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ABSTRACT

Using state-of-the-artartificial intelligence (Al) frameworks onboard spacecraft is challenging because common
spacecraft processors cannotprovide comparable performance to datacenters with server-grade CPUs and GPUs
available forterrestrial applications and advanced deep-learning networks. This limitation makes small, low-power
Al microchip architectures, such as the Google Coral Edge Tensor Processing Unit (TPU), attractive for space
missions where the application-s pecific design enables both high-performance and power-efficientcomputing for Al
applications. To address these challenging considerations for space deployment, this research introducesthedesign
and capabilities ofa CubeSat-sized Edge TPU-based co-processor card, known as the SpaceCube Low-power Edge
Anrtificial Intelligence Resilient Node (SC-LEARN). This design conforms to NASA’s CubeSat Card Specification
(CS2) for integrationinto next-generation SmallSat and CubeSat systems. This paperdescribes the overarching
architecture and designof the SC-LEARN, as well as, the supporting test card designed for rapid prototyping and
evaluation. The SC-LEARN was developed with three operational modes: (1) a high-performance parallel-
processing mode, (2) a fault-tolerantmode for onboard resilience, and (3) a power-savingmode with cold spares.
Importantly, this research also elaborates on both training and quantization of TensorFlow models for the SC-
LEARN for use onboard with representative, open-source datasets. Lastly, we describe future research plans,
including radiation-beamtesting and flight demonstration.

L INTRODUCTION

One of the fastest growing ground-based areas of
research is artificial intelligence (Al), which has
revolutionized a variety of application domains.
Consequently, substantial commercial investment of
applied Alis demonstrated throughautonomous cars
(e.g. Waymo, General Motors, Mercedes), social
“bots”, virtual assistants (e.g. Siri, Cortana, Alexa,
Bixby), and strategic game systems (e.g. Watson,
AlphaGo). Additionally, developersseek to integrate
more Al into broader customer bases with smaller,
more power efficient, Al microchips andaccelerators,
specifically targeting mobile and embedded markets.
These advances in Al algorithms and custom
acceleratorelectronics can alsobe harnessedtoenable
numerous breakthrough capabilities in the space
domain, including autonomous swarnvconstellation
management, reactive healthand status monitoring, and
responsive, onboard data analysis. Furthermore, it is
advantageous to combine next-generation, high-
performance computing together with onboard
intelligent co-processing. This synergistic combination
is highly valuable because it would enable dynamic,
onboard programming and reconfiguration of the
intelligent co-processor allowing the device to change
functions and applications in real time. For example,
this feature could allowthe systemtorapidly change

functions for different scenarios, which is necessary
because each typeofevent may require a specific Al
modelto be programmed or swapped out onthe device.
This capability would enable thesystemto respond to
different situations or objectives, such as switching
from disaster detection mode (e.g., earthquakes,
tsunamis, floods, and fires), to highly accurate targeting
modes (e.g., specific object-targeting data).

While there is exciting potentialand many benefits for
deploying advanced Al applications in space, using
commercial Al frameworks onboard spacecraft is
challenging because traditional radiation-hardened (rad-
hard) processors and other common spacecraft
processors cannot provide the necessary onboard
computing resources and processing capability to
effectively deploy complexAl models. Therefore, they
would be substantially restricted to simpler machine-
learning approaches. This limitation makes small, low-
power Al microchip architectures, such as Tensor
Processing Units (TPUs), attractive forspace missions
where the application-specific design enables both
high-performance and power-efficient computing for
Alapplications.

To address these design considerations, this research
enables the use of state-of-the-art, experimental, Al
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microchip architectures (specifically the Google Coral
Edge TPU [1]) for SmaliSat platforms. In this paper, we
introducethe designand capabilities ofa CubeSat-sizd
Edge TPU-based processor card, known as the
SpaceCube Low-power Edge Artificial Intelligence
Resilient Node (SC-LEARN), built to NASA’s CubeSat
Card Specification (CS2) [2] for integration into
SmallSat systems. The SC-LEARN features a
configurable system with three Edge TPUs. The
supporting circuitryand componentsaround the Edge
TPUs are reliable, space-qualified components, and
built to NASA standards. This cardis designed to be
monitored by a complementary high-performance
processor, which is responsible for poweringon/offthe
individual Edge TPU modules.

The approachforthis designwas to create a CubeSat-
sized 1U interface card to integrate into NASA
Goddard’s reliable CubeSat architecture (Modular
Architecture for a Resilient Extensible SmallSat -
MARES [3]) and initially target the Edge TPU. The
primary benefits of the design were: (1) the Google
Coral Edge TPU has severaladvantages overits close
competitors, (2) the compatibility of this design with
the Goddard CubeSat architecture provides reliable
operation and monitoring of the card, and (3) the
studies into the supporting software ecosystem will
allow for onboard programming and reconfiguration of
the Al microchip.

1. BACKGROUND

The following sections describe the currentstate-of-the-
art for onboard Al-enabled devicesandthe Edge TPU
processing device. Additionally, we briefly describe the
CubeSat form-factor the SC-LEARN conforms to and
the high-performance space processorthe SC-LEARN
operates with cooperatively. Finally, this section
describes the test datasets, TensorFlow models, and
mission use-caseforthe SC-LEARN.

Al For Science and Defense

The impending need for specialized low-power Al
chips to enable advanced onboard capability has been
heavily emphasized in both science and defense
applications. While the science and defense domains
have differing application goals, general-purpose Al
microchips, such asthe Edge TPU, can be an enabling
technology forabroad variety of scenarios.

