Development of Modeling & Simulation Capability to Analyze Supply Chain

Jarrod Pearman
Manjiri Parchure
Nabeel Ahmed
Tom Zurales
Victor Cabrera

Credit: NASA Image and Video Library

Michael Day, Code A
Summer 2021, NASA Ames Research Center
Executive Summary

By end of Summer 2021, we committed to expanding on our MVP, from the Spring, which simulates and models the supply chain of sUAS (drones under 55 pounds).

What were your group’s largest success?

- Improved Backend
- Database Taxonomy & Tools
- API
- UI / UX

How will the next round of interns continue your work and where are we?

1. Start with documents.
2. Follow tasks that we laid out.
3. Continue partnering with Nari.
4. Flesh out the MVP.
5. Feedback and planning for next iteration of MVP.
6. Continue developing simulation and modeling algorithm.
Main Problem

Current Aerospace industry in America has a big opportunity in improving existing supply chain.

Issues related to:
- Limited sources
- Raw material shortages
- Geopolitical risks
- Long-lead times
- Unauthenticated parts
- Lack of inventory
- Large inventory needs
- Inefficient coordination
- Access to talent and skills
- Cyber security
Project Management Findings/Data

<table>
<thead>
<tr>
<th>01</th>
<th>Structure</th>
<th>● Collaborative Github Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Foundation</td>
<td>● Created project documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Assigned roles and areas of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>responsibility based off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>previous experience.</td>
</tr>
<tr>
<td>03</td>
<td>Leadership</td>
<td>● Met regularly with mentors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for clarification and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>suggestions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Distributed responsibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>between teams</td>
</tr>
</tbody>
</table>
Software Development Findings/Data

- **Software Challenges and learning opportunities:**
 - Learning, understanding, and implementing the Google Maps API.
 - Learning frontend and backend development.
 - Learning different technologies and programming languages needed for development.

- **Methodologies Used:**
 - Planning and Prototyping
 - Substituting Data allowing for testing proof of concept.
 - Ensured backend structures were written correctly to ensure correct organization and storing of data.
Front End Core Technologies

● HTML
 ○ HyperText Markup Language is the set of markup symbols or codes inserted into a file intended for display on the Internet. The markup tells web browsers how to display a web pages' words and images.

● React.js
 ○ React is a free and open-source front end JavaScript library for building user interfaces or UI components.

● CSS
 ○ Cascading Style Sheets is a style sheet language used for describing the presentation of a document written in a markup language such as HTML.
UI Prototype

- Why prototyping?
 - Avoid expensive reworks
 - Accelerate development
 - Avoid failures
 - Demonstrate functionality
UI Prototype (cont.)

- Use of Adobe XD as main prototyping software.
- Turning static designs and wireframes into interactive prototypes.
- Adobe XD tools allow the team to extract HTML and CSS code to further develop the website.

Credit: NASA Image and Video Library
UI Prototype (cont.)

- Used the Anima software to convert the prototype into code.
- It created high-fidelity prototypes and helped convert pages into working HTML and CSS code automatically.
- The purpose of using react was for it being simple, fast, and scalable.
Modeling and Simulation Platform

- Uses HTML, CSS, React.js, and JavaScript.
- Platform determines nearest Manufacturers/OEMs and then displays that information on a Map for each part needed using our database API and Google Maps API.
- Simulation will make use of Distance Matrix API to determine length and duration of travel for each part.
- Simulation will eventually assess: Security, Health, Speed, Cost, Geography, Capacity, and Sustainability to determine if the supply chain for any given part / simulated order is robust and gapless.
Backend Core Technologies

- **Postgres (PostgreSQL)**
 - An open source object-relational database system that uses and extends the SQL language along with many useful features that aid in building a reliable database.

- **Node.js**
 - An open source development platform used to execute JavaScript on the server side.

- **Express**
 - Javascript library which gives us the ability handle different HTTP requests and routes between the frontend and backend of the application.

- **Sequelize**
 - JavaScript library that is used to connect to and manage the database with support for many different types of databases.
Database Design

Postgres:

- **Account**
 - Stores created user accounts, contains personal information, login information, and can be linked to a company within the system.

- **Company**
 - Contains information for multiple companies such as name, contact info, and company location, including coordinates.
Database Design

Postgres:

- **Drone**
 - Contains information for different types of drones and provided brief descriptions for each.

- **Part**
 - Contains multiple different types of parts that are used across the different types of drones, with no specifics as to brand and price.
Database Design

Postgres:

- **Company Part**
 - Table links between companies and parts to represent the types of parts that companies make along with information about their specific version of the part such as price and capacity. Provides a ‘list’ of the potential parts that a customer can select from.

- **Exclusive Suppliers**
 - Table show relations involving exclusive consumer and supplier relationships. Meaning, for example, if Company A only buys a part exclusively from Company B. Multiple companies may produce the specified part but Company A only purchases from Company B.
Database Design

Postgres:

- **Drone Part**
 - Links the drones and parts tables. Provides the ability to list all parts needed for a given drone or list all drones that use a given part.

