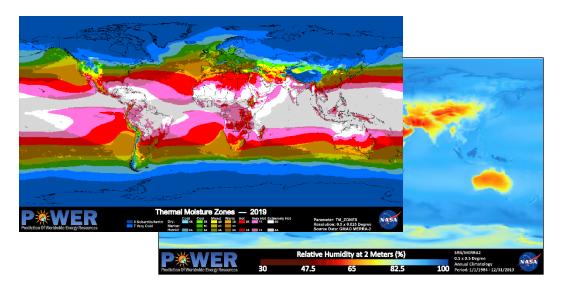
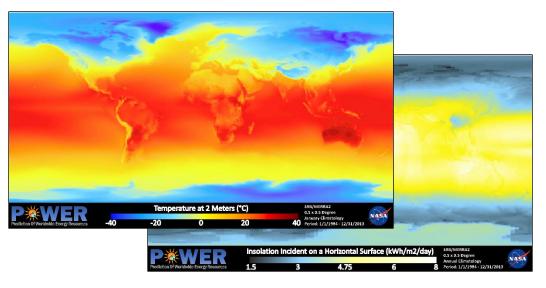


Introduction to the POWER Project

NASA Applied Science Week 2021 August 10th, 2021


Prediction Of Worldwide Energy Resource (POWER)


Aiming to improve the nation's public/private capability for integrating environmental data from NASA Earth observations, analysis and modeling, particularly information related to surface solar irradiance, to support increased **renewable energy development, building energy efficiency,** and **agroclimatology applications**.

https://power.larc.nasa.gov/

Principal Investigator: Dr. Paul W. Stackhouse, Jr. – National Aeronautics and Space Administration (NASA) **Co-Investigators:**

- Bradley Macpherson, Madison Broddle, Chequel McNeil, & A. Jason Barnett Booz Allen Hamilton (BAH)
- Colleen Mikovitz & Taiping Zhang Science Systems and Applications, Inc. (SSAI)

Trade names and trademarks are used in this presentation for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

What Questions can be Answered with Earth Observations?

How can we help farmers in remote locations more effectively plan and grow crops?

How can we understand the variability of building environment climate parameters needed to determine current and future building standards? What about remove areas with poor ground measurements?

How can we determine if incorporating renewable technologies makes sense from an environmental and economic perspective?

Can I monitor the performance of my building and see if retrofitting renewable technologies is feasible and afterwards effective?

How can I introduce a class to principles and effectiveness of implementing solar technologies anywhere around the world?

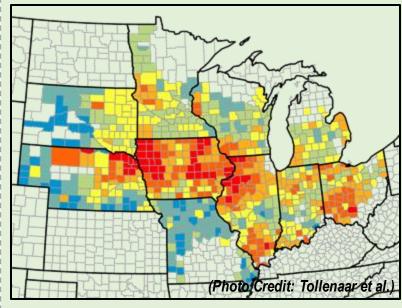
What are POWER's Impacts on the Community?

m

Renewable Energy

A West African Community used POWER data to evaluate a solar panel insulation; it was determined that the insulation's underperformance was caused by cloud patterns. This data then used to modify the system to better support the community.