Forscience, intelligentand autonomous systems have
been emphasized in numerous guiding NASA
documents. These documents include NASA’s 2017
Strategic Technology Investment Plan [4] and the 2015
NASA Technology Roadmaps [5], which specifically
highlight “robotics and autonomous systems” as a
critical technology investment and describe eleven

technology areas where autonomy and artificial
intelligence can provide enhanced capability.
Furthermore, the significance of Al research is
subsequently elaborated in the new NASA Technology
Taxonomy 2020 [6], where the 2020 update specifically
identifies and addressesadvancesin Al. The research
presented here is directly applicable to TX05.5.1 with
machine learning and artificial intelligence in cognitive
networking, TX10.1 for situational and self-awareness,
and most significantly, TX11.4.2 which focuses on
intelligent data understanding for automatic analysis o f
datasets.

These technology focus areasare applied in the Earth
science decadal survey, Thriving on Our Changing
Planet [7], towards the highly valuable automatic
classification of vegetation and natural phenomena
using spectral remote sensing. This application is one of
many ideal candidates for the proposed Edge TPU
design. Theneedforextremely low-power, specialized
Alchips is not only described in Earth science butalso
planetary science. In Visions into Voyages, the
planetary science decadal survey [8], the key
capabilities identified are system autonomy and
autonomous precision landing technology that represent
two application domains where these types of Al
microchips can be specifically fine-tuned to enable
power-efficient solutions. Additional supporting use
casesare prominently emphasized for Mars exploration
(Emerging Capabilities for Mars BExploration [9])
explicitly citing limitations for onboard processing that
can be accelerated with Al co-processing systems.

The need for Al in the defense domain spans across
multiple agencies. The National Geospatial-Intelligence
Agency emphasized onboard analysis to address
massive data volume constraints in [10]. The “Air
Force Space Command Long-Term Science and
Technology Challenges” [11] memorandumspecifically
highlighted the need for automated and autonomous
systems, artificial intelligence, and advanced computer
architectures. However, the relevance ofincorporating
Al techniques into space applications is most
profoundly illustrated in the Defense Advanced
Research Projects Agency (DARPA) Blackjack
program initiative. In their 2019 broad agency
announcement [12], DARPA describes a processing
system that will provide mission-level autonomy,
classification, and high-performance computing. A core
component of the Blackjack programis the “Pit Boss”
edge processor, a payloadprocessorunit assigned to
autonomously task, collect, process, exploit, and
disseminate multi-sensor data and/or signals in multiple
warfighterdomains. Finally, [13] provides an integrated
government-wide strategy for Al-accelerated conflict.
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Related Works

Machine learning and onboard analysis have been
strategically important andapplied by NASA from as
early as EO-1 (Earth Observing-1) [14], the large
observationsatellite. EO-1 explored autonomy using a
rad-hard Mongoose-V. Some years later, IPEX [15]
demonstrated onboard classification with an Atmel
AT91SAM9. However, more recent Al applications
have beentheorized and considered for calibration of
sensors in spacecraft buses (e.g. calibration of
magnetometers [16]), and for processing of onboard
image data (e.g. cloud screening [17]). [18] describes
CNN-based object detection using a NVIDIA Jetson
Nano. Finally, [19] focused on swarms of SmallSats for
in-space manufacturing, commenting onthe benefitso f
machine learning for their use case. These earlier
demonstrations used general-purpose CPUs or proposed
studiesondevicesthat could potentially be included
within CubeSat-size restrictions or could benefit
specific application domains. However, while Al
embedded microchips are currently the cutting-edge
embeddedsolutions, there are few examples of onboard
deployment. One recent example is European Space
Agency (ESA) miniaturized Visible-Near-InfraRed
(WNIR)  hyperspectral  imager (HSI), called
HyperScout-2, which uses the Intel Movidius Myriad 2
Vision Processing Unit (VPU) [20]-[21], as part of the
ESA PhiSat-1 initiative. Another example is the
University of Hawaii-led CubeSat Hyperspectral
Thermal Imager (HYTI) mission, using another device
in the Intel Movidius family, the Myriad X [24].

Google Coral Edge TPU

The Edge TPU, developed by Google Research, is a
small, low-power ASIC designed to provide high-
performance neural-net inferencing. The Edge TPU is a
flexible design that supports general-purpose Al
applications using the open-source TensorFlow Lite
API, making it widely accessible for application
development. Additionally, the Edge TPU device is
based on extensively studied systolic-array
architectures, making it broadly configurable for many
Al applications. Unfortunately, the radiation
characterization of the device is largely still unknown
(although preliminary reports suggest promising
characteristics); however, this limitation can be
mitigated with proper system design and monitoring
onboard the spacecraft. In addition, unlike many
commercial devices, the Edge TPU has an extended
operating temperature range (— 20°C to 70°C) and
includes built-in safety features such as automated
frequency throttling at high temperatures, which is
necessary for the survival of the device in a space
environment.

CubeSat Card Specification (CS2)

The CubeSat Card Specification (CS2) was developed
atthe NASA Goddard Science DataProcessing Branch
to establish a common template such that all future
CubeSat-sized cards would be compatible for system
designs. The specification, originally outlined in [2],
describes pinout configurations along with mechanical
and electrical specifications targetingthe 1U CubeSat
form-factor. Compliance with this specificationallows
previously developed backplane and mechanical
enclosure elements to be quickly extended for new
mission applications. Currently, NASA hasdeveloped
several compliant cards (including single-board
computers, power cards, and I/O cards) allowing
developers to mix-and-match cards within the catalog
to build new systems for missions. SC-LEARN
complies with this specification, which defines several
major design characteristics (e.g. board keep-outs,
connector definitions, etc...) demonstrated in Section
I1l. Compatibility with CS2 allows SC-LEARN to be
included in current and future proposed designs. An
example three-card configuration for a small Al
processing unit is shown in Figure 1. This box
configuration features the SC-LEARN card, a host
processor card (SpaceCube v3.0 Mini), and the Low-
Voltage Power Converter (LVPC) card, connected with
a backplanedesign.

