF includes plenty of margin.
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IM OTF and Pointing Requirements Definition

• Image Motion OTFs provide a direct connection between imaging performance and
pointing performance

– derive pointing requirements from an IM OTF requirement (inverse problem)

– evaluate the IM OTF from pointing performance (forward problem)

• Requirement allocation from an imaging system OTF to Pointing Metrics (PMs)

1. The IM OTF is an allocation from the imaging system OTF (negotiable?)

2. The IM OTF is allocated to OTFD, OTFS, OTFJ (non-obvious tradeoff)

3. Derive requirements on the Pointing Metrics (PM) µ, ρ or s, ΣD, ΣS, ΣJ

from requirements on OTFD, OTFS, OTFJ. (may be difficult for OTFS)

⊲ Inverse Problem (Pointing requirements from IM OTF) is traditional, but not necessary.
⊲ The Forward Problem is easier (compute the IM OTFs from an image motion analysis).
⊲ The allocations in 1 and 2 are not likely to be negotiable, particularly after they are set.
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OTF and IM OTF Requirements Definition (cont’d)

N OTFs are multiplied, not added!

– OTF margins are not linear-additive and they vary with spatial frequency.

∗ − log(OTF margin) can be added, but varies with spatial frequency.

– The Inverse Problem is difficult for these two reasons (nonlinear, frequency varying).

∗ Also there may be no closed form for the inverse of OTFS(ξ).

– The Forward Problem is much easier.

• MTF Area (MTFA) and spatial bandwidth (the spatial frequency where the
OTF crosses the NEM) may lead to a useful inverse solution.

• Some work is needed to specify the inverse, in consultation with optical engineers.

– For now, solve the Forward Problem to see if a design meets an IM OTF
requirement.
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Can the PPM Requirements be Validated and Verified?

For PPM requirements to be valid, they must align with reality:

• Are the requirements linking the optical subsystem and the pointing control subsystem
supported by organizational and contractual interfaces?

• Can the required Pointing Performance Metrics be validated? What are the technical,
contractual, and organizational limitations?

• Is a geometric optical model available? Do we have, or will we have, an Image Motion
and Wavefront Error sensitivity model? When will the models be available?

• How often will the models updated, and how accurate are they expected to be?

• Will the optics and bus structural models be coupled or uncoupled?
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Optical Model Availability

• The geometric optical model is just a function (a matrix) that maps displacements
and motions of structural elements to image motion.

• Motion in the optical path and image motion can be evaluated by GN&C, provided
that a geometric optical model and structural model are available.

• There is usually an initial baseline or reference design for a camera

– Optical sensor performance requirements are defined by mission scientists and stated
in an MRD, usually well in advance of a bus design.

– The baseline or reference design for an optical sensors is often an existing design.

– Rarely is there no information about an optical payload.

• Optical system error budgets and allocations are made at the outset of a design.

– Allocations may be adjusted as the optical system design proceeds.

– The image motion allocation is fixed once the MRD is written and RFP is issued.
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Optical Model Fidelity

• A geometric optical model could range from a simple pinhole model to a full geometric
optical model with structural displacements modeled, depending on

– the level pf performance required

– program cost and schedule

– class of spacecraft

– design timeline and phases of design

– ability to update structural models

– contractual and organizational constraints

• Model fidelity and uncertainty are always of concern, regardless of whether pointing
performance requirements are traditional or based on image motion OTFs.

• The performance evaluation tool chain should permit rapid re-evaluation as payload
and bus structural model updates become available.
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No Optical Model Available

• In some situations an optical model is not available or can’t be used because either

– The optical system has not yet been designed, behind schedule, not released, or

– The pointing requirements are at the optical payload-bus mounting interface,

– Contractual or proprietary reasons, or programmatic or institutional reasons.

– The instrument designer can’t give it to the control system designer for security
reasons (if the optical system and its pointing performance are SCI).

• In any of these situations, there are ways to proceed. (discussed later)
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Part 4: Pointing Performance Analysis
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Pointing Performance Analysis

• Controller, Dynamics, Disturbance, and Noise modeling and analysis

• Pointing Performance Metrics

• Methods to compute the Pointing Performance Metrics (Covariance Matrices ΣX)

– Frequency response

– Lyapunov equation

– Time response (2 methods)

• Optical sensor (Camera, Telescope) models, sensitivity models

• Relative and cumulative contribution from disturbance sources

– worst offenders

– sensitivities

• What to do If Pointing Requirements are not Met
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1. Pointing Motion Model and Pointing Performance
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Dynamics Model and Controller Interconnection
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The closed-loop transfer function is computed as the Linear Fractional Transformation
(LFT) G = Fℓ(P,K) of the plant P and controller K [36, Ch 4]
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Model for Frequency Response Analysis

• Discrete-Time controller includes

– Sample-and-hold with integrators (e.g., star tracker model, IMU filtering)

– Attitude determination filter (suitably modeled for frequency response analysis)

– Anti-alias filtering in the IMU (may be simplified for down-sampling)

– Loop-shaping compensator (typically PID)

– Structural mode filter

• Structural modes in the dynamics model should be separated into two parts,
below and above approximately 10× control loop bandwidth.

– Reduces the order of the closed-loop system, facilitates analysis, improves numerical
properties.

N Closed-loop damping of structural modes in & near the control loop bandwidth can be
decreased, increased, or made unstable, by feedback. Structural mode contribution
to pointing motion (displacement, smear, jitter) may be diminished or amplified.
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Pointing Performance Evaluation – Frequency Domain

• Feedback control design is inherently a frequency domain exercise, so frequency
domain design and analysis methods are perferred.

• Linear and linearized transfer function models can be analyzed quickly and accurately,
and significant system information (e.g., gain and phase margins) can be obtained.

• Interconnect continuous plant and multirate discrete-time controller with care.

• Pointing performance metrics are easy to compute from frequency domain data.

• Frequency response of a structural model is evaluated quickly and accurately.

• Low and high frequency modes can be separated to facilitate closed-loop frequency
response and stability analysis. (Separate modes in and near the controller
bandwidth, and modes well outside the controller bandwidth.)

disturbance
d(t)

D(jω)
✲ H

closed-loop
system

p(t)

Sp(ω)
✲ response
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Disturbance Sources and Sensitivities

Disturbance Sources

• pointing command input (navigation error)

• sensor noise, aliasing

• RW, CMG, cryocooler, heat pump

• RCS (reaction control system thrusters)

• magnetic torque rods/coils

• antenna & solar array drives (stepper motors)

• thermal changes (solar array and boom
thermal snap, thermal distortion, stick/slip)

• shutters, filter wheels

• Transient response from attitude maneuver
(slosh, structural vibration)

Disturbance Sensitivities

• optical sensors

• optical communication

• star trackers

• IMU (gyros, accelerometers)

• clock chips

• microvibration transducers (analog
signal conductors)

• solar array tip deflection
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Know your Spectra, Watch out for Spectres

Representative mode locations are from a Nastran model.

Reaction Wheel speed range is 120 to 3000 rpm (2 Hz to 50 Hz)

Cryocooler operates at a set frequency within 51 to 63 Hz.

* Aerodynamic and gravity gradient torque

Reaction Wheel disturbance spectrum

HGA Control Bandwidth

Slew command spectrum

Attitude Control Bandwidth 

Tail of slew cmd spectrum

Slosh 1st mode

Frequency (Hz)

Cryocooler

*

0.0010.0001 0.01 0.1 1.0 10 100

Reaction Wheel speed range

Shutter, Filter Wheel dist.Star Tracker bandwidth & noise spectrum

IMU bandwidth & noise spectrum

Appendage structural modes

Bus structural modes

Payload modes

Jitter SensitivityDisplacement Sensitivity Smear Sensitivity
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Dynamic Modeling and Analysis Flow [4]
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2. Pointing Performance Metrics (PPM)

• The Pointing Error Metrics are means and covariance matrices that parameterize the
statistical Image Motion OTFs

– Displacement: µ (ΣD is not presently used)

– Statistical Smear: s, ΣS

– Jitter: ΣJ

• We also have (defined in the next section)

– Accuracy metric ΣA

– Windowed Stability metric ΣWS
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Pointing Performance Metrics

• Pointing performance requirements should specify lower bounds on the IM OTFs, or
MTFA and spatial frequency at some MTF amplitude, since the objective is image
performance of the optical sensor.

• The Image Motion OTFs are parameterized by means & covariances of image motions
(displacement, smear, jitter, etc.). These means & covariances are the PPMs.

– Inverse Problem: derive the PPMs from the required OTFmotion(ξ)

– Forward Problem: compute OTFmotion(ξ) from the PPMs.

– The Inverse Problem is more difficult than the Forward Problem.

• In what follows, references to pointing motion refer (primarily) to image motion
(which has the unfortunate mnemonic p(t) for the 2D image motion).
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Pointing Definitions Illustrated

Time
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Acquisition time for image sequence
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time
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time

Windowed Stability Windowed Stability

•

•
•
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Image Motion versus LOS Pointing Motion

• We have distinguished between Image Motion and Line-Of-Sight Pointing Motion

• We are primarily concerned with the Image Motion p(t) =

[
x(t)
y(t)

]

.

• Line-Of-Sight (LOS) pointing motion, in general, is not equivalent to image motion.

– “Pointing Error Metrics” is a misnomer in the context of Image Motion.

– LOS pointing error is not well defined when the optical elements are not rigid.

– In this work we refer to image motion. An optical sensor model is discussed later.

– Image motion includes rotational and translational relative motion due to motion
of optical elements, bus disturbances, and tracking error or pushbroom motion.

– In this context, image motion does not include aspect changes (e.g., target rotation)

• Displacement, smear, and jitter are defined in the previous section.

• Repeatability has not been formally defined.
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Revised Pointing Error [Performance] Metrics since 2003

• 2003 PEMs are the mean and covariance of displacement, jitter.
• 2015 PEMs are the mean and covariance of displacement, smear, jitter.