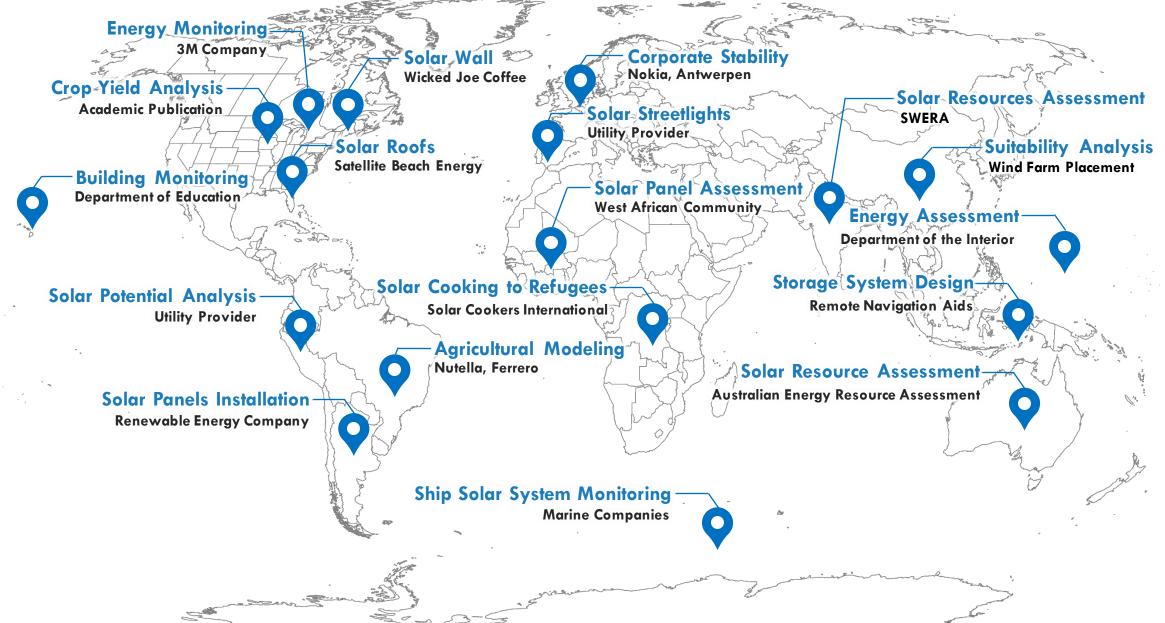
Climatological Information


Sustainable Buildings

Wicked Joe Coffee utilized
RETScreen™ and POWER data to
determined that a glazed solar wall
would capture 40% more heat savings
of approximately \$10,000 per year.

Climatological and NRT time-series: See more at NASA's <u>Space for US</u>

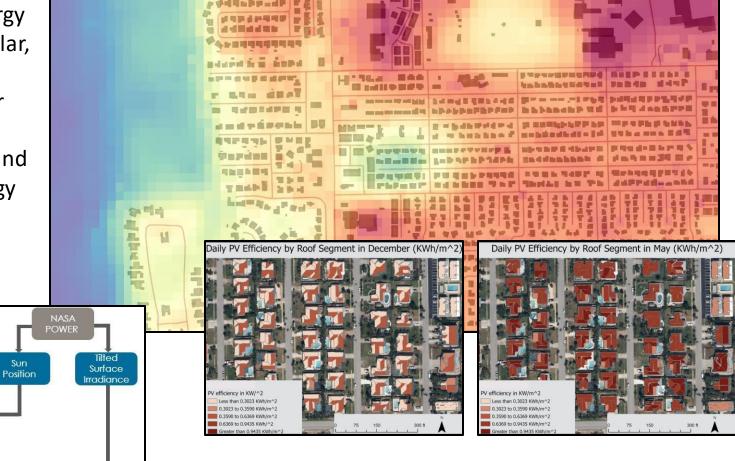
Agroclimatology



In the article 'The contribution of solar brightening to the user maize yield trend' POWER Data was used to help explain a 25% productivity increase in US corn-belt states!

Time-series Information

What are POWER's Impacts on the Community?