LVPC

SC-LEARN

[ SpaceCube v3.0 Mini

Backplane

Figure1: Three-Card Al Processing Box
Configuration

SpaceCube Family of Processor Cards

SC-LEARN features several Edge TPU Accelerator
Modules, however, these modules must be controlled
and operated by a host processor. There are several
processor cards in the CS2 form-factor that can beused
cooperatively with SC-LEARN. The first is the
SpaceCubev3.0Mini[2], a1U CubeSat-sized single-
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Table 1:

Dataset Parameter Summary

Dataset Sensor Spatial Spectral Bands Sensitive Classes Labeled GSD
Dimensions Wavelengths Pixels
Indian Pines AVIRIS 145x145 224 0.4-2.5um 16 10,249 20m
Salinas AVIRIS 512x217 224 0.4-2.5um 16 54,129 3.7m
Pavia ROSIS 610x610 103 0.43-0.85um | 9 50,232 1.3m
University

board computer that features the Xilinx Kintex
UltraScale KU060 FPGA. The second s the SpaceCube
Mini-Z, featuring a Xilinx Zynq-7020device, which is
a hybrid system-on-chip designcombining a dual-core
ARM Cortex-A9 processor with an Artix-7 FPGA
fabric [2]. Finally, the last compatible card is the
SpaceCubeMini-Z+,a furtherupgraded versionof the
SpaceCube Mini-Z equipped with more rad-hard power
components, an upgraded rad-hard power sequencing
circuit, an added rad-hard resetenable timeoutcircuit,
and flight-grade oscillators and passives.

Datasetsand Test Vectors

Forearly prototypinganddemonstration of the Edge
TPU’s capabilities, several publicly available
hyperspectral datasets were considered for study.
Ultimately, three datasets were selected for use and
described below: Indian Pines, Salinas, and Pavia
University. These datasets were selected due to their
variation in hyperspectral sensor types, wavelength
ranges, ground sampling distances (GSDs), dataset
sizes, and ground-truth classifications, as described in
Table 1. Each dataset was additionally normalized on a
per-band basis using Equation 1, where | represents one
h x w band.

o I- min(I) )
"~ max(I) — min(I)

I‘Il"!CH']‘?‘?

Indian Pines [23]: This sample datasetwas captured by
the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) sensor (https://aviris.jpl.nasa.gov/) over
agricultural fields in Northwestern Indiana. The dataset
size is 145x145 pixels with 224 spectral bands, where
10,249 pixels are labeled according to 16 different
classes. Forthis research, the bands corresponding to
regions of waterabsorption were removed due to low
signal-to-noise ratio (SNR), leaving 200 remaining
bands forstudy.

Salinas Scene[23]: This sample datasetwas captured
by AVIRIS sensorover Salinas Valley, California. The
dataset size is 512x217 pixels with 224 spectralbands.
The dataset is also labeled with 16 different classes.

Like the previous dataset, the bands corresponding to
regions of waterabsorptionwere removed due to low
SNR, leaving 200 remaining bands.

Pavia University [23]: This sample dataset was
captured by the ROSIS (Reflective Optics System
Imaging Spectrometer) sensor over Pavia in northern
Italy. The Pavia University scene size is 610x610
pixels, which are labeled into 9 ground-truth classes.
Like the two previous datasets, the bands corresponding
to regions of water absorption were removed due to low
SNR, leaving 100 bands for consideration.

STP-H9/SCENIC

The SC-LEARN is currently in development for
inclusion in amulti-card, Al experiment demonstration
on the International Space Station (ISS). The
experiment, named SCENIC (SpaceCube Edge-Node
Intelligent Collaboration), is a joint collaboration
between NASA Goddard, the Aerospace Corporation,
and the Air Force Research Laboratory Space Vehicles
Directorate to demonstrate several processing units
capable of supporting machine learning and artificial
intelligence to performa variety of science and defense
imaging applications with a hyperspectralsensor. The
Space Test Program (STP) [24] at the Department of
Defense (DoD) is responsible for supporting the
development, evaluation, and advancement of new
technologies needed for the future of spaceflight. STP-
Houston provides opportunities for both DoD and
NASA to perform on-orbit research and technology
demonstrations fromthe ISS. The SCENIC experiment
has several key objectives:

o Demonstration and evaluation of commercial Al
microchips (specifically the Intel Movidius Myriad
X and Google Coral Edge TPU) for radiation
characterizationin a relevant space environment.
The experiment additionally features the Xilinx
Deep Learning Processor Unit (DPU) [25], an
FPGA-based Al accelerator residing in the primary
FPGA card, providing an FPGA-based Al option
for comparisonagainst the two Al microchips.

e Collection of an extensive HSI image archive of
terrestrial scenes required totrain data-drivendeep
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neural networks and performreal-time generation
of data products for downlink to information
subscribers and application developers

e Demonstration and evaluation of NASA's next-
generation CubeSat-sized, rad-tolerant, high-
performance computer known as SpaceCube v3.0
Mini [2] including fault-tolerant computer
architecture design and mitigation strategies, and
several other CS2-compatible cards

Extended objectives for SCENIC include the ability to
upload future HSI-based applications for additional
selected scienceand defense applications trained with
the downlinked dataset. Finally, SCENIC will also
provide flight validation of new CubeSat form-factor
guidance and navigation cards to be used on future
NASA missions.

Planned concept-of-operations for SC-LEARN on
SCENIC includes reconfiguring the device and
retraining the TensorFlow Lite model. This process will
involve capturing data products and buildinga training
dataset fromthe HSI sensor, re-trainingthe model on
the ground, converting the modelto a TensorFlow Lite
model, uploading the TensorFlow Lite model to the
onboard processor, andthenreprogramming the Edge
TPU.

Hyperspectral Models

In preparation for onboard operations on STP-
H9/SCENIC, we examined two hyperspectral models
from literature. There were two main selection criteria
for the models: (1) their compatibility with the Edge
TPU’s set of supported operations and (2) their reported
high accuracy on publicly available hyperspectral
datasets.

