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Key Points: 

• A global precipitation forecast product and satellite derived precipitation estimates are 

evaluated against ground-based precipitation estimates to consider how the products 

resolve extreme precipitation known to trigger landslides.  

• The forecast shows comparable performance to satellite estimates in many parts of United 

States, and validation over landslide points reveals that forecasted precipitation 

corresponds better with near-real time satellite estimates for tropical cyclones than for other 

types of storms. 

• Seasonality is shown to influence the performance of both near-real time satellite 

precipitation estimates and the modeled forecast product, which can be attributed to factors 

such as topography and morphology of precipitation (snow, drizzle etc.) among others. 

 

 



Abstract 

    Extreme rainfall events within landslide-prone areas can be catastrophic, resulting in loss of 

property, infrastructure, and life. A global Landslide Hazard Assessment for Situational 

Awareness (LHASA) model provides routine near-real time estimates of landslide hazard using 

Integrated Multi-Satellite Precipitation Retrievals for the Global Precipitation Mission (IMERG). 

However, it does not provide information on potential landslide hazard in the future. Forecasting 

potential landslide events at a global scale presents an area of open research. This study compares 

a global precipitation forecast provided by NASA’s Goddard Earth Observing System (GEOS) 

with near-real time satellite precipitation estimates. The Multi-Radar Multi-Sensor gauge corrected 

(MRMS-GC) reference is used to assess the performance of both satellite and model-based 

precipitation products over the contiguous United States (CONUS). The forecast lead time of 24hrs 

is considered, with a focus on extreme precipitation events. The performance of IMERG and 

GEOS-Forecast products is assessed in terms of the probability of detection, success ratio, critical 

success index and hit bias as well as continuous statistics. The results show that seasonality 

influences the performance of both satellite and model-based precipitation products. Comparison 

of IMERG and GEOS-Forecast globally as well as in several event case studies (Colombia, 

southeast Asia, and Tajikistan) reveals that GEOS-Forecast detects extreme rainfall more 

frequently relative to IMERG for these specific analyses. For recent landslide points across the 

globe, the 24hr accumulated precipitation forecast >100mm corresponds well with near-real time 

daily accumulated IMERG precipitation estimates. GEOS-Forecast and IMERG precipitation 

match more closely for tropical cyclones than for other types of storms. The main intention of this 

study is to assess the viability of using a global forecast for landslide predictions and understand 

the extent of the variability between these products to inform where we would expect the landslide 

modeling results to most prominently diverge. Results of this study will be used to inform how 

forecasted precipitation estimates can be incorporated into the LHASA model to provide the first 

global predictive view of landslide hazards. 

1. Introduction 

Extreme precipitation is the primary trigger of landslides around the world, resulting in 

significant and pervasive adverse effects on human life and infrastructure (Chester 1995; Petley 

2011). The key factors driving landslide initiation can be broadly classified into two categories: 

geomorphologic conditions such as slope, lithology or land cover that can dictate the location of 

slope failures, and dynamic factors that control when slope failures occur, such as extreme rainfall 

and increased local soil moisture conditions (Dai, Lee, and Ngai 2002). Landslide susceptibility 

can be characterized by combining information on topography, soil type, lithology, vegetation, 

etc., which can be derived from in situ or remote sensing sources (Glade 2003; Guzzetti et al. 2006; 

Keefer 1994; Larsen and Parks 1997; Larsen and Santiago-Román 2001). Research on the rainfall 

characteristics known to trigger landslides has been conducted at many spatiotemporal scales and 

often relies on local information on landslides and rainfall; however, studies have also established 

triggering relationships between landslide inventories and satellite-based precipitation estimates 

(Guzzetti et al. 2008; Hong, Adler, and Huffman 2007a; Kirschbaum and Stanley 2018). Studies 

have dynamically evaluated landsliding conditions through deterministic slope-stability modeling 

(Terlien, Van Westen, and van Asch 1995) and empirical and statistical analyses (Glade, Crozier, 

and Smith 2000; Nowicki Jessee et al. 2018). However, connecting landslide systems that use near-



real time precipitation information to forecasted rainfall for landslide early warning remains an 

area of active research and requires further study.  