– Smear and jitter affect the IM OTF differently. Smear is less detrimental to the
OTF than jitter because the smear OTF decreases more slowly than the jitter OTF.

– The jitter PM defined in 2003 (“smitter”, or smear + jitter) has no direct bearing
on image quality analysis and should no longer be used.

– Displacement is unchanged.

• Other Pointing Performance Metrics not directly related to the IM OTF:

– Windowed Stability and Point-to-Point Stability metrics are unchanged.
– Windowed Stability is still valid and useful (e.g., for image registration).
– Point-to-Point Stability does not seem particularly useful. Deprecate it.

• A displacement (shift) covariance can be defined. Shift is important, e.g., lock a fine
error sensor on a star, keep an occulter on the Sun, or ensure a FOR is within the FOV
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Estimated Image Motion Model / Relative LOS Pointing Motion

−T/2 0 T/2
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pointing motion
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p̂o = p̂o = est. displacement

v̂o = v̂o = est. smear rate

ŝo = T v̂o = estimated smear

ψ̂(t) = estimated jitter

p(t) = p̂o + (t− t0)v̂o + ψ̂(t) t ∈ [t0 − T/2, t0 + T/2] ≡ I(t0)
p̂(t0 + α) = p̂o + αv̂o + ψ̂o(α) α ∈ [−T/2, T/2] , ψ̂o(α) = ψ̂(to + α)
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Jitter, Displacement, Smear Rate

Jitter over I(t0) is
ψ̂o ≡ ψ̂(t0 + α) = p(t0 + α)− p̂o − αv̂o α ∈ [−T/2, T/2]

Mean square jitter

J(t0) =
1

T

∫ T/2

−T/2

ψ̂(t0 + α)ψ̂
T
(t0 + α) dα , J(to) = tr(J(to))

Displacement: solve ∂J/∂p = 0 for p̂

p̂o ≡ p̂(t0) =
1

T

∫ T/2

−T/2

p(t0 + α) dα

Smear Rate: solve ∂J/∂v = 0 for v̂

v̂o ≡ v̂(t0) =
12

T 3

∫ T/2

−T/2

αp(t0 + α) dα
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Estimated Pointing Performance Metrics (PPM)

The PPMs are means and covariances that parameterize the Image Motion OTFs.

The PPMs may be specified in a requirements document from an IM OTF allocation or
other rationale.

The PPMs must be estimated from data (simulated or telemetry) to verify performance.

Estimated Pointing Performance Metrics

Accuracy µ = E{po} ΣA = cov{po}
Displacement µ = E{p̂o} ΣD = cov{p̂o}
Smear Rate ρ = E{v̂o} ΣR = cov{v̂o}
Smear s = Tρ ΣS = T 2ΣR

Jitter 0 = E{ψo(α)} ΣJ = E{J(to)}

c© 2019–2021 Mark E. Pittelkau Part 4: Pointing Performance Analysis — 17



Covariance Matrix Computation

• The covariances ΣX can be computed in one of three ways:

1. Frequency response: Compute the power spectral density. This can be used for
broadband and harmonic disturbance inputs, and also steps and impulses.

2. Discrete-time or continuous-time stochastic input: Solve a Lyapunov equation.

3. Discrete-time-domain simulation data:

A. Compute the autocovariance and PSD.

B. Direct autocorrelation.

• A combination of these methods is performed in most analyses, principally 1, or 1 and 2.

• Methods 1 and 2 are preferred whenever possible. Method 3B is not recommended.

• Covariance matrices can be computed for each disturbance & noise source, then added.

• Frequency resolution does not have to be the same for all power spectral densities.

• Sample rates do not have to be the same for all time-domain data.
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Power Spectral Density (PSD)

• The Wiener-Khintchine (Khinchin) Theorem says the Power Spectral Density S(ω)
of a continuous-time signal p(t) is the Fourier Transform (FT) of the autocovariance
R(τ ) of p(t), in units of power/Hz,

S(ω) =

∫ ∞

−∞
R(τ ) e−jωτ dτ S(f) =

∫ ∞

−∞
R(τ ) e−j2πfτ dτ

• S(ω) and R(τ ) are a Fourier Transform pair,

R(τ ) =
1

2π

∫ ∞

−∞
S(ω) ejωτ dω =

∫ ∞

−∞
S(f) ej2πfτ df

• Since R(0) is a covariance, the PPMs are computed from equations of the form

ΣX =
1

2π

∫ ∞

−∞
S(ω)WX(ωT ) dω

• WX(ωT ) is a frequency-dependent weighting function corresponding to a pointing error
metric (displacement, smear, jitter, etc.) It is a function of the exposure time T .
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Summary of Pointing Performance Metrics (PPM)

Pointing Error Pointing Error Metric (Covariance) Weighting Function

Accuracy ΣA = cov{p} =
1

2π

∫ ∞

−∞
S(ω)WA(ωT ) dω WA(ωT ) = 1

Displacement ΣD = cov{p̄} =
1

2π

∫ ∞

−∞
S(ω)WD(ωT ) dω WD(ωT ) = sinc2(ωT/2)

Smear Rate ΣR = cov{v̄} =
1

2π

∫ ∞

−∞
S(ω)WR(ωT ) dω WR(ωT ) =

[
12

ωT 2

[
sinc(ωT/2)− cos(ωT/2)

]
]2

Smear ΣS = T 2ΣR WS(ωT ) = T 2WR(ωT )

Jitter ΣJ = E{J(t0)} =
1

2π

∫ ∞

−∞
S(ω)WJ(ωT ) dω WJ(ωT ) = 1−WD(ωT )−

1

12
WS(ωT )

Smitter ΣSJ =
1

12
ΣS +ΣJ =

1

2π

∫ ∞

−∞
S(ω)WSJ(ωT ) dω WSJ(ωT ) = 1−WD = 1

12
WS +WJ

Point Stability ΣPS =
1

2π

∫ ∞

−∞
S(ω)WPS(ωTPS) dω WPS(ωTPS) = 2(1− cos(ωTPS)) = 4 sin2(ωTPS/2)

Windowed Stability ΣWS =
1

2π

∫ ∞

−∞
S(ω)WWS(ωT, ωTWS) dω WWS(ωT, ωTWS) = WD(ωT )WPS(ωTWS)
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Frequency Domain Weighting Functions WX(ωT )

• WX(ωT ) = weighting function,
X = D, S, J. T = exposure time.

ΣX =
1

2π

∫ ∞

−∞
S(ω)WX(ωT ) dω

• S(ω) is the PSD computed by

– Frequency response of image motion

– Autocorrelation R(τ ) (BT algorithm)

S(ω) =

∫ ∞

−∞
R(τ ) e−jωτ dτ

• Could compute PMs directly from auto-
correlation. (Discouraged)
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Effect of Decreasing (or Increasing) Exposure Time T

• The weighting functions stretch out to the right
as T is decreased. (T = 1/2 shown.)

• Equivalently, the frequency axis is scaled by 1/T .

• Half-power point of WJ is at about f = 1/T ,
but lower frequency disturbances of high
amplitude contribute to jitter.

• For smaller T , lower frequencies contribute less
to jitter and more to smear and displacement.

• Ex: For T = 20 s, WJ ≃ 0.95 at the jitter corner
frequency f ≃ 0.07 Hz. (In or near control BW.)
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Some Useful Facts

• The weighting functions WX(ωT ) are computed from the FT of the autocorrelations

of the estimates p̂o, v̂o, ψ̂o(α).

• Displacement, Smear, and Jitter (and the weighting functions) are not independent –
they are subject to a constraint and vary together with the exposure time T .

• The jitter weighting function has a corner frequency greater than the old jitter weight-
ing function (defined in 2003 and prior), so

– the jitter signal will have a shorter coherence time (defined below),

– a jitter requirement is easier to meet (but now you have a smear requirement), and

– the old jitter weighting function should not be used, even if no smear is expected.

• The bandwidth of the attitude control loop has no bearing on what contitutes jitter.

– Disturbance contributions to jitter depend only on the jitter weighting function.

– Feedback affects the damping and stability of structural modes in and near the BW.
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A Dirty Little Secret

• The estimated displacement, smear, jitter are correlated, even if the actual displace-
ment, smear, and jitter are not.

– Independence of the actual displacement, smear, and jitter was assumed in deriving
the IM OTFs.

– Analysis shows that the correlation is usually not severe. (Unpublished but circulatd
among some TDT members in 2020.)

– Optical engineers have always introduced correlation when removing smear and
jitter from an image by image processing (deconvolution) techniques.
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Coherence Time for the Jitter (1/2)
• The covariance of the jitter is a valid jitter metric when the coherence time τc of the
jitter ψ̂(t) is short relative to the exposure time, τc ≪ T .

• The coherence time is obtained from a second-order Taylor series approximation of the
autocovariance C

ψ̂
(τc) of the jitter ψ̂(t),

τc =
[
−2C

ψ̂
(0)/C ′′

ψ̂
(0)

]1/2

C ′′
ψ̂
(τ ) is the second derivative of C

ψ̂
(τ ) with respect to τ .

• Another definition (not used here) is

τc =
1

C
ψ̂
(0)

∫ ∞

0

C
ψ̂
(τ ) dτ

• The coherence time is computed per-channel when C
ψ̂
is a matrix.

Ref: [27, Appendix B, Eq. (B7)]
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Coherence Time for the Jitter (2/2)

• The PSD of the jitter is S
ψ̂
(ω) = S(ω)WJ(ω).