The first model corresponds to the 1D multi-layer
perceptron (MLP) implemented in [26]. In this paper,
the authors performed a review of multiple state-of-the-
art deep neural-network models. Fromtheir findings,
the 1D MLP had the highestclassification accuracy on
the Indian Pines dataset, while a 3D convolutional
neural network (CNN) had the highest classification
accuracy onPavia University. Unfortunately, the 3D
CNN modelis not compatible with the Edge TPU since
3D convolutionsare not supportedon the device. The
implementation of the 1D MLP used in this research
was adapted from their open-source repository,
DeepHyperX?. To stabilize training, we inserted batch
normalization layers after each fully connected layer,
and to reduce overfitting of the model, weight decay

! https://github.com/nshaud/DeepHyperX

was used as a regularization method. The 1D MLP
modelarchitecturediagramis shown in Figure 2.
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Figure 2: 1D Multi-Layer Perception Model

The second modelwe investigatedwas adapted from
[28], a spectral-spatial CNN (SS-CNN) for
hyperspectral image classification. In this model,
features are extracted using two branches: (1) the first
branch is a 1D CNN on the spectral information at a
particular pixel, and (2) the second branchis a2D CNN
on the mean ofthe spatial patchsurrounding the pixel.
The features fromthesebranches are then concatenated
and input to a two-layer fully connected network, which
outputsa prediction. Unlike [28], we included weight
decay forregularization purposes. The SS-CNNmodel
architecture diagramis shown in Figure 3.
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Figure 3: Spectral-Spatial Feature Learning Model
I DESIGN

This sectiondescribes the design approach for creating
the SC-LEARN and integrating it into the STP-H9
payload. Additionally, we describe the supporting test
card design for prototyping experiments on the SC-
LEARN and communicating with testbed hardware.
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SC-LEARN Architecture Overview

The SC-LEARN is designed to actas a co-processor to
expand the capabilities of NASA’s existing high-
performance space processors. The host processor
configures, controls, reprograms, and feeds datato the
Edge TPUs on the SC-LEARN to change different
applications dynamically, such as switching from
disaster detectionmode (e.g., earthquakes, floods, and
fires) to highly accurate targeting modes. More
specifically, the SC-LEARN features three Edge TPU
Accelerator Modules in a 1U CubeSat form-factor
where each Accelerator Module is a multi-chip device
that features the Edge TPU accelerator ASIC, power
circuitry, and an internal reference clock. The
Accelerator Modules are powered by three independent
rad-hard load switches, which are controlled by the host
processor. The load switches incorporate current sense
amplifiers whose output is monitored by an onboard
rad-hard analog-to-digital (ADC) converter. In the
event there is a fault-induced current s pike on one of
the Accelerator Modules, theload switch will disable
power to that module while the others can remain
functional. In addition to integrated temperature
sensing, the SC-LEARN incorporates external
thermistors connected to theonboard ADCto monitor
temperature. A high-level architecture block diagramof
the SC-LEARN components is illustrated in Figure 4.

SpaceCube v3.0 MINI

Backplane Connector (200 pin) ]

Figure 4: SC-LearnArchitecture Block Diagram

The fabricated and assembled design is featured in
Figure 5, where the SC-LEARN s inserted intoanother
card that contains connectors to interface with the
automated safe-to-mate (ASTM) system. The ASTM
will checkto ensurethatthereare noshorts,opens, or
swapped connections in an assembled PCBor harness,
thus verifying that the Device Under Test (DUT) is safe
to integrate with the rest of the system, or to perform
initial power-on testing.

aceCube LEARN

p

S

Figure5: SC-LEARN plugged into Automated
Safe-to-Mate (ASTM) Card

SPECULATE: Test and Evaluation Board

Forground-based testing, the SC-LEARN connects to
an evaluation oradapter board with standard interfaces
for rapid desktop prototyping. This adapter card is
known as SPECULATE (SPacE CUbe LeArn TEst
board), which is used to power the SC-LEARN and
interface to multiple host FPGA processors, most
notably the SpaceCube v3.0 Mini. SPECULATE can
integrate with multiple FPGA development boards
using the FPGA Mezzanine Card (FMC) connector, a
common interface provided on many Xilinx
development cardsand on theactiveevaluation board
for SpaceCube v3.0 Mini. The FMC connector is the
main interface to the host FPGA board and includes
PCle, USB 2.0, and multiple 10 control signals for the
Edge TPUs on the SC-LEARN. The board can be
powered through several options including the FMC
card, a set of banana jacks, or a standard 12V “wall
wart” connection. Figure 6 pictures a rendered model of
the SC-LEARN insertedinto the SPECULATE adapter.

Figure 6: SC-LEARN pluggedinto SPECULATE
FMC BEvaluation Card
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Table 2:

Comparison of Model Complexity

Model Dataset # trainable | On-Chip Memory for Caching Off-Chip Memory for Streamed
parameters Parameters Parameters
MLP Indian Pines 17,244,176 536.25KiB 16.02MiB
MLP Salinas 17,244,176 536.25KiB 16.02MiB
MLP Pavia U 17,031,177 344.25KiB 16.02MiB
SS-CNN Indian Pines 948,106 3.27TMiB 320.00B
SS-CNN Salinas 948,106 3.27MiB 320.00B
SS-CNN Pavia U 785,299 3.14MiB 320.00B

V. OPERATIONAL MODES

SC-LEARN purposely includes three Edge TPU
Accelerator Modules to enable several different
operational modes in flight. These modes are: (1) a
high-performance parallel-processingmode, (2) a fault-
tolerant design mode, and (3) a power-saving mode
with cold spares.