Geographical landslide early warning systems (LEWS) can take many forms and have been 

deployed at regional and national scales (Guzzetti et al. 2020). Real-time systems based on hourly 

and daily rainfall such as Rio de Janeiro Brazil’s AlertaRio system fuse information from 

susceptibility maps with rain gauge measurements to provide estimates of moderate to high hazard 

across the city, as well as alerts based on rainfall thresholds for specific gauges in highly vulnerable 

areas (Michele Calvello et al. 2015). A soil water index developed by the Japan Meteorological 

Agency shows the risk of landslides. The soil water index is calculated from a tank model (Singh 

1995; Sugawara et al. 1983), radar/rain-gauge analyzed precipitation, and very short-range 

precipitation forecasts (Osanai et al. 2010). Hong Kong Observatory (HKO) and Geotechnical 

Engineering Office jointly operates a ‘Landslip Warning System’. This system uses rainfall 

measurement from automatic rain gauges (past 24h cumulated), radar nowcasts (1 to 3hrs), weather 

forecasts, and information on the slope failures (>15 slope failures forecasted) to issue warnings 

(Chan, Ting, and Wong 2012; Yu 2004). The Norwegian Water Resources and Energy Directorate 

operates a national landslide early warning system. Hydrologic models and web tools are used to 

monitor and forecast hydrometeorological conditions that could potentially trigger landslides 

(Graziella et al. 2015). Another example is the U.S. Geological Survey Landslide Hazard Program, 

which manages landslide precursor monitoring stations in several locations 

(https://landslides.usgs.gov/monitoring/).  

Dynamic characterization of landslide hazards and early warning systems has been reported 

at regional scales using remote sensing resources (e.g., Kirschbaum et al., 2015; Liao et al., 2012; 

Rossi et al., 2012). However, these locally parametrized models are usually not generalizable to 

other regions or to a global scale. The efficacy of these systems suffers from the lack of adequate 

hydrometeorological networks, coupled with the difficulty of data handling and sharing amongst 

various international agencies. Moreover, the coverage area is generally limited, and the gauges 

may not always be in the vicinity of the potentially hazardous landslide areas, especially in 

mountainous regions. Satellite-based global precipitation products offer an opportunity to develop 

global-scale hazard monitoring systems. The Tropical Rainfall Measuring Mission (TRMM) 

precipitation estimates have been widely used within the community for scientific investigations 

(Adler et al. 2009; Curtis et al. 2007; Houze et al. 2015) and decision-making activities (D. B. 

Kirschbaum and Patel 2016). Hong et al., 2007 was the first to utilize TRMM rainfall estimates at 

a quasi-global scale to exhibit their potential in advancing the development of global landslide 

monitoring systems. The more recent Global Precipitation Measurement (GPM) mission has an 

extended spatial coverage and provides more accurate estimation of precipitation from light rain 

to heavy rain and snow (Kojima et al. 2012; Prakash et al. 2016).  

Kirschbaum and Stanley, 2018 utilized Integrated Multi-satellitE Retrievals for GPM 

(IMERG) precipitation data coupled with a global landslide susceptibility map to create the 

Landslide Hazard Assessment for Situational Awareness (LHASA) model. LHASA combines 

satellite-based precipitation estimates with a landslide susceptibility map derived from information 

on slope, geology, road networks, fault zones, and forest loss, primarily from satellite-derived or 

publicly available data (Stanley and Kirschbaum 2017). Daily IMERG Early (~ 4hrs latency) and 

Late (~12-14hrs latency) data are combined from the past seven days to identify potential 



triggering conditions for landslides. When rainfall is considered to be extreme based on antecedent 

rainfall exceeding the historical 95th percentile at the given pixel and susceptibility values are 

moderate to very high, a “nowcast” is issued to indicate the areas where landslides are more 

probable. The LHASA system is updated eight times a day, providing dynamic nowcasts for 

rainfall‐triggered landslides in near-real time. The LHASA model was primarily designed to 

resolve shallow debris flows and landslides, which are the most prevalent mass movement type in 

the tropical to mid-latitude regions where the LHASA model currently runs (Kirschbaum and 

Stanley, 2018). 