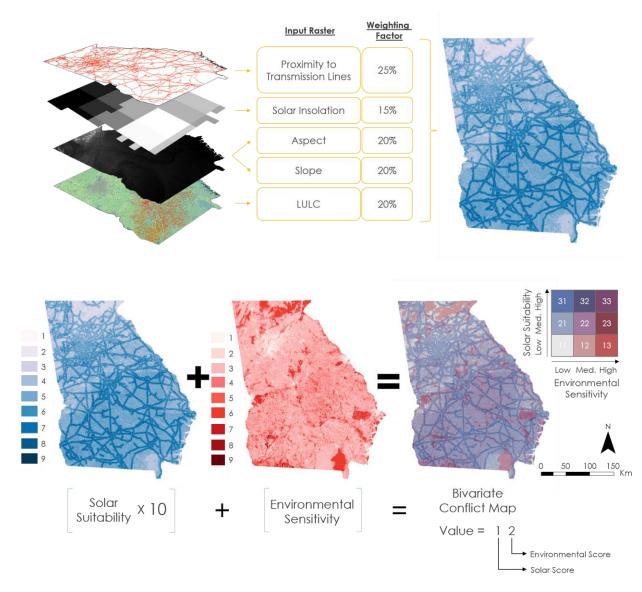

How can Solar Irradiance Parameters be Used? DEVELOP Project

Summer 2020: Satellite Beach Energy

- The City of Satellite Beach, FL, has committed to supplying 100% of its energy use from renewable energy, primarily solar, by the year 2050.
- The team estimated rooftop solar power potential using a high-resolution Light Detection and Ranging (LiDAR) dataset and the NASA Prediction of Worldwide Energy Resources (POWER) dataset to assist Satellite Beach in reaching their solar renewable energy goals.

Footprints

Aspect



How can Solar Insolation Parameters be Used? DEVELOP Project

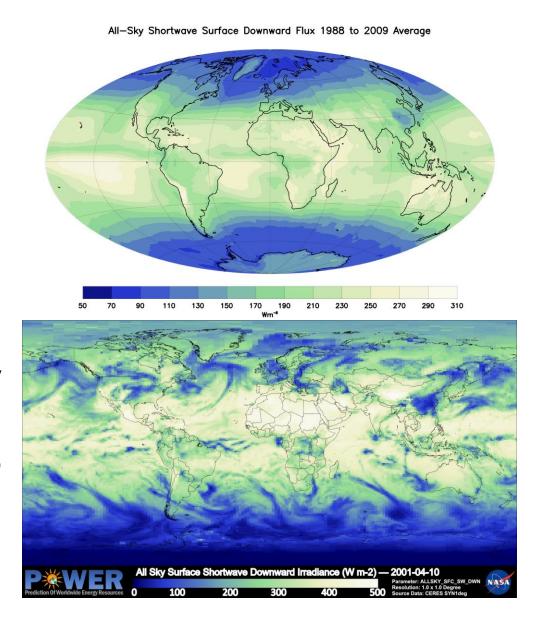
Summer 2020: Georgia Energy III

- The rapid expansion of the solar industry across the state of Georgia has a detrimental effect on the habitats of keystone and threatened species, such as the gopher tortoise and the American black bear.
- NASA DEVELOP collaborated with the Georgia Chapter of The Nature Conservancy (TNC) to assess the conflict between solar suitability and environmentally sensitive areas with the Land-Use Conflict Identification Strategy (LUCIS). The project utilized NASA Earth Observation and POWER Solar Insolation data to conduct and compare a general statewide LUCIS analysis from 2017 to 2019 and to complete an in-depth LUCIS analysis of Georgia's fastest-growing solar counties.

What NASA EO Can Provide These Data Parameters?

The POWER Data Archive uses NASA research and modeling data products plus value added data processing and services to customize parameters for community use.