High-Performance Capability Mode

Multiple  Accelerator Modules can be used
cooperatively to execute operations in parallel to
dramatically improve performance overasingle-node
design. Inference is especially amenable to
simultaneous, parallel execution. To measure the
expected performance of the parallel-processing SC-
LEARN configuration, an applicationwas developedto
performinference on avarying numberof Edge TPUs
for both previously described hyperspectral
classification models. Forthis application, thetrained
models were first quantized and compiled forthe Edge
TPU. For more detail on the integer quantization
process, we refer the reader to Section V. Table 2
compares thecomplexity ofeach ofthe trainedmodels
in terms of their number of parameters and how the
Edge TPU caches the model parameters. The MLP
model is considerably larger than the SS-CNN model
with nearly 18x the number of parameters. Due to its
relatively smaller size, the SS-CNN model parameters
can be primarily stored in the on-chip memory of the
Edge TPU with very smallamounts of datarequired to
be streamed in fromthe host’s memory. In contrast, the
MLP model primarily usesthe host memory to stream
in the model parameters becauseit exceeds thestorage
capacity ofthe Edge TPU’s cache.

The applicationwas executed on an increasingnumber
of samples to examine how the execution time scaled
with expanding amounts of data. In the caseofasingle
Edge TPU Accelerator Module, inference was
performed on the samples for a baseline comparison.
For the multiple Edge TPU cases, threads were
spawned corresponding to the number of available

Edge TPUs and the samples were split evenly across
themfor inference.

Multilayer Perceptron Results: Figure 7 through Figure
9 showexecution time forthe MLP modelscaled with
the number of samples for different numbers of
connected Edge TPUs forthe Indian Pines (Figure 7),
Pavia University (Figure 8), and Salinas datasets
(Figure 9). Comparing the MLP execution time of one
to two Edge TPUs across the three datasets, the use of
two Edge TPUs is only slightly slowerthan one Edge
TPU for a small number (<50) of samples. However,
as the number of samples increases beyond 500, the
speedup approaches near linear scaling, executing
around twice as fast using two Edge TPUs compared to
one. Therefore, the processing and communication
overhead of spawning two threads appears to
ameliorate as the number of samples increases.
However, upon adding a third Edge TPU, a dramatic
decrease in performance is observed. On further
examination, we speculate that performance is highly
limited by the Edge TPU runtime software and the
communication overhead for the Edge TPU’s driver
when communication exceeds two Edge TPUs.

600
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g
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2
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Figure 7: MLP Execution on Indian Pines Dataset
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Figure 8: MLP Execution on Pavia University
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Figure9: MLP Execution on Salinas Dataset
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Figure 10:SS-CNN Execution on Indian Pines

Spectral-Spatial Results: Figure 10through Figure 12
showthe execution time for the SS-CNN modelscaled
with the number of samples for different numbers of
connected Edge TPUs forthe Indian Pines (Figure 10),
Pavia University (Figure 11), and Salinas datasets
(Figure 12). Comparing the SS-CNN execution time
with the MLP, the SS-CNN runs much faster than the
MLP, and therefore, its throughputis much higher. For
example, in the case of 100 Salinas samples executed
onasingle Edge TPU, the SS-CNN executes 15x faster
than the MLP. The reason for this vast difference in
performance betweenthe two models is,according to
Table 2, that the SS-CNN parameters canfit fully in the
Edge TPU’s cache while the MLP parameters cannot
dueto its larger memory footprint. Asaresult, the Edge
TPU does not cachethe MLP parameters on-chip, but
rather, streams them fromthe host’s memory, causing
the execution to be bottlenecked by the communication
link betweenthe host and Edge TPU.

Number of TPUs
A 1
e 2
x 3

Execution Time (seconds)

0 2000 4000 6000 8000 10000
Number of Samples

Figure 11:SS-CNN Execution on Pavia U Dataset

Unlike the MLP model, when comparing the SS-CNN
execution times forone to two Edge TPUs across the
three datasets, one Edge TPU is substantially faster than
two Edge TPUs fora smaller number ofsamples (less
than approximately 2000). Forexample, inthe case of
100 Salinas samples, SS-CNN inference with one Edge
TPU is 1.86x faster than SS-CNN inference with two
Edge TPUs. This slow down for the two Edge-TPU
case s likely caused by the overhead of spawning two
threads and sending the model to two Edge TPUs.
However, as the number of samples increases beyond
approximately 2000, the benefit from distributing the
data acrosstwo Edge TPUs outweighs the processing
and communication overhead associated with spawning
two threads. Similar to the MLP models, upon adding a
third Edge TPU, the performance dramatically
decreases.
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Figure 12:SS-CNN Execution on Salinas Dataset

Fault-Tolerant Design Mode

One of the most common fault-tolerant techniques is
employing hardware redundancy to mitigate failures.
The most prominent of these hardware techniques is
known as Triple-Modular-Redundancy (TMR),amode
in which the output of three replicas of a device are run
through a majority voter for fault masking. In this
configuration, two ofthe devices mustfail for an error
to propagate. This design mitigation was desirable since
preliminary analysis of the SC-LEARN in mission
scenarios demonstrate it would be unlikely for two
devices to be simultaneously affected by radiation-
induced single-event upsets. The SC-LEARN operates
in tandem with a host processor, therefore it is also
essential that the host design, acting as the majority
voter, also has redundancy. Both the SpaceCube v3.0
Mini and SpaceCube Mini-Z/Z+ processor cards
incorporate an interface to SC-LEARN through the
FPGA design. The FPGA resources canbe replicated
using hardware-redundancy methods described in [27],
and all the FPGA designs additionally include various
configuration-memory scrubbing techniques for
repairing single-eventupsets causedby the radiation
environment. For verification of this mode, we
developeda hostapplication that spawned three threads
corresponding tothe three connected Edge TPUs. Each
thread transmitted the same datato its corresponding
Edge TPU forinference. Upon completion of inference,
each Edge TPU returnedits classificationresult to the
host, which thencompared theresults fromall three.