A newer version of the framework, LHASA version 2, builds on the original model but 

incorporates additional input data sources such as soil moisture, snow depth and geological 

information within a machine learning model, which results in a probabilistic landslide hazard 

estimate (Kirschbaum et al. 2020; Stanley et al., 2021). Daily IMERG Early and Late rainfall is 

incorporated within this system to characterize the extreme rainfall conditions. The current version 

of LHASA version 2 is a prototype, but the model will be made open source when the system is 

finalized. A forecasting component will be added to LHASA version 2. Forecasted precipitation 

data is fundamental to this new modeling effort. The work here evaluates the feasibility of 

including data from the Goddard Earth Observing System Forward Processing (GEOS-FP) 

forecast product (herein GEOS-Forecast) within a new forecast component of LHASA version 2. 

The goal of this work is to assess the viability of using a global forecast for landslide predictions 

and to quantify the extent of the variability between GEOS-Forecast and IMERG products at a 

variety of spatio-temporal scales with the goal of informing where probabilistic landslide forecast 

are more likely to diverge from the nowcast results due to differences in rainfall estimates.  

While many studies have evaluated GPM precipitation products against ground references 

including radar and gauges (e.g. Khan et al., 2018; Kirstetter, 2018; Tan et al., 2017), there have 

been fewer efforts to compare the forecasted precipitation estimates from GEOS-Forecast with 

satellite-based estimates like IMERG. To the best of our knowledge, this study is the first to 

analyze the precipitation forecasts from the GEOS model for use in landslide modeling. GEOS is 

an atmospheric model for short-term and long-term weather and climate investigations. 

This study presents an inter-comparison of satellite (IMERG) and ground-based precipitation 

estimates with forecasted precipitation information to better understand the potential application 

within global and regional landslide modeling. This study has three fundamental objectives: to 

evaluate the similarities and the differences of IMERG Early and GEOS-Forecast products relative 

to a ground-based reference, to investigate the influence of seasonality on the performance of the 

forecast, and to assess how GEOS precipitation forecasts can resolve extreme rainfall associated 

with known landslides relative to satellite data. Section 2 describes the datasets, study area, and 

the methodology adopted to test the viability of using a GEOS-Forecast for landslide modeling 

and prediction. Results are presented in Section 3. Discussion and conclusions are summarized in 

Section 4 and Section 5.   

 



2. Materials and Methods 

2.1 Datasets  

In order to characterize the model forecast, three precipitation datasets are used in this study: 

GPM satellite product (IMERG Early), the model forecast (GEOS-Forecast) and the ground-

based Multi Radar Multi Sensor (MRMS) product. Each of these products is briefly described in 

this section.  

 

2.1.1 IMERG Early: Satellite-based product  

The Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) 

product merges the data from satellite passive microwave (PMW) and infrared (IR) precipitation 

estimates, with gauge information (Huffman et al. 2015). PMW retrievals offer the advantage of 

more accurate precipitation estimates (directly retrieve PMW information on low-Earth-orbit 

platforms that sit in polar or non-sun-synchronous orbits) than IR but have lower sampling rates. 

This necessitates morphing of the microwave data using interpolation and cloud motion tracking 

with the help of global infrared imagery (Joyce and Xie 2011). These gridded and combined 

microwave estimates are recalibrated by passing them through the Climate Prediction Center 

(CPC) Morphing-Kalman Filter (CMORPH-KF) Lagrangian time interpolation and the 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – 

Cloud Classification System (PERSIANN-CCS) (Hong et al. 2004) schemes. Likewise, the IR 

fields are intercalibrated by CPC en route to PERSIANN-CCS through the Precipitation 

Measurement Mission (PMM) Precipitation Processing System (PPS). The estimates from the 