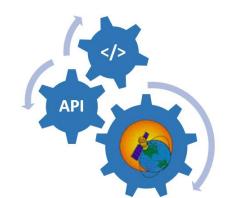
Source	Temporal Span		Temporal Average		Description
	Start	End	Input	Output	Description
GEWEX SRB 4.0	July 1, 1983	Dec. 31, 2000	Daily	Daily, Monthly, Annual, Multi-year	Satellite analysis from global cloud imagers (from geosynchronous and polar orbiters satellites) using radiative transfer lookup tables
CERES SYN1Deg (Ed 4A)	Jan 1, 2001	End of SYN1Deg (current)	Hourly	Hourly, Daily, Monthly, Annual, Multi-year	Satellite analysis from CERES convolved with MODIS for scene and TOA fluxes, then uses radiative transfer with additional input from geosynchronous satellites and other inputs to produce surface fluxes
CERES FLASHFlux	End of SYN1deg (current)	Near Real Time	Daily	Daily, Monthly, Annual, Multi-year	Satellite analysis of CERES (reflected solar) and MODIS (cloud imager) measurements (on Terra and Aqua satellites)
MERRA-2	Jan. 1, 1981	End of MERRA-2 (current)	Hourly	Hourly, Daily, Monthly, Annual, Multi-year	Atmospheric reanalysis with assimilated observations (1-2 months behind real time)
<u>GMAO FP-IT</u> (<u>GEOS</u> <u>5.12.4</u>)	End of MERRA-2	Near Real Time	Hourly	Hourly, Daily, Monthly, Annual, Multi-year	Atmospheric reanalysis with assimilated observations with less assimilated observations, available within 2 days of real-time



What Sorts of Data Help Enhance POWER's Utility?

Time Averaged vs. Time Series

- Some users require statistics from long-term averaged data parameters
 - Useful for feasibility and engineering studies for large numbers of renewable energy projects
 - POWER beta now allows users to choose years for long-term averages
- Some users require time series data products
 - Useful for modeling energy systems with observed variability
 - Useful for monitoring building energy efficiency performance
 - POWER beta now allows up to hourly averaged data products but also features daily, monthly, annual time series statistics



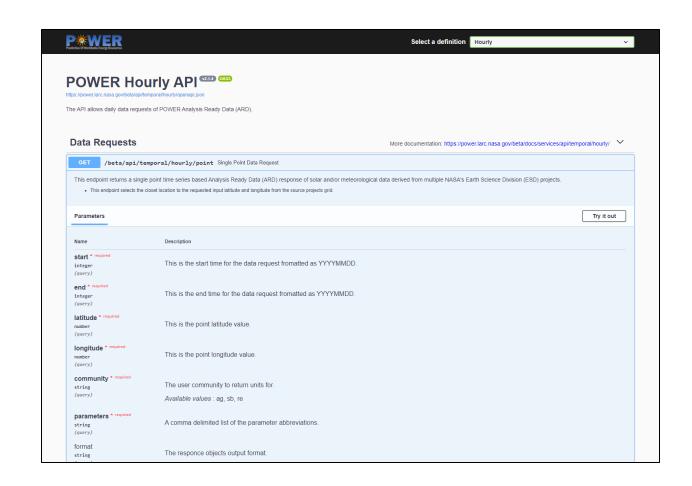
How do you Access POWER Data?

- POWER provides an integrated services suite to efficiently access environmental data, pre-computed analysis reports for management of energy production, and monitoring energy efficiently systems, as source data for modeling software.
- POWER enhances data discovery, access, and distribution as Analysis Ready Data (ARD) for direct application of inputs to decision to support tools, modeling and forecasting packages, and as inputs to scientific research is provided via three basic services:
 - Application Programming Interface (API)
 - Data Access Viewer (DAV)
 - Geospatial Services

APIs

Data Access Viewer

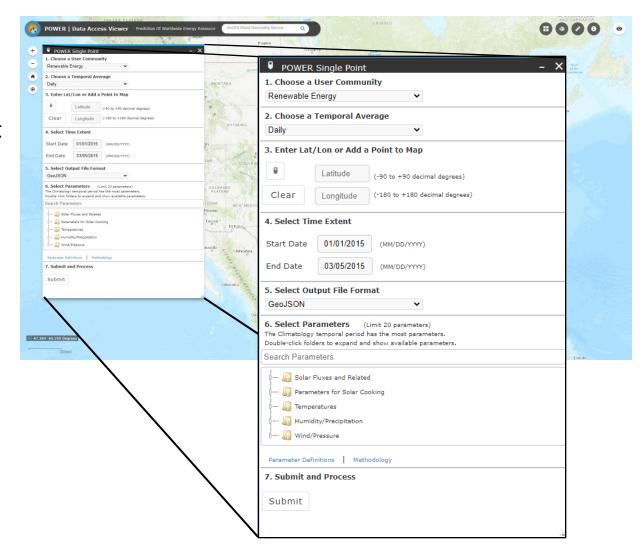
Geospatial Services



What Does the POWER API Do?