• Compute the autocorrelations from the inverse FT of the PSD S
ψ̂
(ω) of ψ̂(t),

C
ψ̂
(τ ) =

1

2π

∫ ∞

−∞
S(ω)WJ(ω) e

−jωτ dω

C ′′
ψ̂
(τ ) =

1

2π

∫ ∞

−∞
−ω2S(ω)WJ(ω) e

−jωτ dω

• Evaluating C
ψ̂
(τ ) and C ′′

ψ̂
(τ ) at τ = 0 yields

C
ψ̂
(0) =

1

2π

∫ ∞

−∞
S(ω)WJ(ω) dω

C ′′
ψ̂
(0) =

1

2π

∫ ∞

−∞
−ω2S(ω)WJ(ω) dω
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Variable Exposure Time

• Multiple intervals T (and TWS) may be specified for an instrument with variable
exposure and for various instruments on the same platform (aircraft, missile,
spacecraft, etc).

– Performance is easily evaluated for various T , such as min, median max values.

– Performance specifications should take the range of exposure times into account.

• The displacement and jitter weighting functions move right as the interval decreases,
so the jitter covariance decreases

ΣJ(τ ) ≤ ΣJ(T ) for all τ < T (ΣJ(τ ) → 0 as τ → 0 )
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Windowed Stability Weighting Function

WWS(ωTS, ωTD) = WD(ωT )WPS(ωTWS)

T = 1, TWS = 1 T = 1, TWS = 4
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Allan Variance

• The Allan Variance (AVAR) was used originally to define the stability of atomic
clocks, radio frequency sources, and later to measure the performance of gyros.

• In the time domain, the Allan Variance is a convergent estimate of the variance.

• In the frequency domain, the AVAR is a product of WPS(ωT ) and WD(ωT ), and the
PSD of the data

The Allan Variance is a consistent estimator of variance and accounts for the finite
record length (window) of the data.

• WWS(ωT, ωT ) models the change in displacement between image centroids with no
time between the imaging intervals.

Wallan = WWS(ωT, ωT ) = WPS(ωT )WD(ωT ) =
sin4(ωT/2)

(ωT/2)2
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3. Methods to Compute the PSD

• The methods described for evaluating the Pointing Performance Metrics (PPM)
provides an effective and efficient means to evaluate pointing system performance.

– PPMs computed from frequency-domain data (or Fourier transform of time-domain
data) give insight into sensitivity to noise and disturbances at various frequencies
and amplitudes.

– PPMs can be computed individually for independent noise and disturbance sources,
then combined additively.

– PPMs can be evaluated for a variety of operating conditions for each disturbance.

• Methods to compute the PPMs (Covariance Matrices ΣX)

1. Frequency response

2. Lyapunov equation

3. Time response (2 methods)
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3.1 Power Spectral Density – Frequency Response Method (1/5)

A continuous-time linear time-invariant (LTI) state-space system (A,B,C,D) is

ẋ = Ax(t) +Bu(t)

y = Cx(t) +Du(t)

The frequency-domain transfer function from u(s) to y(s) is

G(s) = D + C(sI − A)−1B , s = jω

We assume that A is stable, Reλ(A) < 0. Usually D = 0, so it is omitted henceforth.

The power spectral density of the input u(t) is Su(ω).

The power spectral density Sy(ω) of the output y(t) is

Sy(s) = G(s)Su(s)G
∗(−s∗)

“∗” is complex conjugate transpose or Hermetian transpose, depending on context
c© 2019–2021 Mark E. Pittelkau Part 4: Pointing Performance Analysis — 31



Power Spectral Density – Frequency Response Method (2/5)

Abuse notation, write S(ω) ≡ S(s), s = jω. Let’s see how we might compute Sy(ω)

H(jω) = (jωI − A)−1B

Sx(ω) = H(jω)Su(ω)H
∗(jω)

Sy(ω) = CSx(ω)C
T

Some observations
• Su may be of moderate dimension and sparse (ex: 4 RW, cryo, RCS, 2 SA, 2 ST, 1 IMU).

• Sx is typically of large dimension (ex: state vector includes 20 to 200 modes).

• Sy may be of modest dimension (ex: payload, 2 ST, IMU [gyro, accelerometer]).

• We do not need the cross-covariance between different outputs, so we do not have to
compute the cross spectral density between different outputs.

• We want to compute the individual contributions of each disturbance source to the
covariance at each output so that we can compute relative contributions.
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Power Spectral Density – Frequency Response Method (3/5)

PartitionB and Su according to d independent disturbance sources so that we can evaluate
the response to each separately.

B =
[
B1 B2 · · · Bd

]

Su =





S1 0 · · · 0
0 S2

. . . ...
0 0 · · · Sd





Each Si, i = 1, 2, . . . , d is up to 6 × 6 in dimension, representing forces and torques in
each coordinate axis.

Either Bi or Si must incorporate coordinate transformations and unit conversions!
(Model the orientations of disturbance sources mounted on the structure modeled in A.)

Important: B and Su are partitioned this way because each disturbance input is applied
at a different location on the flexible structure, hence applied to different mode shapes.
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Power Spectral Density – Frequency Response Method (4/5)

The transfer function from disturbance source i to the state x is

Hi(jω) = (jωI − A)−1Bi

The spectral response to disturbance source i is

Sx,i(ω) = Hi(jω)BiSi(ω)B
T
i H

∗
i (jω)

Factor the input spectral density matrix Si(ω) = U i(ω)U
H
i (ω), then compute

X i(ω) = Hi(jω)BiU i(ω)

The spectral density matrix of the state vector due to input i is then

Sx,i(ω) =X i(ω)X
∗
i (ω)

The spectral response to all disturbance sources is

Sx(ω) =
d∑

i=1

Sx,i(ω) =
d∑

i=1

X i(ω)X
∗
i (ω)
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Power Spectral Density – Frequency Response Method (5/5)

Partition C according to each output of interest.

C =







C1

C2
...
Cq







The Co , o = 1, 2, . . . , q , output translational or rotational displacements and rates.

The Co must incorporate coordinate transformations and unit conversions!

Outputs of interest include motion at gyro and star tracker mounts, motion of a focal
plane or optical elements in an optical payload, or motion of a boom tip.
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Total State Covariance From All Disturbance Sources

The state covariance due to disturbance source i is

Σx,i =
1

2π

∫ ∞

−∞
SX,i(ω)WX(ωT ) dω

=
1

2π

∫ ∞

−∞
X i(ω)X

∗
i (ω)WX(ωT ) dω

≃ 1

2π

N∑

k=−N

X i(ωk)X
∗
i (ωk)WX(ωkT )∆ω

∆ω = ωmax/N with ωmax, N suitably large so that rectangular integration error is small.

The total state covariance due to all d disturbance sources is

Σx =
d∑

i=1

Σx,i
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Total Output Covariance From All Disturbance Sources

The covariance at output o due to disturbance source i is

Σy,oi = CoΣx,iC
T
o

The total covariance at output o due to all d disturbance sources is

Σy,o = CoΣxC
T
o =

d∑

i=1

Σy,oi

Define Y i(ω) = CoX i(ω). The covariance at output o due to source i can be computed as

Σy,i =
1

2π

∫ ∞

−∞
Y i(ω)Y

∗
i (ω)WX(ωT ) dω

≃ 1

2π

N∑

k=−N

Y i(ωk)Y
∗
i (ωk)WX(ωkT )∆ω
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Power Spectral Density – Harmonic Disturbance Sources (1/2)

Each Si(ω) comprises pi spectral components ωr, r = 1, 2, . . . , pi (harmonic, pure sine)
so the disturbance spectrum is

Si(ω) =

pi∑

r=1

Si,rπ
[
δ(ω + ωr) + δ(ω − ωr)

]

The Si,r are, in general, constant Hermetian positive semidefinite 6×6 matrices. Example:

Si,r =
1
2
diag

(
F 2
x F 2

y F 2
z T 2

x T 2
y T 2

z

)

where Fx, Fy, Fz are peak force disturbance amplitudes, and Tx, Ty, Tz are peak torque
disturbance amplitudes, all at the harmonic frequency ωr and in the coordinate axes of the
disturbance source. The amplitudes vary with frequency, though not annotated with r.
Fx = Fy, Tx = Ty. Fz and Tz are the axial force and torque.

In general the cross-spectral densities (cross-axes) may not be zero.
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Covariance – Harmonic Disturbance Sources (2/2)

The state covariance due to harmonic disturbance source i is

Σx,i =
1

2π

∫ ∞

−∞
Hi(jω)BiSi(ω)B

T
i H

∗
i (jω)WX(ωT ) dω

=
1

2π

∫ ∞

−∞

pi∑

r=1

Hi(jω)BiSi,rB
T
i H

∗
i (jω) π

[
δ(ω + ωr) + δ(ω − ωr)

]
WX(ωrT ) dω

=

pi∑

r=1

Re
[
Hi(jωr)BiSi,rB

T
i H

∗
i (jωr)

]
WX(ωrT )

=

pi∑

r=1

Re
[
X i,rX

∗
i,r

]
WX(ωT )

where Si,r = Ui,rU
∗
i,r and X i,r = Hi(jωr)BiUi,r
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Power Spectral Density – Frequency Response, Discrete System

A discrete-time linear time-invariant (LTI) state-space system (A,B,C,D), with constant
sample time T , is

xk+1 = Axk +Buk

yk = Cxk +Duk

The frequency-domain transfer function from u(s) to y(s) is

G(z) = D + C(zI − A)−1B , z = exp(jωT )

We assume that A is stable, |λ(A)| < 1. Usually have D = 0, so it is omitted henceforth.

The power spectral density of the input uk is Su(z).

The power spectral density Sy(z) of the output yk is

Sy(z) = G(z)Su(z)G
∗(1/z∗)
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Covariance – Frequency Response Method, Discrete System

Computations proceed as before, but with z = exp(jωT ) and frequency range |ωT | < π

Abuse notation again, write S(ω) = S(z), X(ω) =X(z)

Σx,i =
1

2π

∫ ∞

−∞
X i(e

jω)X∗
i (e

jω)WX(ωkT ) dω

≃ 1

2π

N∑

k=−N

X i(ωk)X
∗
i (e

jω)WX(ωkT )∆ω

where ωmax = π/T and ∆ω = ωmax/N = π/NT , and N is suitably large so that the
rectangular integration has sufficiently small error.
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3.2 Pointing Performance Evaluation – Lyapunov Equation

The pointing performance metrics for a continuous-time or discrete-time system driven
by zero-mean white noise can be evaluated by solving a Lyapunov equation.