In addition to hardware redundancy, the reliability of
the SC-LEARN design is reinforced with quality part
selection and independent monitoring. Each ofthe three
Edge TPUs include individual load switches controlled
and monitored by the host processor. Therefore, the

host processor can intervene with corrective measures if
a high-current event is detected. Finally, the SC-
LEARN design incorporates high-reliability power
distribution componentsandspace-grade passives to
reduce possible sources of failure.

Power-Saving Mode

To conserve onboard power and provide the final
operationalmode, the SC-LEARN design benefits from
individual load switches for each Edge TPU
accelerator. The card can operate in a lower power
mode state when two of the three Edge TPUs are
depoweredallowing for cold sparingofthe system. In
this mode, the systemhosthas the ability to enable any
one of the three redundant Edge TPU Accelerator
Modules. This allows mission operators to select an
alternative accelerator should one become damaged
overthe lifetime ofthe mission.

V. TRAINING AND QUANTIZATION

In this section, we address the model-training process
for each of the test datasets. Additionally, we review
the quantization process and note the impacts and
considerations foremploying this technique for use in
space.

Training Process

As described in Section Il, both the 1D MLP and SS-
CNN models were trained on the Salinas, Indian Pines,
and Pavia University datasets. For this training, the
Adam optimizer [29] was used in TensorFlow/Keras.
Foreach dataset, 76% of the labeled data was randomly
selected to establish the training set, 4% for the
validation set, and finally, 20% for the test set. The
number of training epochs was fixed to 50 for the
training and validation loss to sufficiently converge.
The models were trained with five different learning
rates: 0.1, 0.01, 0.001, 0.0001, and 0.00001. Among
these five models trained with different learning rates,
the one producing the highest accuracy onthe test set
was selected.

Quantization Process

Edge and embedded devices frequently have limited
resources, especially for memory capacity and
computational power. Developers oftenemploy varying
optimization strategies to TensorFlow models to reduce
the burdenon theavailable onboard resources. One of
the most frequent, and in the case of the Edge TPU
Accelerator Module, required strategies is model
quantization. Quantization is useful as a general
technique for Al models because it can reduce inference
latency, power, and model size with relatively low
degradationin modelaccuracy.
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Figure 13:Comparison of Quantizedand FP Accuracies in Evaluated Datasets

While the training process used 32-bit floating-point
(FP32) datatypes forall weights and tensors, the Edge
TPU can only operateon 8-bit integer (INT8) weights
and tensors—anintended architectural design decision
to decrease inference latency and power consumption.
As such, post-training 8-bit quantization was performed
using the TensorFlow Lite converter [31] to convert
FP32 operations to INT8 operations. Consequently,
reducing the precisionofthe weightsand tensors can
lead to a decrease in accuracy ofthe model. However,
provided a representative dataset, post-training
guantization has been shown to minimally decrease
accuracy while providing substantial decreases in
inference latency [30]-[31]. The TensorFlow Lite
converter specification uses Equation2to approximate
floating-point values:

where 2o is the zero point (INT8) and sis a scale factor
(FP32). Activations are asymmetric (i.e., their zero
point is non-zero) while the weights in the TensorFlow
Lite specificationare forced to besymmetric (i.e., their
zero point is equal to 0). To optimally select the zero
pointand scales to limit accuracy degradations of the
quantized model, a representative dataset mustbe given
to the TensorFlow Lite converter to estimate the
dynamic range of the activations. For the hyperspectral

models, we provided the full training dataset (76% of
the data) as therepresentative dataset.

After performing quantization, we measured the
accuracy of FP32and INT8 models on the test set for
each dataset. The results, displayedin Figure 13, show
the SS-CNN model outperforms the MLP model for
both FP32- and INT8-quantized models over all three
datasets in terms of accuracy. The outcome indicates
that incorporating spatial information aids in classifying
hyperspectral data. Comparing the FP32 models to their
respective INT8-quantized counterparts, the INT8-
quantized SS-CNN incurred 254% and 1.95%
decreases in accuracy on the Salinas and Indian Pines
datasets, respectively. However, for the Pavia
University dataset, there is only aslightaccuracy loss
0f 0.28%. In contrast,the MLP modeldoesnot suffer
accuracy loss frompost-training integer quantization.
Instead, the classification accuracy increases very
slightly for INT8-quantized MLP models. The
difference in accuracy losses dueto integer quantization
between the two models is most likely due to the
differences in their model size (e.g. number of
parameters) and architecture. Since the MLP model
only uses dense layers, it has more redundant
connections than the SS-CNN model, which uses a
combination of convolutional layers and dense layers
with much fewer neurons thanthe MLP model’s dense
layers. As aresult ofthe largernumber of redundant
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connections in the MLP model’s architecture, the M LP
model’s sensitivity to precision losses in weights and
activations is lesserthanthe SS-CNN model.

The demonstrationcomparing bothFP32and INT8 is
significant because for STP-H9, the Intel Myriad X can
operate with FP32, while both the Edge TPU
Accelerator Modules and the Xilinx DPU rely on
quantized INT8 models. Detailed reliability studies
have not been conducted to differentiate which Al
architecture will be more reliable under specific
environmental conditions. However, the results
demonstratethat differences in modelaccuracy between
the devices will not likely be a leading discriminator in
future evaluations.

Future Work

In the future, to limit the accuracy degradation of the
quantized models, we will investigate quantization-
aware training [30]. In this process, quantizationnodes
are inserted into the training graph of the model to
simulate the noiseeffects of quantization. As a result,
the model can be optimized to be resilient to the effects
of quantizationduringthe training process.