The POWER API delivers Analysis Ready Data (ARD) for inputs to decision to support tools, modeling and forecasting packages, and as inputs to scientific research by providing:

- Complete access to entire database without any other services
- Direct integration into external applications; users can submit a request and a response will be returned without leaving their application!
- User specified subsets converted into user community specific units and provides formats like ASCII, ICASA, CSV, GeoJSON, NetCDF, and more!



What is the POWER Data Access Viewer (DAV)?

- Provides a front-end web map with a simple user interface via integrated widgets that is responsive and built for mobile and desktop use.
- Allows users to select community specific parameters, units, time periods, and the output formats to efficiently retrieve data from the Application Programing Interface (API).
- Enables users to follow a set of questions and without programming knowledge, to create the API request URL and download the requested data.
- Displays global ArcGIS Image and Feature Services of data parameters and provides simple graphing capabilities.

How do you use the POWER Data Access Viewer (DAV)?

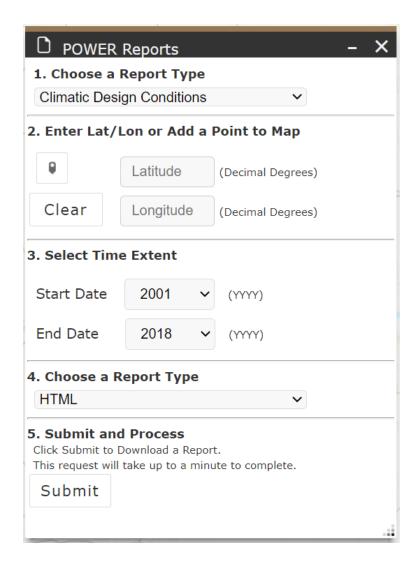
Multiple Data Access Options

What are POWER's Analytic Data Services?

New now in power/beta ...

POWER provides single location, user specified time period reports to assess long-term variability:

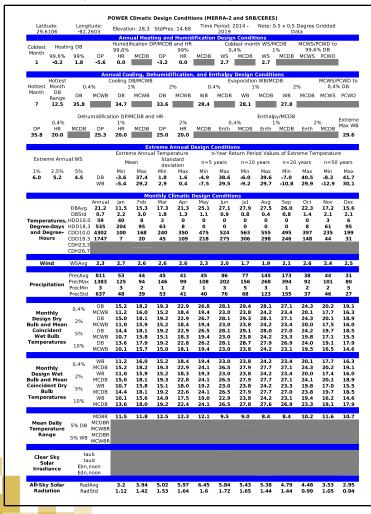
Anomaly Report

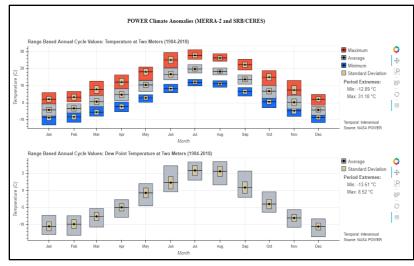

- Timeseries plots and climatological assessments
- ASHRAE® building climate zone indicators change plots for climate monitoring

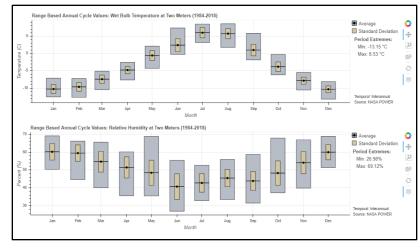
Building Climate Design Conditions Report