• Continuous-time white noise input

– Noise sources include RW bearing noise, torque noise

– Integrate the weighted PSD (rectangular integration), or

– Solve a continuous-time Lyapunov equation.

• Discrete-time white noise input

– Noise sources include star trackers, gyros

– Integrate the weighted PSD (rectangular integration), or

– Solve a discrete-time Lyapunov equation, or

– Compute the FT of the autocorrelation of simulated time-domain data.
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Lyapunov Equation – Continuous System

• A Lyapunov equation can be solved for the covariance of the state and output of a
continuous-time system with zero-mean white noise input.

• A continuous-time linear time-invariant (LTI) state-space system (A,B,C,D) is

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) , D = 0

u(t) is a zero-mean white noise input with constant spectral density Qu

• Solve a Lyapunov equation for P and the covariance Σy of the output y(t)

AP + PAT + BQuB
T = 0

Σy = CPCT

Note that u(t) does not have to be Gaussian.

• Gregory’s method for structural model reduction is derived from a Lyapunov equation.
It applies to open-loop continuous-time structural response to white noise input.
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Lyapunov Equation – Discrete System

• A Lyapunov equation can be solved for the covariance of the state and output of a
discrete-time system with zero-mean white noise input.

• A discrete-time linear time-invariant (LTI) state-space system (A,B,C,D) is

xk+1 = Axk + Buk

yk = Cxk +Duk

uk is a zero-mean white noise input with constant covariance Σu

• Solve a Lyapunov equation for P and the covariance Σy of the output yk

APAT +BΣuB
T = 0

Σy = CPCT +DΣuD
T

Note that uk does not have to be Gaussian.

• The BT PSD algorithm is a time-domain alternative to the discrete-time Lyapunov
equation. The BT algorithm can serve as a check.
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System Modeling

• We need to have a discussion about modeling a continuous-discrete system and model
conversion. This is a topic for another seminar.

– Spacecraft structure, reaction wheels, and most disturbances are continuous-time.

– Pointing controller and attitude sensors (e.g., star trackers, gyros) are discrete-time.

– Does one convert continuous part to a discrete model or convert the discrete to
continuous model?

– How does one compute a valid frequency response?

• Weighting functions
√
WX(ωT ) must be approximated by rational transfer functions,

which are then augmented to the continuous-time system (A,B,C,D) for Lyapunov
analysis.

– Certain kinds of “tricks” may be used instead.
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3.3 Pointing Performance Evaluation – Time Domain

• Time-domain simulation is useful where frequency response may be difficult to apply.

– Nonlinear effects, transient events, and discrete-time events can be evaluated in
the frequency domain via linearization, or in the time domain.

• Time domain simulation could be useful for verification or blunder detection.

• Pointing error evaluation is primarily a frequency domain analysis!

• Time-domain simulation and analysis can be slow, especially Monte Carlo simulation.

• A wide range of time scales can significantly slow a time-domain simulation and
introduce numerical errors. This is especially true of structural modes.

• Simulation time and time step must be carefully considered. Numerical integration
error may interfere with the pointing error analysis.

• Numerical integration of states driven by continuous noise must be statistically valid.

• Ensure that pointing errors are stationary, otherwise bound the statistics, etc.

• Autocorrelations require data outside of a time window, but that data may not exist.
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Autocorrelation – Continuous-Time Data

Autocorrelation of x(t) =

[
x(t)
y(t)

]

,

R(τ ) = E{x(t + τ )xH(t)}

=

[
rxx(τ ) rxy(τ )

ryx(τ ) ryy(τ )

]

rxx(τ ) = E{x(t + τ )x∗(t)}
ryy(τ ) = E{y(t + τ )y∗(t)}
rxy(τ ) = E{x(t + τ )y∗(t)}
ryx(τ ) = E{y(t + τ )x∗(t)}

Autocovariance matrix

C(τ ) = R(τ )− µµT , µ = E{x(t)}
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Autocorrelation Matrix – Properties – Continuous-Time

Properties of the multichannel autocorrelation matrix (extends to discrete-time)

rxx(τ ) = rxx(−τ ) even function

ryy(τ ) = ryy(−τ ) even function

rxy(τ ) = r∗yx(−τ ) not an even function

ryx(τ ) = r∗xy(−τ ) not an even function

R(τ ) 6= R(−τ ) not an even function

R(τ ) 6= RH(τ ) not hermetian

R(−τ ) = RH(τ )

R(0) ≥ 0 nonnegative definite (at lag 0)

Tip: Our data x(t) is real, so we can replace Hermetian (H, complex conjugate transpose)
with transpose (T ).
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Detrending the Data

Tip: We will assume that bias and trend, or polynomial motion in general
(which is nonstationary) have been removed from x(t), so the autocorrelation
matrix R(τ ) is an autocovariance matrix.

The bias µ and trend s are IM OTF parameters.
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3.3A Power Spectral Density (PSD) – Continuous-Time

The Wiener-Khintchine Theorem says the Power Spectral Density S(ω) of a continuous-
time signal x(t) is the Fourier Transform (FT) of the autocovariance R(τ ) of x(t),

S(ω) =

∫ ∞

−∞
R(τ ) e−jωτ dτ power/Hz, ω in rad/sec

S(f) =

∫ ∞

−∞
R(τ ) e−j2πfτ dτ power/Hz, f in Hz

S(f) = SH(f) (Hermetian) and positive semidefinite. S(ω) ↔ R(τ ) (transform pair)

R(τ ) =
1

2π

∫ ∞

−∞
S(ω) ejωτ dω units of power, xxH

=

∫ ∞

−∞
S(f) ej2πfτ df

Abuse of notation: S(ω) ≡ S(f) with ω = 2πf (meaning should be clear from context)
c© 2019–2021 Mark E. Pittelkau Part 4: Pointing Performance Analysis — 50



Covariance and Pointing Metrics – Continuous-Time Data

The PPMs can be computed from the frequency-weighted power spectral density

ΣX = RX(0) =
1

2π

∫ ∞

−∞
S(ω)WX(ωT ) dω real, symmetric

=

∫ ∞

−∞
S(f)WX(2πfT ) df

WX(ωT ) is a weighting function, X is one of A, D, S, J, PS, WS – viz. PPM Summary Table

The Accuracy Metric (with WA(ωT ) = 1) is the covariance (average power)

ΣA = RA(0) =
1

2π

∫ ∞

−∞
S(ω) dω

=

∫ ∞

−∞
S(f) df
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Spectral Estimation Methods

• Non-Parametric methods

– Periodogram

– Blackman-Tukey Correlogram

• Parametric methods

– Yule-Walker Autoregressive Moving Average (ARMA) algorithm

The ARMA model is general, but the model order has to be chosen. There are ways to
do this automatically.

AR and MA models model only poles and zeros, respectively.

The BT spectral density estimator is statistically consistent for stochastic processes.

Other spectral estimation algorithms are not applicable here. For example, harmonic
models do not allow for damping or correlated random processes.
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Autocovariance – Stochastic Discrete-Time Data

The statistical autocovariance of a stochastic (random) sampled-data sequence xk is

R(k, k + ℓ) = E{xk+ℓx
H
k }

If the sequence has constant mean and the autocovariance depends only on the lag ℓ
(and not k) we say that xk is second-order stationary, which implies that it is wide-sense
stationary (WSS) (but not vice versa unless xk is Gaussian, in which case it is also strict-
sense stationary). We shall assume that xk is zero mean.

The autocovariance of a WSS sequence xk is then

R(ℓ) = E{xk+ℓx
H
k }

If xk is ergodic, the statistical autocovariance is obtained equivalently as a time average

R(ℓ) = E{xk+ℓx
H
k } = lim

N→∞

1

2N + 1

N∑

k=−N

xk+ℓx
H
k
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Autocorrelation – Discrete-Time Data

Autocorrelation of xk =

[
xk
yk

]

,

R(ℓ) = E{xk+ℓx
H
k }

=

[
rxx(ℓ) rxy(ℓ)

ryx(ℓ) ryy(ℓ)

]

ℓ = 0, ±1, ±2, . . .

rxx(ℓ) = E{xk+ℓ x
∗
k}

ryy(ℓ) = E{yk+ℓ y
∗
k}

rxy(ℓ) = E{xk+ℓ y
∗
k}

ryx(ℓ) = E{yk+ℓ x
∗
k}

Autocovariance matrix

C(ℓ) = R(ℓ)− µµT , µ = E{xk}
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Autocorrelation Matrix – Properties – Discrete-Time Data

Properties of the multichannel autocorrelation matrix (similar to continuous-time)

R(ℓ) 6= R(−ℓ) not an even function

R(ℓ) 6= RH(ℓ) not hermetian

R(ℓ) = RH(−ℓ)

R(−ℓ) = RH(ℓ)

R(0) ≥ 0 nonnegative definite (at lag 0)

Tip: Our data xk is real, so we can replace Hermetian (H, complex conjugate transpose)
with transpose (T ).
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Autocorrelation – More Properties – Discrete-Time Data

The matrix entries in R(ℓ) have the following properties

rxx(0) > 0 ryy(0) > 0

|rxx(ℓ)| ≤ rxx(0) |ryy(ℓ)| ≤ ryy(0)

rxx(−ℓ) = r∗xx(ℓ) ryy(−ℓ) = r∗yy(ℓ)

rxy(−ℓ) 6= r∗xy(ℓ) ryx(−ℓ) 6= r∗yx(ℓ)

rxy(−ℓ) = r∗yx(ℓ) ryx(−ℓ) = r∗xy(ℓ)

|rxy(ℓ)|2 ≤ rxx(0)ryy(0)

The matrixR(ℓ)may, in many contexts, be replaced by a vector (since ryx(ℓ) is redundant)

r(ℓ) =





rxx(ℓ)
ryy(ℓ)
rxy(ℓ)
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Power Spectral Density (PSD) – Discrete-Time Data

The Wiener-Khintchine Theorem says the PSD Sd(ω) of a discrete-time signal xk is the
Discrete-Time Fourier Transform (DTFT) of the autocovariance R(ℓ) of xk,

Sd(ω) = T
∞∑

ℓ=−∞
R(ℓ) exp(−jωℓT )

where T is the sample time.