PERSIANN-CCS are directed to the CMORPH-KF scheme, which uses the PMW and IR 

estimates to create half-hourly estimates. This results in three IMERG products with latencies of 

approximately 4 hours (Early), 12-14 hours (Late) and 3.5 months (Final). For this analysis we 

focus on IMERG Early since primary use for this product is in near-real time applications such as 

flood and landslide nowcasts (Zhang et al. 2016; 2011). IMERG Early version V06 is utilized as 

the primary precipitation product in the current LHASA framework. The precipitationCal data 

field in the PPS files provide global Level 3 gridded precipitation estimates (mm/h) at 0.1°, 30 min 

spatiotemporal resolution (Huffman, Bolvin, and Nelkin 2015).  

 

2.1.2 MRMS: Ground-based product 

The Multi-Radar/Multi-Sensor (MRMS) algorithm fuses data from automated rain gauges and 

polarimetric WSR-88D radars to generate multiple hydrometeorological products, including fine 

resolution (0.01° and 2-min) quantitative precipitation estimates (Zhang et al., 2011, 2016). The 

use of dual-polarized WSR-88D radars ensures superior hydrometeor identification compared to 

non-polarimetric methods (Chandrasekar et al. 2008; Melnikov et al. 2011), thereby making 

MRMS an independent reference for space-based and model-based precipitation products. The 

final MRMS ground-based precipitation reference is a gauge-corrected gridded product with a 

spatiotemporal resolution of 0.01º every 30 min. MRMS provides consistent spatio-temporal 

precipitation measurements over the contiguous United States (CONUS) and radar quality index 

values for each grid cell (Kirstetter et al. 2014; 2012). CONUS represents various geographical 



(plains, mountains, etc.) and meteorological (subtropical to mid-latitudes) conditions. This 

inherent diversity provides an opportunity to employ MRMS as a ground truth for evaluation of 

satellite- and model-based precipitation products. High quality MRMS precipitation products are 

obtained by further filtering the gauge-corrected product using a radar quality index (RQI) ≥65 

(Zhang et al. 2011). This ensures that moderate to high radar quality index values (RQI) are 

selected for comparison with satellite and model-based precipitation products.   

2.1.3 GEOS-Forecast: Model-based forecast product 

NASA’s Global Modeling and Assimilation Office (GMAO), in collaboration with National 

Centers for Environmental Prediction (NCEP) at NOAA, developed the Goddard Earth Observing 

System (GEOS) Forward Processing (FP) model. The GEOS Atmospheric General Circulation 

Model integrates finite-volume dynamics (Lin 2004) with physical models like Catchment Land 

Surface Model (CLSM) (Bacmeister, Suarez, and Robertson 2006; Koster et al. 2000) under the 

Earth System Modeling Framework (ESMF). The model uses three-dimensional variational 

analysis-based Gridpoint Statistical Interpolation (GSI) in grid-point space to incorporate 

anisotropic, inhomogeneous covariances (e.g., (Derber et al. 2003; Wu, Purser, and Parrish 2002). 

More details about the GEOS atmospheric model can be found in (Rienecker et al. 2008) and 

(Molod et al. 2012). 
 

GEOS-FP is a 4-dimentional Ensemble-based variational (4D EnVar) system. The system uses 

ensembles to inform the analysis, which involves running perturbation ensemble members for a 

short period into the future. The GEOS-FP system provides assimilation products and ten-day 

forecasts for precipitation, among other environmental variables, for operational forward-

processing. Assimilation of new observations within the GEOS model occurs every 6 hours, at 00, 

06, 12, and 18 UTC. After atmospheric data assimilation has completed for a given synoptic time, 

typically at 00z and 12z, a model forecast is used to generate a time-series of hourly forecast 

products out to 10 days. The near-real time data assimilation forecast is available at 25km × 31km 

spatial resolution. Specifically, the data archived in the PRECTOT data field in the hourly, time-

averaged, two-dimensional (2d) flx (flux) collection are employed in this study (Lucchesi, R., 

2018). For the current study, the GEOS-Forecast model initialized at 00 UTC for 1-day forecast is 

used, which assumes the 24 hour accumulation forecasted from 00Z. The units for the precipitation 

are converted into mm from kilogram per square meter per second (kg/m2-s1). 
 