 Developed with ASHRAE® from the Design Condition report

Windrose Report

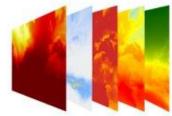

 Average wind speeds reported in tables classified according to NREL using wind energy thresholds




Analytic Data Services - Report Outputs

Building Climatic Design Conditions

Climate Variability and Anomalies Report



Windrose Report Table by NREL Classes

```
NASA/POWER Wind Rose MERRA2/GEOS 5.12.4 (FP-IT) 0.5 x 0.5 Degree Daily Averaged Data
Dates (month/day/year): 01/01/1984 through 12/31/2018
Location: Latitude 38.9531 Longitude -77.028
Elevation from MERRA-2: Average for 1/2x1/2 degree lat/lon region = 83.32 meters Site = na
Value for missing model data; cannot be computed or out of model availability range: -999
Parameter(s):
                   CLASS_1: 0-1.5 m/s
                   CLASS 2: 1.5-3.0 m/s
                   CLASS 3: 3.0-4.4 m/s
                   CLASS_4: 4.4-5.1 m/s
                   CLASS_6: 5.6-6.0 m/s
                   CLASS 7: 6.0-6.4 m/s
                   CLASS 8: 6.4-7.0 m/s
                   CLASS_10: 9.4+ m/s
             Wind Rose at 50 meters (percent)
                   CLASS 1: 0-1.5 m/s
                   CLASS_2: 1.5-3.0 m/s
                   CLASS_3: 3.0-5.6 m/s
                   CLASS 5: 6.4-7.0 m/s
                   CLASS 6: 7.0-7.5 m/s
                   CLASS_7: 7.5-8.0 m/s
                   CLASS_9: 8.8-11.9 m/s
                   CLASS_10: 11.9+ m/s
              Wind Direction Percent (percent)
   WD_AVG
              Wind Direction Average Wind Speed (m/s)
               This consists of 16 22.5 degree swaths; the center point being defined. (degrees)
              The NREL Wind Classifications with enhanced low-end wind levels that have different cutoffs for 10m and 50m Heights
PARAMETER DIRECTION CLASS_1 CLASS_2 CLASS_3 CLASS_4 CLASS_5 CLASS_5 CLASS_7 CLASS_8 CLASS_9 CLASS_10 WD_PCT WD_AVG
-END HEADER-
                               4.07
                                       1.27
                                                        0.02
                                                                 0.01
                                                                                  0.00
                                                                                                           6.87
                                                                                                                   2.28
                               4.69
                                                        0.10
                                                                                                                   2.64
                                                                 0.02
                              2.56
                              1.76
                                                        0.00
                                                                 0.00
                                                                         0.01
   WR10M
             180.0
                                       0.51
                                                0.09
                                                        0.02
                                                                0.02
                                                                         0.02
                                                                                  0.00
                                                                                                    0.00
                              2.07
                                                        0.02
                                                                         0.01
                                       0.80
                                                        0.03
                                                                 0.02
                                                                         0.02
                                                                                 0.02
                              2.64
                                       1.34
                                                0.13
                                                        0.08
                                                                 0.04
                                                                         0.03
                               3.30
                                                        0.23
                                                                 0.09
    WR10M
                              1.85
                                                        0.41
                                                                 0.16
                                                                         0.23
                                                                                  0.15
                              1.73
                                                0.53
                                                        0.16
                                                                 0.11
                                                                         0.03
                                                                                  0.02
    WR50M
                              1.63
                                                        0.21
    WRSOM
             999.9
                              1.48
                                       3.81
                                                        0.20
                                                                 0.15
                                                                         0.09
                                               0.24
                              1.45
                                                        9.96
                                                                 0.05
                                       1.45
                                                                         0.02
                                                        0.07
    WRSOM
                              1.18
                                       1.81
                                                        0.10
                                                                 0.04
    WR50M
                              1.31
                                                0.17
                                                        0.12
                                                                         0.02
                                                                                  0.05
                              1.20
                                       1.83
                                                        0.12
                                                                 0.05
                                                                         0.02
                                                                                  0.02
                              1.31
    WRSOM
             315.0
                              1.53
                                       4.21
                                               1.30
                                                        0.86
                                                                0.62
                                                                         0.56
                                                                                  0.58
                                                                                          0.70
                                                                                                    0.07
                                                                                                          11.04
                                       4.32
                                                        0.81
                                                                0.58
                                                                         0.53
                                                                                                          10.80
```