We can write the PSD in terms of frequency f in Hz (with a slight abuse of notation)

Sd(f) = T
∞∑

ℓ=−∞
R(ℓ) exp(−j2πfℓT )

Units of Sd(ω) and Sd(f) are power/Hz = units of xxT per Hz
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Autocovariance – Discrete-Time Data

The autocovariance can be computed from the inverse DTFT of Sd(ω) or Sd(f),

R(ℓ) =
1

2π

∫ π/T

−π/T

Sd(ω) e
jωℓT dω

=

∫ 1/2T

−1/2T

Sd(f) e
j2πfℓT df

The covariance of xk is

Σ = R(0) =
1

2π

∫ π/T

−π/T

Sd(ω) dω

=

∫ 1/2T

−1/2T

Sd(f) df
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Autocorrelation, Autocovariance Estimate – Discrete-Time Data

The autocorrelation of xk can be expressed as a time average, provided that xk has finite
energy and is WSS (mean-ergodic and autocorrelation-ergodic). An infinite sequence xk is
not available, so we estimate the autocorrelation from N samples xk, k = 0, 1, . . . , N−1,

R̂(ℓ) = lim
N→∞

1

N

N−1−ℓ∑

k=0

xk+ℓx
H
k ℓ = 0, 1, . . . , N − 1

R̂(−ℓ) = R̂
H
(ℓ)

This is a biased estimator of R(ℓ) because E{R̂(ℓ)} =
N − |ℓ|

N
R(ℓ).

The unbiased estimator Ř(ℓ) =
N

N − |ℓ| R̂(ℓ) has a large variance for large ℓ.

Tip: Remove the mean and trend, or polynomial motion, from xk. Then R(τ ) is an
autocovariance matrix. The mean µ and trend s are IM OTF parameters.
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Discrete Fourier Transform (DFT)

Discrete Time Fourier Transform (DTFT) of a data sequence xk, k = 0, 1, . . . , N − 1

X(f) = T

N−1∑

n=0

xn e
−j2πfnT

The Discrete Fourier Transform (DFT) is computed on a grid of frequencies fm = m∆f ,
m = −(N − 1), . . . ,−1, 0, 1, . . . , N − 1, ∆f = 1/NT ,

Xm =X(fm) = T

N−1∑

n=0

xn e
−j2πfmnT

= T

N−1∑

n=0

xn e
−j2πmn/N

Pad the data sequence with (K − 1)N zeros and compute a KN -point DFT. Equivalent
to the N -point DFT on a finer grid with ∆f = 1/KNT and ±m = 0, 1, . . . , KN − 1.
Avoids missing a spectral line, resolves a possibly split spectral line, interpolates the DFT.
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Power Spectral Density Estimation – Periodogram

For a purely deterministic signal xk, the periodogram estimate of the PSD is

Sm =
1

NT
|Xm|2

The total power in the PSD is obtained by rectangular integration of the continuous PSD,

Σ =

[
N/2−1
∑

m=−(N/2−1)

Sm

]

∆f

The periodogram is statistically inconsistent for stochastic (random, noisy) data xk

— its variance increases with increasing N .

The periodogram can be used for deterministic data, but should be avoided for noisy
data. If the data sequence is long enough, average the periodograms of segments. Welch
periodogram uses overlapping segments. The resolution of the periodogram is reduced.

The Blackman-Tukey PSD estimator is statistically consistent for stochastic data.
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Blackman-Tukey (BT) PSD Estimator (1/3)

Blackman-Tukey (BT) algorithm computes an estimate of the PSD from the estimated
autocovariance matrix, using M lags, where M ≪ N ,

Ŝd(f) = T

M/2
∑

ℓ=−M/2

w(ℓ)R̂(ℓ) e−j2πfℓT units: power/Hz

• w(ℓ) is a length 2M +1 symmetric window function such that w(ℓ) = 0 for |ℓ| > M .

• It is recommended that M is about 1/5 to 1/10 of the number of lags (N) to reduce
bias and error in the estimated PSD.

• The window w(ℓ) effectively reduces the frequency resolution from 1/NT to 1/MT .

• Averaging periodograms of segmented data is equivalent to applying the BT algorithm
to the windowed autocorrelation.

• Evaluate the PSD on a fine grid fm = m∆f , ∆f = 1/KMT , m = 0, 1, . . . ,KM−1,
K ≫ 1 (e.g., K ≃ 10) [else w(ℓ)R̂(ℓ) or w(ℓ) can be padded with zeros]
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Blackman-Tukey (BT) PSD Estimator (2/3)

The estimated power spectral density should be positive semidefinite at each frequency.
This is the case when

• The window (“lag”) function w(ℓ) is a positive semidefinite sequence (non-negative
definite). Equivalently, the FT of w(ℓ) is positive semidefinite.

– Window functions that are positive semidefinite include Bartlett, Parzen, Nutall.

• The unbiased autocorrelation estimate R̂(ℓ) is positive semidefinite

– The biased estimate Ř(ℓ) can be negative definite or negative semidefinite.

• A seq. R(ℓ) is positive semidefinite if the Toeplitz matrix C is positive semidefinite:

C =







R(0) R(1) · · · R(M)
R(−1) R(0) · · · R(M − 1)

... ... . . . ...
R(−M) R(−M + 1) · · · R(0)
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Blackman-Tukey Algorithm (3/3)

The autocovariance is the inverse Discrete-Time Fourier Transform (DTFT) of Sd(ω),

R̂(ℓ) =

M/2
∑

m=−M/2

Ŝd(fm) e
j2πfmℓT ∆f

where ∆f = 1/MT . The covariance matrix is obtained at lag ℓ = 0,

Σ = R̂(0) =

M/2
∑

m=−M/2

Ŝd(fm)∆f

The frequency-domain weighting functions for a pointing error metric is included to get

ΣX =

M/2
∑

m=−M/2

Ŝd(fm)WX(fmT )∆f
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Check the Total Power in the Power Spectral Density

Be sure to correctly scale the DFT to a power spectrum! (Software packages may not.)

From Parseval’s Energy Theorem, the total power in the power spectral density must equal
the power in the time-domain signal

Σ =

[
M/2
∑

m=−M/2

Ŝd(fm)

]

∆f =
1

NT

[
N−1∑

n=0

xnx
H
n

]

T

These may differ slightly due to truncation and windowing of the autocovariance R̂(ℓ),
and the coarseness of the frequency grid.

For a white noise process xk with covariance Σx, the mean “noise floor” of the diagonal
terms in the PSD, when plotted per axis, should be Σx/M . (A statistical statement is
omitted.)

Results are not be valid if these simple checks are not passed.
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Coherence Function

The coherence function between signals xk and uk is

γ(f) =
|Sxu(f)|

√

Sxx(f)
√

Suu(f)

The Magnitude Square Coherence between signals xk and uk is

MSC(f) = |γ(f)|2 = |Sxu(f)|2
Sxx(f)Suu(f)

0 ≤ |γ(f)| ≤ 1

The Phase Coherence Function is

Φ(f) = arctan
(
Im(γ(f)),Re(γ(f))

)

When x or u is a vector, the coherence functions are computed component-wise.
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Example - PSD of a Sinusoid from Autocorrelation (1/2)

A deterministic sinusoidal sequence xn is not WSS: Its mean is not constant and its
autocorrelation depends on n.

A random sinusoidal process is WSS:

xn = A sin(2πfnT + θ)

where A is a fixed amplitude and θ is a random phase uniformly distributed on [0, 2π).

Its mean is constant: E{xn} =

∫ 2π

0

A sin(2πfnT + θ)
1

2π
dθ = 0

Its autocorrelation depends only on m, not on n,

rxx(m) = E{xn+mxn} =

∫ 2π

0

A sin(2πf(n +m)T + θ)A sin(2πfnT + θ)
1

2π
dθ

=
A2

2
cos(2πfmT )
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Example - PSD of a Sinusoid from Autocorrelation (2/2)

For a sum of L independent sinusoids with amplitudes Ai, frequencies fi, and phases θi,

rxx(m) =
L∑

i=1

A2
i

2
cos(2πfimT )

The PSD is

Sxx(f) =
L∑

i=1

A2
i

4

[
δ(f + fi) + δ(f − fi)

]

Integrate over frequency to get

σ2
xx =

L∑

i=1

A2
i

2

Similar results are obtained for random Ai with E{A2
i} = σ2

i and E{AiAj} = 0, i 6= j.

Tip: A pure tone is deterministic, but an exposure may begin at a random phase.
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3.3B Time-Domain Definitions for Pointing Metrics (summary)

Metric Time Domain

Accuracy ΣA = cov(p) = E{
[
p(t)− E{p(t)}

][
p(t)− E{p(t)}

]T}

Displacement ΣD = cov(p̄) = E{[〈p(t)〉
T
][〈p(t)〉

T
]T}

Smear Rate ΣR = cov(v̄) = E{[ 12
T 2 〈tp(t)〉

T
][ 12
T 2 〈tp(t)〉

T
]T}

Smear ΣS = T 2ΣR

Jitter ΣJ = E{
〈[
p(t)− 〈p(t)〉

T

][
p(t)− 〈p(t)〉

T

]T 〉

T

}

P-P Stability ΣPS = E{
[
p(t)− p(t− TPS)

][
p(t)− p(t− TPS)

]T} (Deprecated)

W-Stability ΣWS = E{
[
〈p(t)〉T − 〈p(t− TWS)〉T

][
〈p(t)〉T − 〈p(t− TWS)〉T

]T}

Average over the exposure interval of T seconds:
〈
x(t)

〉

T
=

1

T

∫ T/2

−T/2

x(to + t) dt

TWS is the time between image centroids
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Direct Time-Domain vs Frequency Domain Pointing Metrics

• The time-domain and frequency domain definitions of the Pointing Performance Met-
rics are mathematically equivalent. See the appendices in [35].

