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Lunar vs. LEO Environmental Challenges

Lunar Equatorial Lunar South Pole
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Adapted from: https://nssdc.gsfc.nasa.gov/planetary/lunar/moon_landing_map.jpg
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South Pole Topography and Surface Temperatures
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Adapted from Glaser et. al. Fig 1d.# “Inset of the 50 x 50 km area of interest Adapted from Paige et. al. Fig 1A’ “Diviner-measured
at the south pole, black cross in the center marks the position of the pole. daytime bolometric brightness temperatures acquired
All units are in kilometers and maps are displayed in stereographic between 11.4 and 13.6 hours local time.”

projection.”

4 Glaser, P., Oberst, J., Neumann, G.A., Mazarico, E., Speyerer, E.]J., Robinson, M.S., “Illumination conditions at the lunar poles: Implications for future exploration,” Planetary and Space Science 162 (2018) 170-178.
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Lunar Thermal Environment Challenges to Life
Support and Vehicle Thermal Design

©® Both passive and active thermal vehicle design will be affected by significantly reduced solar

flux
¢ Maintaining vehicle/hardware viability during prolonged periods of darkness* will require
active thermal control (heating)
& Proves more challenging with limited/no power
& Minimum temperatures at S. Pole low enough to freeze N, and O,

& Life support hardware may need to remain above 273K in event water is stored

& Spacesuit materials must protect crew at significantly lower temperatures and in event of falls,
where the crew may contact the ground (conduction)

* Up to 6 months assuming zero elevation®

¢ Christie, R.J., Plachta, D.W., Hasan, M.M., “Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage,” NASA/TM-2008-215300, NASA 2008.
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Gravity Challenges/Benefits to Life Support and
Vehicle Thermal Design

¢ Challenges
¢ Fire: limited data on partial gravity fire behavior

& Spacesuit design: flexibility of materials, durability of materials, total mass (currently ~ 280lbs
Earth/ ™ 471bs Moon)

& Mass of systems: Mission concepts with postflight system integration will need to reduce mass of

hardware (e.g. oxygen generator = ~ 1500lbs Earth/250lbs Moon)’
& Already a challenge in microgravity, but different type of challenge
& Benefits
¢ Urine Processing Assembly distillation easier with help of gravity
& Toilet hardware operation and use easier with help of gravity

& Phase separation in systems like the oxygen generator and Sabatier carbon dioxide reduction systems
easier

& “Loose” items, water droplets, etc. will settle out rather than finding their way to vents, electronics, etc.

"Bagdigian., R.M., Dake, J., Gentry, G., Gault, M., “International Space Station Environmental Control and Life Support System Mass and Crewtime Utilization In Comparison to a Long Duration Human Space
Exploration Mission,” ICES-2015-094, 45th International Conference on Environmental Systems 12-16 July 2015, Bellevue, Washington.



Radiation
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8Shang, W.S., Tang, B.B., Shi, Q.Q., et al. “Unusual Location of the Geotail Magnetopause ‘
Near Lunar Orbit: A Case Study,” JGR Space Physics, Vol 125, Issue 4 (2020) pp. 1-13. Credit: NASA 9



Radiation Challenges to Life Support

& Crew Protection during Habitation
& General vehicle shielding
& Safe haven

& Crew quarters

& Crew Protection during EVA
& Suit shielding

& Space weather forecasting

® Effects of radiation on:
® Food
® Medicine

Credit: NASA
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Dust Challenges to Life Support and Thermal

Design

& Vehicle Thermal Challenges

® Dust on radiators

& Cabin Challenges

& General cabin cleanliness
& Crew health (respiratory)

& Atmosphere Revitalization System cleanliness (HEPA
filters, heat exchangers, carbon dioxide removal
assembly, etc)

& Hardware with fans and air cooling

¢ EVA Challenges

& Triboelectric charging of suit
® Thermal effects of dust adhered to suit materials

& Durability of suit materials vs dust abrasion/infiltration

At the end of a long day on the moon, Apollo 17 astronaut
Gene Cernan rests inside the lunar module Challenger.
Note the smudges of dust on his longjohns and forehead.
Photo credit: Jack Schmitt
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Cabin Environment and Challenges

& Reduced pressure environment desirable for high-frequency EVA operations
& Reduces pre-breathe durations
¢ Challenges®

& Increased O, increases flammability risk
& Decreased pressure causes reduced density air for cooling (less efficient)

& Systems that reference ambient for pressure control, venting, etc. will require redesign to
maintain performance

*Ongoing NASA Engineering & Safety Center Assessment to evaluate impacts to life support, thermal, emergency hardware, medical systems.
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Summary

& Significant known differences between ISS environments and Lunar
South Pole environments

& Differences will drive changes in life support and thermal systems
® Data is needed to better characterize these environments

® Data is needed to better understand the affects of the environments
on life support and thermal systems
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Thank you.

Are there any questions!
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