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Partial Differential Equations
Motivation & Background

e Equations involving rates of change
e How we describe the world around us
e Vast array of equations and applications

e We want fast, accurate and robust solvers

General Form of First Order PDE
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\ 1D Advection Equation
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Scalar Advection Advective Burger's Equation
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Discretization (Grids)

e How we slice up our domain
e Transition from continuous to discrete domain

e How we inform computers to evaluate our solutions.

AZ Refers to the spacing between to grid points

Discretization of 1D Advection Equation



Finite Differences
\ e Application of the definition of the derivative

e Fast method but can require fine grid sizes for accurate solutions

e Trivally programmable
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An example in 1D
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Meshes

Spatial representation of discrete cells
Does not have to be uniform
Various types of cells
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Finite Volume Method

Cell averages as computational nodes
Flux through cells are conserative

Straight forward implementation
Canrequire fine grids for improved accuracy

Finite Volume 1D Advection Equation
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Numerical Fluxes
Define: fii%
o Lax-Friedrichs

1 1A
fit = sUT + 1) — gRe(wiy — uf)

Lax-Wendroff

fzjL = f(u,i:ﬁ%)
1 1 At
i 3+ ) — SRS~ )

5 i-l-g
| At
ul” ) = 5(ul tulg) — mp (g — ;)



\ Shocks (discontinuities)
Riemann Problem
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Shocks
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\ Compressible Euler Equations
1D Fluid Mechanics

Mass
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1D Fluid Mechanics

\ Euler Equations and Exact Solution

Density Energy Pressure



1D Fluid Mechanics

\ Euler Equations and Finite Volume Method



Thanks for listening! \



EXTRA SLIDES



Flux Limiters

1D Linear Advection Example
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Finite Element Method

e Divides the PDE on to the mesh in order to solve within each cell (finite element)
e Canbe made accurate with high order methods
e Complex methods become extremely complex programming problems

Approximate solution with a basis, evaluated on the grid

Multiply PDE by test function (¥) and integrate over domain