• The time-domain calculation of the PPMs is less informative: Cumulative power vs. fre-
quency and power in a frequency interval can be computed only by frequency domain
analysis.

• Control system design for linear and linearized dynamics is inherently a frequency-
domain exercise (except in trajectory optimization).

– Frequency-domain analysis is preferred for pointing performance.

– Time-domain analysis is useful for verification. Nonlinear or transient effects may
be evaluated (assuming stationarity).
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Difficulties in using Direct Time-Domain Pointing Metrics

• Although the pointing metrics are defined in continuous-time, they are evaluated from
simulated discrete-time data. The integrals become sums.

• Difficulties include

– There may not be enough samples in the exposure window.

– Autocorrelations require data outside the window; the data may not be stationary.

– Monte Carlo simulation is required to compute means, autocorrelations, and
covariances (time consuming). ⇒ Could compute the IM PSF and IM OTF directly.

∗ Imaging intervals in a single run could be used, but the pointing motion (image
motion) must be uncorrelated.

– Computing relative contributions of disturbance and noise sources requires
simulation runs for each source (with other sources off).

– Sensitivity analysis is time consuming, requiring additional simulation.
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4. Linearized Optical Model

An k×1 vector of translational and rotational displacements d of optical elements interior
to the optical system, including the focal plane, (or at the mounting for a pinhole camera
model) in terms of the mode shapes and slopes Φd and modal displacements q, is

d = Φd q

The image motion (or LOS motion) are computed from a geometric optical model

p = c
(
d
)

Since d is small, and if c(0) = 0, the image motion is

p = Cd d = CdΦd q

where Cd is a 2× n sensitivity matrix,

Cd =
∂c

∂dT

∣
∣
∣
∣
d = d0

d0 is a nominal displacement (e.g., misalignment, displacement after gravity off-loading)
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Time-Domain Evaluation of Image Motion
The modal displacement vector q(t) is the solution to

q̈ +Dq̇ + Λq = Φττ (q, t) +Φff (t)

τ is a vector of feedback control forces/torques, f is a vector of disturbance forces/torques.
The image motion (LOS pointing) is

p(t) = Cd d(t)

= CdΦd q(t)

The equations are linear, so we can sum individual contributions due to the f (i)(t)

p(i)(t) = Cd d
(i)(t)

= CdΦ
(i)
d q

(i)(t)

=⇒ p(t) =
∑

i

p(i)(t)

Disturbances are deterministic or stochastic/statistically independent (a mild assumption)

P p(ω) =
∑

i

P (i)
p (ω) =⇒ ΣX =

∑

i

Σ
(i)
X
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Frequency Domain Evaluation of Image Motion

Obtain the closed-loop transfer function G(jω) for the structural modes.
The frequency response of the displacements is

d(ω) = ΦdG(jω)Φff (ω)

The frequency response at the LOS (or focal plane) is

p(ω) = Cd d(ω)

= CdΦdG(jω)Φff (ω)

The equations are linear, so we can sum individual contributions due to the f (i)(ω)

p(i)(ω) = CdΦdG(jω)Φ
(i)
f f

(i)(ω) =⇒ p(ω) =
∑

i

p(i)(ω)

Disturbances are deterministic or stochastic/statistically independent (a mild assumption)

P p(ω) =
∑

i

P (i)
p (ω) =⇒ ΣX =

∑

i

Σ
(i)
X
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No Optical Model Available

• There is usually an initial baseline or reference design for a camera, updated periodically

– Rarely is there no information about an optical payload.

• In some situations an optical model is not available or can’t be used because either

– The optical system has not yet been designed, behind schedule, not released, or

– The pointing requirements are at the optical payload-bus mounting interface,

– Contractual or proprietary reasons, or programmatic or institutional reasons.

– The instrument designer can’t give it to the control system designer for security
reasons (if the optical system and its pointing performance are SCI).

• In any of those situations, there are ways to proceed

– Evaluate the pointing motion at the mounting interface, or

– Use a pinhole camera model and motion at the boresight or mounting interface, or

– Evaluate the displacements d(t) or d(ω) and compute the power spectrum P d(ω).
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Structural Model but No Geometric Optical Model Cd

d is of dimension n > 2 (usually n ≫ 2), so we prefer to compute the power spectrum of p.

In the absence of an optical model, compute d,

d(i)(t) = Φd q
(i)(t) =⇒ d(t) =

∑

i

d(i)(t)

d(i)(ω) = ΦdG(jω)Φ
(i)
f f

(i)(ω) =⇒ d(ω) =
∑

i

d(i)(ω)

Compute the power spectrum of d, and if you know the exposure time T , compute Σd,X

P d(ω) =
∑

i

P
(i)
d (ω) =⇒ Σd,X =

∑

i

Σ
(i)
d,X

If you have a pinhole camera model, d = θ, compute P θ(ω) and Σθ,X
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Structural Model but No Geometric Optical Model Cd (cont’d)

• If the optical system is SCI, you won’t know the exposure time(s) or the time between
exposures, so you can’t compute Σd,X.

– Σd,X cannot be evaluated when the exposure time is not known.

– You can either compute Σd,X parametrically over a range of exposure times, or

– Throw P d(ω) over the transom for the instrument designer to compute Σp,X

P p(ω) = CdP d(ω)C
T
d

Σp,X = CdΣd,XC
T
d

– Evaluate relative contributions of each disturbance source parametrically over a
range of exposure times.
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6. Relative Contribution Analysis
• Provides an effective and efficient means to evaluate pointing system performance.

• Provides a means to allocate/reallocate a component-level error budget.

• Covariances are additive for statistically independent disturbance (vector) inputs.

• PPMs can be computed for each individual noise and disturbance source, then added.

– Allows for changes in sensor and actuator models without recomputing everything.

– Allows for changes in operating conditions & parameters, e.g., RW speeds, damping.

– Gives insight into sensitivity to disturbances at various frequencies & amplitudes.

• Relative contributions to the PMs µ, ρ or s, ΣX from each source are easily evaluated
for various operating conditions and exposure times.

– worst offenders

– sensitive frequency intervals

– worst-case sensitivities

– cumulative power over frequency

– power in a frequency interval

– relative power in a frequency interval

• Weighting functionsWX change with exposure time, hence theΣ
(i)
X , but not the S(ω).
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Relative Contribution

• In general, a combination of pointing covariances from time-domain, frequency domain,
and stochastic disturbance sources will be computed and added.

• The relative contribution of each disturbance source (i) can be evaluated and ranked

riX =
σ̄(Σ

(i)
X )

σ̄(ΣX)
× 100% or riX =

tr(Σ
(i)
X )

tr(ΣX)
× 100%

Smear (s) and displacement (µ) can be treated similarly.

• Attention can be given to the major contributors.

– ΣX must include all sources for the ratio to make sense!

– Use estimates or allocations as proxies for the non-evaluated Σ
(i)
X .

– Or use an allocation (plus margin) for ΣX or the missing Σ
(i)
X .

• Optical systems typically operate over a range of exposure times, so multiple Σ
(i)
X , ΣX,

and riX have to be computed. Consider how results change with WX(ωT ) and T .

• The riX are not square root of the ratios because OTFs are functions of the covariance.
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Cumulative Power

• Cumulative Weighted Power (M + 1 frequency components in the discrete PSD)

P X(m) =
m∑

i=−m

S(ωi)WX(ωiT ) , 0 ≤ m ≤ M

(Expressed as an integral for a continuous power spectral density.)

Plot σ̄(P X(m)) or tr(P X(m)) versus m.

• Relative Cumulative Weighted Power

qX(m) =
σ̄(P X(m)

σ̄(P X(M))
or qX(m) =

tr(P X(m)

tr(P X(M))

Note: P X(M) ≡ ΣX is the total cumulative power.
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Power in a Frequency Interval

• The power in a frequency interval [ωm, ωn] is

P X(m,n) =
−m∑

i=−n

S(ωi)WX(ωiT ) +
n∑

i=m

S(ωi)WX(ωiT ) , 0 ≤ m ≤ M

• The Relative Weighted Power in a frequency interval is computed by the same formula
as the Relative Cumulative Weighted Power
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What to do If Pointing Requirements are not Met

• If the IM OTF requirements are met, it may be less important that a Pointing Petric
exceeds its requirement.

• Determine which IM OTF exceeds its requirements (displacement, smear, jitter), then
focus on the corresponding Pointing Metric.

– Focus on the most offending responses to each disturbance, based on the relative
contribution analysis.

– Locate the frequency range where the weighting function is large.

– Consider operational changes to mitigate the disturbance in the sensitive frequency
range (e.g., avoid imaging during thermal transient on S/A, change exposure time).

– Consider hardware modifications to reduce the disturbance amplitude or shift its
frequency to a less sensitive range (e.g., improved RW balancing, change structural
modes).

– Consider design changes (e.g., change structural modes, higher speed RW).
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Part 5: Reaction Wheel Disturbance Model
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6 DOF Reaction Wheel Dynamics Model [39, 40]

Dynamics model exhibits 3 vibration modes axial

translation, radial translation, radial rocking

(negative whirl and positive whirl modes)

Natural frequencies of the vibrational modes depend

on the wheel speed

Torque noise includes bearing noise, motor ripple,

many other effects.