- **Sub Part**
 - A separate table to manage all ‘sub parts’ that are used to make a part component from the parts table. Helps track the chain of parts needed to make an end product. For a given part in the parts table we can find a list of sub parts that make up this given part.
Database Diagram
API Design

Made with Node.js, Express, Sequelize, + more

- With Node.js allowing the use of JavaScript along with other packages, we utilized Express to create multiple functions that can be executed through HTML request that utilize Sequelize to interact with the database and return with the query results to be used on the frontend.
- Sequelize let us define a model for each table in the database, this model works as a verification of variable name and type for each query.
- The API is modular, divided into 8 smaller APIs that correspond to each table in the database. This allows for clear division of API responsibility and makes the overall API easier to understand and implement. The main backend server file connects each of these APIs allowing each module to work alongside one another and the separation be invisible to the rest of the software stack.
Account API

- Login
 GET /account/login

- Sign Up
 POST /account/signup

- Delete
 DELETE /account/delete

- Toggle Active
 PUT /account/toggle_active

- Update Account
 PUT /account/update

Account
- id : uuid
- company_id : uuid
- email : string
- username : string
- password : text
- account_created : date
- last_login : date
- contact_firstname : string
- contact_lastname : string
- contact_number : string
- is_contact_public : boolean
- is_admin : boolean
- is_active : boolean
Company API

List All
GET /company/list_all

Accounts Linked Company
GET /company/link

Add Company
POST /company/add

Update Company
PUT /company/update

Update Company Location
PUT /company/update_location

Company Toggle Active
PUT /company/toggle_active

Delete Company
DELETE /company/delete

Company
- id : uuid
- name : string
- email : string
- phone : string
- website : string
- info : string
- country : string
- state : string
- city : string
- street : string
- zipcode : string
- geo : geography
- is_distributor : boolean
- is_authenticated : boolean
- is_active : boolean
Drone API

- **List All Drones**
 - GET /drone/list_all

- **Delete Drone**
 - DELETE /drone/delete

- **Add Drone**
 - POST /drone/add

- **Update Drone**
 - PUT /drone/update

Part API

- **List All Parts**
 - GET /part/list_all

- **Delete Part**
 - DELETE /part/delete

- **Add Part**
 - POST /part/add

- **Update Part**
 - PUT /part/update
Company Part API

- List All Company Parts
 GET /company_part/list_all

- List All Parts for Given Company
 GET /company_part/company_list

- List All Companies for a Given Part
 GET /company_part/part_company_list

- List Account Linked Company Parts
 GET /company_part/company_list_account

- Add Company Part
 POST /company_part/add

- Update Company Part
 PUT /company_part/update

- Delete Company Part
 DELETE /company_part/delete

Company Part

- id : uuid
- company_id : uuid
- part_id : uuid
- tier : int
- min_price : money
- max_price : money
- avg_price : money
- capacity : int
- avg_delivery_time : string
- notes : string
Drone Part API

List All Parts for Given Drone
GET /drone_part/list_parts

Drone Part
-id : uuid
-drone_id : uuid
-part_id : uuid

Add Drone Part
POST /drone_part/add

List All Drones for Given Part
GET /drone_part/list_drones

Delete Drone Part
DELETE /drone_part/delete

Sub Part API

List Sub Parts for Given Part
GET /sub_part/list_sub_part

Sub Part
-id : uuid
-parent_part_id : uuid
-sub_part_id : uuid

Add Sub Part
POST /sub_part/add

List Parts that Utilize Given Part
GET /sub_part/list_parent_parts

Delete Sub Part
DELETE /sub_part/delete
Exclusive Supplier API

List Exclusive Suppliers
GET /exclusive_supplier/list_suppliers

Exclusive Supplier
-id : uuid
-consumer_id : uuid
-company_part_id : uuid

Add Exclusive Supplier
POST /exclusive_supplier/add

Delete Exclusive Supplier
DELETE /exclusive_supplier/delete
Database Capabilities

- Storage of geospatial data allows for efficient queries based on distance.
 - Determination of nearest suppliers through geospatial data is significantly faster than using a map routing API.
- Recursive queries allow for full chain of offered products to be returned by location.
 - Fewer requests needed to the backend improve responsiveness especially in large supply chains.
- Companies with existing contracts can select which suppliers they will utilize.
 - Allows the tool to develop more accurate supplier-consumer chains for more accurate time estimations.
- Returned number of suppliers for each part can be modified.
Mapping Capabilities
Mapping Capabilities

- Routing API specifically finds routes safe for shipping trucks.
- Company specific information available at each marker.
- Directionality of routes from supplier to consumer.
- Descriptions of parts available at each point.
Future Mapping Capabilities

- Estimation of risk for each link of the supply chain.
 - Risk could be estimated as a function of the number of companies supplying required parts and distance to these companies.

- Inclusion of current stock and lead times for new products.
 - This will require cooperation with suppliers in order to maintain and update accurate stock information.

- Stock and lead time inclusion in delivery timeframe estimation.
Conclusions & Future Research

Conclusions

● Use of API to interact with the database allows for easier development and allows for more modular code.

● Standardizing technologies across projects allows for easier access to data and widens information flow between projects.

● Prototyping the UI turns static designs and wireframes into interactive prototypes and makes extracting HTML / CSS easier.

Future Research

● Designing a Virtual Exchange Platform its fundamental to support NASA and the community’s vision of Advanced Air Mobility (AAM).

● More information about Manufacturers and OEMS are needed to create a robust supply chain database with enough entries to determine if all gaps are filled.

Credit: NASA Image and Video Library
Acknowledgments

Our internship team would like to extend special thanks to Michael Day, Parimal Kopardekar and Christine Clark for their support & mentorship to further the project's initiatives within the growing industry.

The team would also like to especially thank Walter Harper, Raj Pai, Michael Roberts, Roshan Kalghatgi, Jim Williams, Rahul Srinivasan for furthering the project's success from by their extensive insights.

Additionally, another special thanks to Haley Feck, and the National Space Grant Foundation for their continuous support & funding.