VLI RADIATION TESTING

Preliminary reports for radiation testing with the Edge
TPU have been shared with NASA; however, they
cannot be readily disclosed. Therefore, NASA is
independently pursuing testingand publication of the
Edge TPU Accelerator Modulesaspart of the NASA
Electronic Parts and Packaging Program (NEPP) with
the NASA Radiation Effects Analysis Group (REAG).
Both upcoming cumulative radiation damage (total
ionizing dose) and heavy-ion single-event effecttesting
are planned depending on facility availability and will
be included with regular NEPP updates.

Future Work

In the future, we will additionally investigatethe use of
fault-aware training (FAT) to mitigate the radiation
effects ofthe spaceenvironment. This methodology,
presented in [33], demonstrates that highly accurate
neural networks can be trained to exhibit higher error
tolerance comparedto the original model without FAT.

VIL CONCLUSION

This research can provide the foundational platformfor
enabling onboard Al applications in a 1U CubeSat
form-factor design with the SC-LEARN card. This
development integratesa commonly used Google Coral
Edge TPU Al platform that scientists and software
developers can immediately purchase and begin
prototype development on, without concerns about the
absence of path-to-flight options. The SC-LEARN

providesareliable architecture and multiple operational
modes for inclusion in future advanced NASA
missions.

This paper describes boththe SC-LEARN architecture
design andthesupporting ground-support equip ment
FMC evaluation card, known as SPECULATE, for
immediate rapid prototyping of machine-learning
applications. Additionally, this paper highlights two
models, 1D MLP and SS-CNN, to be deployedfor HSI
experiments onboard the ISS as part of the STP-
H9/SCENIC experiment. Finally, this researchshowed
preliminary encouraging conclusions for devices
relying on quantization of deep-learning models on an
HSI dataset. The Edge TPU Accelerator Module is a
readily available and widely usable design, which
enables exploration of deep-learning models to be
included in new mission and instrument analysis
proposals.

Planned futurework forthe SC-LEARN includes both
more readily available designs for testing with several
development boards and examination of more detailed
power use cases. The SC-LEARN and SPECULATE
card can be integrated into many development
platforms due to the adaptability of the FMC connector.
Therefore, in additionto the referencedesigns for the
SpaceCubev3.0Miniand Xilinx KCU105 development
board, future designs will also target the Mini-Z/Z+
along with their development boards (e.g.,Xilinx
ZC706 and Diligent Zedboard / MicroZed Boards).
Finally, additional applications will be developed to
exercise a broad spectrumof power use casesto better
characterize the power efficiency of the SC-LEARN
design.

Acknowledgments

The authorswould like to recognize the contributions
and support by additional teammembers ofthe Science
Data Processing Branch Code 587 and Goddard
collaborators including Nicholas Franconi, Alessandro
Geist, and Michael Lin. The authors also recognize
assistance from Kristy Sakano from NAVAIR. The
authors thank our NASA Goddard Planetary Science
collaborators for support including Nicolas Gorius,
Shahid Aslam, Tilak Hewagama, and Thanh Nguyen.
We also thank our supporting partners at the NASA
Electronics Parts and Packaging Program, Ed Wyrwas,
Megan Casey, and Jonny Pellish. Foraccommodation
for the SCENIC experiment, we acknowledge thegreat
team at STP-Houston and AFRL Collaborators Tyler
Lovelly, Josh Donckels, and Jesse Mee. Finally, special
thanks to our key sponsor supporting this development,
the NASA/GSFC Internal Researchand Development
(IRAD) program.

Goodwill

[35th] Annual
Small Satellite Conference



References

Agency Announcement, HR001119S0012, April
2019.

1.  “Google Coral,” Google. [Online]. Available:
https://coral.ai/products/ 13.  “Final Report,” National Security Commission

2. Brewer, C., Franconi, N., Ripley, R., Geist, A., g\n .I'D‘gtl'f_'(:'al Ihntelllglence, 2021'. [Or)]l_lnea.
Wise, T., Sabogal, S., Crum, G., Heyward, S., variaple: ttps.//reports.nscal.gov/final-
and C. Wilson, “NASA SpaceCube Intelligent report/table-of-contents/

Multi-Purpose System for Enabling Remote 14.  Chien, S., et al. “The EO-1 Autonomous Science
Sensing, Communication, and Navigation in Agent”, 3rd International Joint Conference on
Mission Architectures,” 34th Annual ATA A/USU Autonomous Agents and Multi-Agent Systems,
Conference on Small Satellites, SSC20-VI-07, New York, NY, July 18-23, 2004.

Logan, UT, Aug. 1-6, 2020 15. Thompson, D. R., Altinok, A., Borstein, B.,

3.  Ripley, R, Fraction, J., Soto, L. S., Clagett, C, Chien, S. A., Doubleday, J., Bellardo, J., and K.
Brewer, C., and A. Geist, “Modular Architecture L. Wagstaff, “Onboard Machine Learning
for a Resilient Extensible SmallSat (MARES)” Classification of Images by a Cubesat in Earth
34th Annual AIAA/USU Conference on Small Orbit,” AT Matters, vol. 1, no. 4, pp 38-40, Jun.
Satellites, Poster 207, Logan, UT, Aug. 1-6, 2015.

2020. 16. Abbey, J., and S. Boland, “On-orbit Calibration

4. “NASA Strategic Technology Investment Plan,” of Magnetometer Using Stochastic Gradient
NASA Office of the Chief Technologist, August Descent,” 33rd Annual ATAA/USU Conf. on
2017. Small Satellites, SSC19-WKII-02, Logan, UT,

5. “2015 NASA Technology Roadmaps,” NASA August3-8, 2019,

Office of the Chief Technologist, July 2015. 17. Ghassemi S., and E. Magli, “Convolutional

6. <2020 NASA Technology Taxonomy,” Neurali l\’l’etworks for On-Board Clgud
Washington, D.C., USA: NASA Office of the Screening,” MDPI Journal of Remote Sensing,
Chief Technologist, 2020. vol.11, no. 1417, pp. 1-14, Jun. 2019.