The model is semi-analytical: Its parameters are

determined from design data, specifications, and test

data.

The model permits simulation and analysis of

pointing motion over a range of wheel speeds.

Figure is from Fig. 4-5 in [39]
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Semi-Analytical Reaction Wheel Model

Semi-Analytical model, aka “empirical”, “hybrid”, or “extended” model: Additional
harmonics and sub-harmonics gi, hj and amplitudes Bi, Cj (i 6= i∗ j 6= j∗) and
noise parameters are identified from test data.

Static and Dynamic imbalance coefficients (i∗, j∗ index the fundamental harmonics)

Bi∗ = Us gi∗ = 1 Us = msrs static imbalance

Cj∗ = Ud hj∗ = 1 Ud = 2mdrdh dynamic imbalance

and in addition

Dℓ∗ γℓ∗ = 1 axial force coefficient

Certain harmonics can be associated with bearing and race geometry.
The axial force is (assumed to be) driven by imbalances.
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Reaction Wheel Radial Translation Motion x(t), y(t)

[
M 0
0 M

][
ẍ
ÿ

]

+

[
b 0
0 b

][
ẋ
ẏ

]

+

[
k 0
0 k

][
x
y

]

=
m∑

i=1

BiΩ
2

[
− sin(giΩt)
cos(giΩt)

]

+

[
wx(t)
wy(t)

]

which can be written as two equations with a 90◦ phase relationship.

The radial translation mode, damping ratio, and poles are

ωT =
√

k/M modal frequency, radial translation

ζT = bz/2ωTM damping ratio

ω1,2 = −ζTωT ± jωT

√

1− ζ2T pole frequencies

total mass M = Mo +ms + 2md, wideband noise wx(t), wy(t)
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Reaction Wheel Cross-Axial Rotation Motion θ(t), φ(t)

[
Iθ

1
2
Ĩ sin(2Ωt)

1
2Ĩ sin(2Ωt) Iφ

][
θ̈

φ̈

]

+

[
c− ΩĨ sin(2Ωt) Ω

(
Izz + 2Ĩ cos2(Ωt)

)

−Ω
(
Izz + 2Ĩ sin2(Ωt)

)
c + ΩĨ sin(2Ωt)

][
θ̇

φ̇

]

+

[
κ 0
0 κ

][
θ
φ

]

=
n∑

j=1

CjΩ
2

[
cos(hjΩt)
sin(hjΩt)

]

+

[
wθ(t)
wφ(t)

]

Iθ = Irr + 2mdh
2 + Ĩ cos2(2Ωt)

Iφ = Irr + 2mdh
2 + Ĩ sin2(2Ωt)

Izz = Izz + 2Ĩ cos2(Ωt)

Ĩ = 2mdr
2
d +msr

2
s

rotational damping c = bd2k, stiffness κ = kd2c, wideband noise wθ(t), wφ(t)

c© 2019–2021 Mark E. Pittelkau Part 5: Reaction Wheel Disturbance Model — 5



Reaction Wheel Cross-Axial Rotation Motion – LTI Model

cos2(2Ωt) = 1
2 +

1
2 cos(2Ωt) ≃ 1

2

sin2(2Ωt) = 1
2 − 1

2 cos(2Ωt) ≃ 1
2

Linear time-invariant (LTI) approximation

Iθ ≃ Irr + 2mdh
2 + 1

2
Ĩ Iθ ≃ Irr

Iφ ≃ Irr + 2mdh
2 + 1

2
Ĩ or Iφ ≃ Irr

Iz ≃ Izz + Ĩ Iz ≃ Izz
[
Iθ

1
4
Ĩ

1
4
Ĩ Iφ

][
θ̈

φ̈

]

+

[
c− 1

2
ΩĨ ΩIz

−ΩIz c + 1
2
ΩĨ

][
θ̇

φ̇

]

+

[
κ 0
0 κ

][
θ
φ

]

=

n∑

j=1

CjΩ
2

[
cos(hjΩt)
sin(hjΩt)

]

+

[
wθ(t)
wφ(t)

]

positive, negative whirl modes (rocking modes) ω±
r = ± ΩIzz

2Irr
+

√
(
ΩIzz
2Irr

)2

+
κ

Irr
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Rotational Particular Solutions, Rocking Mode Resonance

The frequencies and damping ratios where the harmonic frequencies are equal to the
rocking modes are obtained by setting ω±

rj
= ωj = hjΩ and solving for ω±

rj
,

(ω±
rj
)2 =

hjκ

hjIrr ∓ Izz

ζ±rj =
hjc

2ω±
rj
(hjIrr + Izz)

The particular solutions to the rotational EOM at the harmonic frequency ωrj
= hjΩ are

θpj(t) =
hjBjΩ

2/(hjIrr − Izz)
(
2ωiζ

+
rj
ω+
rj

)2
+
(
ω2
j − (ω+

rj
)2
)2

[

2ωjζ
+
rj
ω+
rj
sinωjt−

(
ω2
j − (ω+

rj
)2
)
cosωjt

]

φpj(t) =
−hjBjΩ

2/(hjIrr − Izz)
(
2ωiζ

+
rj
ω+
rj

)2 −
(
ω2
j − (ω+

rj
)2
)2

[

2ωjζ
+
rj
ω+
rj
cosωjt +

(
ω2
j − (ω+

rj
)2
)
sinωjt

]
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Radial Translation Particular Solutions, Resonant Frequencies

The particular solutions to the translational EOM at the harmonic frequency ωi = giΩ are

xpi(t) =
CiΩ/M

(
2ωiζTωT

)2
+
(
ω2
i − ω2

T

)2

[
2ωiζTωT cosωit +

(
ω2
i − ω2

T

)
sinωit

]

ypi(t) =
CiΩ/M

(
2ωiζTωT

)2
+
(
ω2
i − ω2

T

)2

[
2ωiζTωT sinωit−

(
ω2
i − ω2

T

)
cosωit

]

The denominator has two roots where resonance occurs,

(ω±
i )

2 = ω2
T

(
1− 2ζ2T

)
± 2ζTω

2
T

√

ζ2T − 1

The wheel speeds at resonance are Ω± = ω±
i /gi. When ζT ≪ 1 we have ωi ≃ ωT .

The total response, excluding the homogeneous solution, is

x(t) =
∑m

i=1 xpi(t) y(t) =
∑m

i=1 ypi(t)
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PSD of Reaction Wheel Disturbances

The contour plot shows the PSD in (N-m)2/s

and frequency in Hz of several harmonic radial

torque disturbances as a function of wheel

speed in revolutions per second (RPS, Hz).

The nearly vertical lines that begin at 60 RPS

are the negative and positive whirl (rocking)

modes. A strong resonance occurs at wheel

speeds where the rocking modes cross a

harmonic frequency, that is, where the

harmonic frequency equals a rocking mode

frequency.

Torque noise is also seen in the contour plot.

Figure 13 in Liu, et al., 2007 [41]
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Reaction Wheel Axial Translation Motion z(t)

The axial disturbance force is modeled as

Fz(t) =

p
∑

ℓ=1

Fzℓ =

p
∑

ℓ=1

Dℓ cos(γℓΩ t + ϕℓ) + wz(t)

where Dℓ is the axial force coefficient, γℓ is the ℓth harmonic, and ϕℓ is the phase angle
w.r.t. the radial and rotational disturbance forces, and wz(t) is wideband noise.
Second-order spring-mass model assumed for axial translation

Mz̈ + bzż + kzz = Fz(t)

ωz =
√

kz/M modal frequency, radial translation

ζz = b/2ωzM damping ratio

ω1,2 = −ζzωz ± jωz

√

1− ζ2z pole frequencies
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Reaction Wheel Output Force and Torque Disturbances

Fx(t) = kx(t) Tx(t) = κθ(t)

Fy(t) = ky(t) Ty(t) = κφ(t)

Fz(t) = kzz(t) Tz(t) = 0

The axial torque disturbance Tz due to imbalance is negligible [39].

Motor torque noise is added to Tz.

Wideband noise includes bearing noise. Bearing noise is due to bearing imperfections and
lubricant dynamics.

Angular rate vector ω =





θ̇

φ̇
Ω
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PSD of Reaction Wheel Force and Torque

The PSD of the output disturbances is obtained directly from the analytical solutions from
the translational and rotational disturbance responses.

ui(t) =

[
F i(t)
T i(t)

]

u(t) =

[
F (t)
T (t)

]

=

q
∑

i=0

ui(t)

Su,i(ω) =

[
SFF,i(ω) SFT,i(ω)
STF,i(ω) STT,i(ω)

]

Su(ω) =

[
SFF (ω) SFT (ω)
STF (ω) STT (ω)

]

=

q
∑

i=0

Su,i(ω)

Su,i(ω) = FT{ui(t)u
T
i (t)}

Time Domain Fcn Fourier Transform

cosωt π[δ(ω + ωo) + δ(ω − ωo)] δ(ω) = Dirac delta function

sinωt jπ[δ(ω + ωo)− δ(ω − ωo)]
∫∞
−∞ δ(ω) dω = 1
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Example 1 – Back of the Envelope Calculation

Structural dynamics model, rigid body

H(s) =
1

Js2

Sinusoidal disturbance from reaction wheel imbalance, n wheels at different speeds ωk

d(t) =
n∑

k=1

Ak sinωkt Ak = (Ud + rUs)ω
2
k

Ud = dynamic imbalance, Us = static imbalance, r = moment arm length

Power Spectral Density (PSD) of the disturbance

|D(ω)|2 =
n∑

k=1

A2
k

2
π
[
δ(ω + ωk) + δ(ω − ωk)

]

δ(ω) = Dirac delta function,
∫∞
−∞ δ(ω) dω = 1
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Example 1 (cont’d)

Jitter Variance

σ2
J =

1

2π

∫ ∞

−∞

∣
∣H(jω)