What GIS Services does POWER provide?

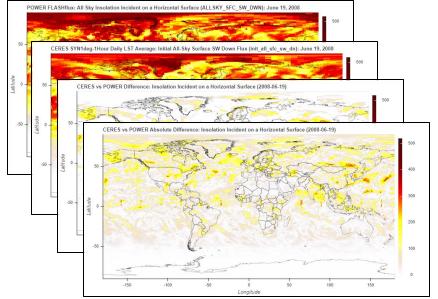
POWER provides Esri® ArcGIS Image and Feature Services that allow users to efficiently interact with the POWER data in Geographic Information System (GIS) applications and related tools.

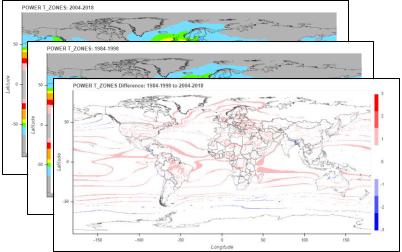
- Image Services: global climatology based solar and meteorological parameters
- Feature Services: global long-term ASHRAE® building climate thermalmoisture zones, 4-year rolling thermal zones, and period differences

Available on:

- NASA ArcGIS Online (AGOL)
- ASDC ArcGIS Online
- Esri Living Atlas

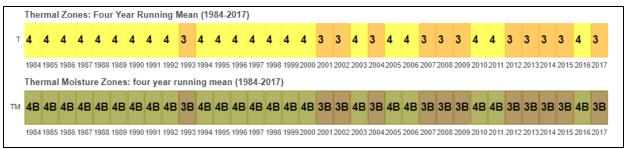
Hyperlink: NASA AGOL - POWER




Analysis – Data Analytics

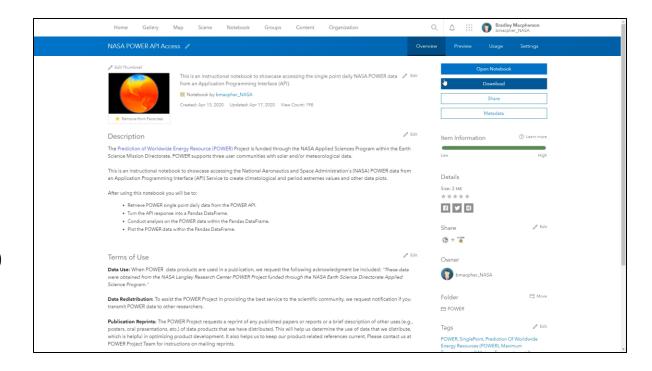
POWER uses Jupyter [®] Notebooks in conjunction with the POWER Services Catalog to improve understanding of Data Analytics by using notebooks to validate, review, provide tutorials, and complete development work. The Jupyter [®] Notebooks allow POWER to show workflows across the team and to the user community by documenting a script's workflow, inputs, and outputs allowing everyone to be on the same page and add work effectively.