7. National Academies of Sciences, Engineering, 15 Lofavist, M., and J. Cano, “Accelerating Deep
and Medicine, “Thriving on Our Changing Planet Leaming Applications in Space,” 34th Annual
A Decadal Strategy for Earth Observation from AIAAJUSU Conf. on Small Satellites, SSC20-

. : WKIV-01, Logan, UT, August1-6, 2020.
Space,” Washington, DC: The National » Logan, U, Aug ’
Academies Press. 2018. 19. Rughani,R.,and D. Barnhart, “Safe Construction
https://doi.org/10.17226/24938 in Space: Using Swarms of Small Satellites for

8.  National Academies of Sciences, Engineering, In-Space  Manufacturing. 34t.h Annual
and Medicine, “Visions into Voyages for AIAA/USU Conf. on Small Satellites, SSC20-

: : WKWVI-01, Logan, UT, August1-6, 2020.
Planetary Science in the Decade 2013-2022; A » Logan, UT, Aug ’
Midterm Review,” Washington, DC: The 20. Giuffrida, G., Diana, L., de Gioia, F., Benelli, G,,
National Academies Press. 2018. Meoni, G, Donati, M., and L. Fanucci,
https://doi.org/10.17226/25186 “CloudScout: A Deep Neural Network for On-
“ . e Board Cloud Detection on Hyperspectral

9.  Edwards, C., and et al. “Emerging Capabilities .
for Mar’s ,E)q)lcl)rf';tion,” SIagnef[gar(;/ pScience Images,” MDPI Journal of Remote Sensing, vol.
Decadal, White Paper, 2020. 12, no. 2205, May 2020.

10. Cardillo, R, “Small Satelite 2017 Keynote ~ 2L Esposito. M. Conticello, 3.8, Pastena, M., and
Address,” 31st Annual ATAA/USU Conference f a.rf’."?elrQ ?Ir_nlnguez, Ir_]'gr Ih emonstra 'OT
on Small Satellites, Logan, UT, Aug 7, 2017. of artficial intelligence applied to hyperspectral
https://www.nga.mil/MediaRoonvSpeechesRema and thermal sensing from space,” Proc.
rks/Pages/Small-Satellites ---Big-Data.aspx 11131, CubeSats and SmallSats for Rgmot§

Sensing 1l, 111310C (30 August 2019); doi:

11. AirForce Space Command, “AFSPCLong-Term 10.1117/12.2532262
Science and Technology Challenges,”Colorado https://doi.org/10.3390/rs 12142205
Springs, CO: Peterson AFB, 2016. } .

22.  “Computersolutions for SpaceCloud,” Unibap,

12.  DARPA, “Blackjack Pit Boss,” Arlington, VA: [Online]. Available: https://unibap.com/en/our-
DARPA Tactical Technology Office, Broad offer/space/spacecloud-solutions/

Goodwill [35th] Annual

Small Satellite Conference


https://coral.ai/products/
https://unibap.com/en/our-offer/space/spacecloud-solutions/
https://unibap.com/en/our-offer/space/spacecloud-solutions/

23. Grana, M, Veganzons, MA., and B. Ayerdi,
“Hyperspectral Remote Sensing Scenes,” Grupo
de Inteligencia Computacional (GIC), [Online].
Available: http://www.ehu.eus/ccwintco/index.
php/Hyperspectral Remote_Sensing_Scenes

24.  Sims, E., “The Department of Defense Space
Test Program: Come Fly with Us,” Proceedings
of IEEE Aerospace Conference, March 2009.

25.  Xilinx, “Zynq DPU v3.3,” Xilinx Corporation,
PG338 v3.3, Feb. 3, 2021.

26. Audebert, N., Le Saux, B.., and S. Lefevre,
"Deep Learning for Classification of
Hyperspectral Data: A Comparative Review," in
IEEE Geoscience and Remote Sensing Magazine,
vol.7, no. 2, pp. 159-173, June 2019.

27. Wirthlin, M, “High-Reliability FPGA-Based
Systems: Space, High-Energy Physics, and
Beyond,” Proceedings ofthe IEEE, vol. 103, no.
3, pp. 379-389, March 2015,
doi: 10.1109/JPROC.2015.2404212

28. Deng, C., Xue, Y., Liu, X, Li, C, and T.
Dacheng, “Active Transfer Learning Network: A
Unified Deep Joint Spectral-Spatial Feature
Learning Model for Hyperspectral Image
Classification,” IEEE  Transactions on
Geoscience and Remote Sensing, vol. 57, no. 3,
Mar. 2019.

29. Kingma, D. and J. Ba, “Adam: A Method for
Stochastic Optimization,” 3™ International
Conference for Learning Representations, San
Diego, Ca, 2015.

30. Jacob, B, Kligys, S., Chen, B., Zhu, M., Tang,
M., Howard, A., Adam, H., and D. Kalenichenko,
“Quantizationand Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference”
arXiv preprintarXiv: 1712.05877 [cs.LG], 2017.

31. Post-training quantization, TensorFlow, April 7,
2021. [Online]. Available:  https://www.
tensorflow.org/lite/performance/post_training_qu
antization

32. Hashemi, S., Antony, N., Tann, H., Bahar, R. .,
and S. Reda, “Understanding the Impact of
Precision Quantization on the Accuracy and
Energy of Neural Networks” Proceedings of the
Conference onDesign, Automation & Test, pp.
1478-1483, Mar. 2017.

33. Zahid, U., Gambardella, G., Fraser, N. J., Blott,
M., and K. Vissers, “FAT: Training Neural
Networks for Reliable Inference Under Hardware
Faults,” arXiv preprint arXiv:2011.05873v1
[cs.LG], 2020.

Goodwill 13 [35th] Annual
Small Satellite Conference