∣
∣2
∣
∣D(ω)

∣
∣2WJ(ωT ) dω

=

n∑

k=1

∣
∣H(jωk)

∣
∣2
A2

k

2
WJ(ωkT )

= 2
n∑

k=1

∣
∣
∣
∣

1

−Jω2
k

∣
∣
∣
∣

2
1

2

(
(Ud + rUs)ω

2
k

)2
WJ(ωkT )

=

(
Ud + rUs

J

)2 n∑

k=1

WJ(ωkT )

c© 2019–2021 Mark E. Pittelkau Part 5: Reaction Wheel Disturbance Model — 14



Example 2 – Back of the Envelope Calculation

Structural dynamics model, rigid body + flexible body mode

H(s) =
1

Js2
+

φoφi

s2 + 2ζω2
ks + ω2

k

Sinusoidal disturbance due to reaction wheel imbalance, wheel k at speed ωk

d(t) = Ak sinωkt Ak = (Ud + rUs)ω
2
k

Ud = dynamic imblance, Us = static imbalance, r = moment arm length

Power Spectral Density (PSD) of the disturbance

|D(ω)|2 =
n∑

k=1

A2
k

2
π
[
δ(ω + ωk) + δ(ω − ωk)

]

δ = Dirac delta function,
∫∞
−∞ δ(ω) dω = 1
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Example 2 (cont’d)

Jitter Variance

σ2
J =

1

2π

∫ ∞

−∞

∣
∣H(jω)

∣
∣2|D(ω)|2WJ(ωT ) dω

=

n∑

k=1

∣
∣H(jωk)

∣
∣2
A2

k

2
WJ(ωkT )

= 2

∣
∣
∣
∣

1

−Jω2
k

+
φoφi

j2ζω2
k

∣
∣
∣
∣

2
1

2

(
(Ud + rUs)ω

2
k

)2
WJ(ωkT )

= (Ud +RUs)
2

[(
1

J

)2

+

(
φoφi

2ζ

)2
]

WJ(ωkT )

In a preliminary analysis, flexible-body modes can be treated by assuming some modal
gain and damping so that 20 log(φoφi/2ζ) is, for example, 30 or 40 dB
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Part 6: Summary & Recommendations
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Summary of Pointing Performance Analysis Methodology

1. The statistical Image Motion OTF describes the average OTF due to image motion. IM OTF require-

ments translate (in a nonlinear way) into requirements on shift, smear, and jitter covariance. A lower

bound on the IM OTF, or a minimum image resolution and minimum MTF area, should be specified

with a confidence level. It’s likely that margin is already built into an IM OTF requirement.

2. The IM OTFs augment traditional deterministic and Monte Carlo methods of optical payload perfor-

mance analysis.

3. Identify and model all disturbance sources, steady-state and transient. Make a chart of disturbance

frequency bands. Classify steady-state disturbances as tonal fixed (tunable, non-tunable, variable)

including harmonics, wide band/broadband/stochastic (stationary). Specify sweep rate of tonal variable.

4. Develop time domain and frequency domain models of disturbance sources, discrete or continuous.

5. Develop a continuous-time, discrete-time, or continuous-discrete model of the system. (Controller is

discrete, plant is continuous.) Be careful with model conversions when stochastic inputs are involved.

6. Vary wheel speeds to find the average, median, worst-case responses. Use knowledge of damped natural

frequencies and modal gain of the structure to hit peak resonances. Note: Transient response is smaller,

e.g., frequency sweep through a mode.
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Pointing Performance Analysis Summary (cont’d)

7. Evaluate the power spectral density of the disturbance response. Then weight and sum to get covariance

matrices (the PPMs).

8. The covariance response to continuous or discrete sensor noise (white noise) input can be evaluated

as the solution to a Lyapunov equation. Frequency weighting functions can be included, but must be

approximated by rational transfer functions. (However, see [30].)

9. Determine the sensitivity of outputs to parameters such as modal frequency, modal damping, coupled

damping, modal gain, and disturbance amplitude and frequency. Sensitivity may have to be evaluated

at various nominal parameters. Sensitivity analysis is essential to performance analysis.

10. Evaluate the closed-loop response from each disturbance input to each output at critical locations

such as star trackers, gyros, accelerometers, and payload focal plane (or LOS if no payload model is

available).

11. Evaluate the relative contribution of each disturbance source to the overall performance.

12. Evaluate performance under various operating conditions (e.g., wheel speeds, control modes, BOL,

EOL) and various geometrical configurations (e.g., SA rotation angle).
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N Cautions – Avoiding Problems

• Control system design is inherently a frequency-domain exercise. PPMs are most efficiently and

accurately evaluated by using frequency response analysis.

• Frequency-domain and time-domain formulas apply to deterministic and stochastic signals.

• The weighting functions WX(ω) weight the power spectrum S(ω), not an amplitude spectrum

For example, the jitter weighting function WJ(ω) does not apply to the structural response q.

• The weighting functions are H2 weightings, not H∞ weightings.

• Frequency-domain and time-domain formulas for the PPMs are (theoretically) equivalent.

Frequency domain methods are preferred for most pointing error analyses.

• Time-domain analysis can be slow and inaccurate due to time scales. Ensemble data (Monte Carlo or

segmented data) may be required. Time-domain analysis can be used for specific cases and as a check

on frequency-domain and Lyapunov analyses.

• Frequency-domain and time-domain resolution do not have to be uniform when using superposition of

statistically independent disturbance responses. They have to be small enough to faithfully simulate

essential features of pointing motion and image motion. Frequency resolution results from the finite

length of a sampled-data record.
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N Cautions (cont’d)
• The error weighting functions have to be approximated by rational transfer functions (Laplace trans-

forms) to use linear control system analysis methods such as state-space models and rational transfer

functions. Be cognizant of approximation errors affecting results of analyses.

• Don’t confuse the power spectrum and power spectral density. Software packages may not provide the

proper scaling.

• When computing the power spectrum from time-domain data, use the biased autocovariance of the data,

use 1/4 to 1/10 of the available lags, and window the autocovariance data using a positive-definite

weighting function.

• Ensure that the total power in the frequency domain equals the total power in the time domain when

computing the power spectral density from time-domain data.

• Pure sinusoidal motion may manifest as split spectral lines (leakage) in the power spectrum, due to the

finite record length. Split spectral lines can be distinguished by evaluating the PSD over a fine grid of

frequencies, or by zero padding the data. These do not improve the resolution of the BT periodogram.

• Be careful of aliasing. It may exist in an actual system and affect performance. It can also be created

in a model of the system.
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N Cautions (cont’d)
• Zero-order holds provide additional filtering – don’t leave them out of the model where they are required.

• Traditionally the cutoff frequency for jitter motion is 1/T Hz, but motion at frequencies below 1/T Hz

also contributes to jitter and displacement, smear. The half-power frequency is about 0.85/T Hz. If

one has to define a cutoff frequency, specify the frequency at 10% gain at about 0.5/T Hz.
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N Cautions (cont’d)
• Apply model uncertainty factors (MUFs) with care. Identify and mitigate hidden margin and margin-

on-margin.

• Modal damping within and near the controller bandwidth will increase or decrease with changes in

modal frequency, modal gain, controller parameters, sensor and actuator performance, and latency.

• The closed-loop response of structural modes at or near the control loop bandwidth should not be

evaluated open-loop.

– Gain-stabilized modes are not controlled, but feedback can increase or decrease modal damping.

– Phase-stabilized modes are controlled; greater loop gain yields greater damping.

• The RMS of Gaussian random amplitudes of sinusoidal motion is the factor that determines the IM OTF.

– Random phase does not matter to average performance. Coherent, deterministic, or specific phases

do matter.

– The IM OTF in the presence of a dominant tonal disturbance is a zero-order Bessel function J0.

– Smear, statistical smear, and jitter OTFs cannot, in general, be separated into x and y-axis OTFs.
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Are we there yet? What more is there to do?

• Get feedback from GN&C and optical engineers regarding application and effectiveness
of IM OTF and PPMs in design and operation (reports, presentations, publications).

• Develop guidelines to allocate an OTF requirement to IM OTF, to allocate an IM OTF
requirement to OTFD, OTFS, OTFJ; to state requirements, and to verify IM OTF
and pointing requirements.

• Develop guidelines to define PPM requirements for ρ, ΣS from an OTFS requirement.

• Analyze and document the Harmonic OTF further and describe its average properties
and behavior with multiple sinusoids over various distributions

• Investigate and 2D Harmonic OTF with vibration in two axes, including circular and
ellipsoidal (relative phase) vibration.

• Develop a statistical Wave Front OTF (WF OTF).

• Develop statistical Image Motion OTFs for other types of optical detectors such as a
time-delay-integration (TDI) line scan (pushbroom) and shutter (APS detector).
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Nomenclature & Definitions

ξ = 2D spatial frequency

sinc(x) =
sinx

x
= sinc function

S(ω) = power spectral density

R(ℓ) = correlation matrix

E{·} = statistical expectation

〈·〉
T
= time average over a time window of width T
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Acronyms & Abbreviations (1/2)
FWHM full-width half-maximum
PSF point spread function
LSF line spread function
OTF optical transfer function
IM OTF image motion optical transfer function
PTF phase transfer function
MTF modulation transfer function
MTFA area under the modulation transfer function, above the NEM
NEM noise equivalent modulation
CTF contrast transfer function
WFE wavefront error
PM pointing metrics
PPM pointing performance metrics
PEM pointing error metrics
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Acronyms & Abbreviations (2/2)

PSD power spectral density
BT Blackman-Tukey
RCS reaction control system (thrusters)
SA solar array
cryo cryo cooler (cryo pump)
HGA high gain antenna
RW reaction wheel
ST star tracker
IMU inertial measurement unit (gyros)
LOS line of sight
EOL end of life
BOL beginning of life
MUF model uncertainty factor
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