Solar Irradiance Differences


Thermal Zones Differences

Bias Mapping Application

Four-year Rolling Thermal & Thermal Moisture Zones Changes

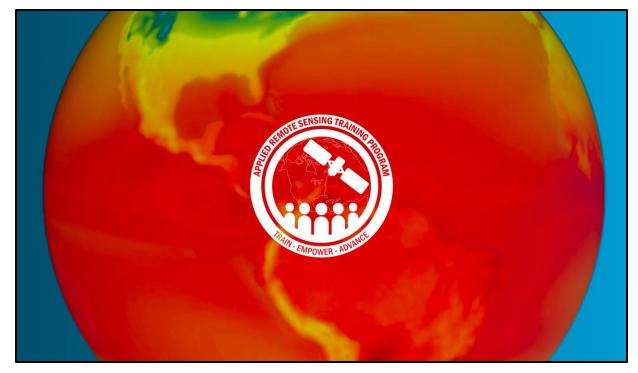

Analytics with Jupyter Noteboks

Key Features:

- The POWER project has some Jupyter® notebooks currently available to conduct climate anomalies detection
- Allow users to interact with the POWER API in a Jupyter[®] Notebook without the need for additional software.
- Provides step by step instructions on how to use the new data services and tools

Presented at the ASDC Data Presentation for 2020 DEVELOP Fellow Class on April 22nd, 2020

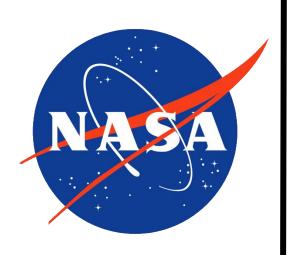
Hyperlink: NASA POWER API Access


Want to Learn More? Check out the ARSET Webinars

The POWER Team gave a series of ARSET webinars this past June. You can access the webinars on the Energy Management section of ARSET's website and learn about the following topics:

- Part 1: Introduction to Earth Observations (EOs) for Energy Management
- Part 2: Using NASA Products for a More Climate Resilient Energy Sector
- Part 3: NASA Resources for Renewable Energy and Building Energy Efficiency Applications
- Part 4: Data Access: Utilizing the NASA POWER Web Services for Energy Related Applications

EARTH SCIENCE APPLIED SCIENCES

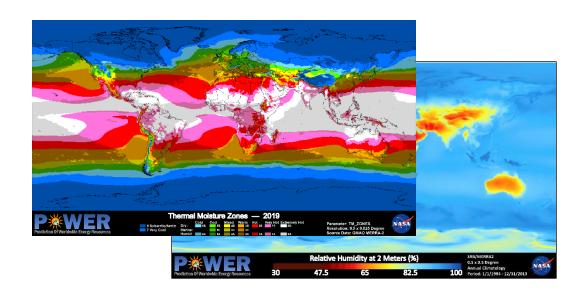


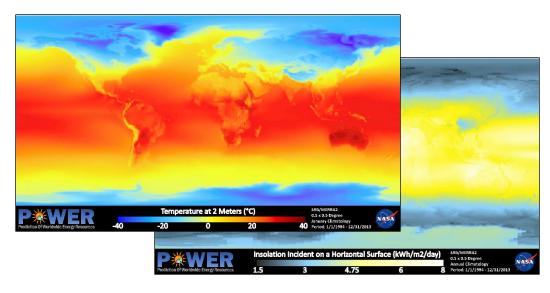
Where is the POWER Documentation?

The POWER Documentation consists of four main sites that are built for both mobile and desktop use:

- Homepage: the project overview with links to all POWER resources.
- Dashboard: a series of dynamic web pages that provide real-time status information on data processing.
- Pages: the API landing pages that use the OpenAPI specification to create interactive pages for the API endpoints.
- Docs: the projects documentation and methodology providing accurate and detailed information to users.

Thank you!


Email: <u>larc-power-project@mail.nasa.gov</u>


Website: https://power.larc.nasa.gov

Principal Investigator: Dr. Paul W. Stackhouse, Jr. – National Aeronautics and Space Administration (NASA)

Co-Investigators:

- Bradley Macpherson, Madison Broddle, Chequel McNeil, & A. Jason Barnett Booz Allen Hamilton (BAH)
- Colleen Mikovitz & Taiping Zhang Science Systems and Applications, Inc. (SSAI)