2.2 Study Period and Study Area 

Based on the availability of historical GEOS-Forecast data, the analysis focuses on the study 

period between July 2018 and Feb 2020. The analysis is carried out at a 0.1°×0.1° spatial resolution 

with daily precipitation accumulation for all precipitation products. The spatio-temporal alignment 

of the products is described in section 2.3.1. 

First, IMERG Early and GEOS-Forecast products are evaluated over CONUS against the 

ground-based reference, MRMS. The choice of CONUS as the study area is primarily governed 

by the availability of high-quality, ground-based precipitation data (MRMS) over this region. 



Additionally, CONUS offers diversity in terms of terrain complexity, climatology, and 

precipitation morphology, with known areas of high potential for triggering landslides. In 

particular, the performance of these products in high-susceptibility landslide areas inside CONUS 

is carried out in high-hazard regions like the Appalachian Mountains, Pacific Northwest, and 

California.  

Second, the global inter-comparison between IMERG Early and GEOS-Forecast is carried out 

to evaluate the forecast precipitation (GEOS-Forecast) against the satellite precipitation (IMERG 

Early), which is currently used within the LHASA framework. In the context of landslide 

monitoring, this global evaluation is further enhanced by focusing on three landslide hotspots: the 

Mekong region (Thailand, Vietnam, Laos, Cambodia, and Myanmar), Colombia (South America), 

and Gorno-Badakhshan Autonomous Oblast (GBAO) province in Tajikistan ((Domej 2015); 

https://thinkhazard.org/en/report/239-tajikistan/LS). More details on the precipitation and 

climatology of the regions are presented in Section 3.  

 

2.3 Methodology  

 

2.3.1 Spatio-temporal Data Alignment 

The IMERG Early, GEOS-Forecast and MRMS data are at different native spatial and 

temporal resolutions, which necessitates aligning these data to a common spatio-temporal scale. 

The differences in spatial resolution between IMERG Early and GEOS-Forecast are accounted for 

by downscaling GEOS-Forecast to a 0.1° scale with the nearest-neighbor method. The IMERG 

Early half-hourly and GEOS-Forecast hourly estimates are accumulated over the duration of a day. 

Likewise, the ground-based precipitation reference MRMS is resampled to match the IMERG 

spatial resolution by averaging and retaining the grid cells for which 90% pixels exceed the radar 

quality index of 65.  

2.3.2 Landslide susceptibility mapping 

A landslide susceptibility map based on the Stanley and Kirschbaum, 2017 classification is 

adapted over CONUS and the map is re-gridded to the spatial resolution of 0.1o × 0.1o to investigate 

the performance of IMERG Early and GEOS-Forecast in high landslide susceptibility zones with 

reference to MRMS. Following the threshold used for the LHASA version 1.1 moderate-hazard 

nowcast, the five susceptibility zones (0-5), are divided into susceptible (3-5) and non-susceptible 

(0-2) landslide zones between the low and moderate susceptibility ratings (Figure 1). This division 

of susceptibility sorts over 90% of landslides mapped in CONUS into the susceptible zone (Mirus 

et al. 2020) but most of the land surface into the insusceptible zone. For this study, we consider 

three high-susceptibility zones within CONUS: the Appalachians, Pacific Northwest and 

California, but recognize that there are other high susceptibility areas of the U.S. such as the Rocky 

Mountains that are frequently impacted by landslide hazards. 

https://thinkhazard.org/en/report/239-tajikistan/LS


  

Figure 1: Landslide susceptibility map adapted from Stanley and Kirschbaum (2017) over CONUS. The 

regions with moderate to high landslide susceptibility are shown in gray and non-susceptible landslide 

zones are shown in black. 

2.3.3 Distributions, Performance Metrics and Seasonality Analysis 

 

Categorical and continuous statistics are used to assess the relative performance of IMERG 

early and GEOS-Forecast precipitation products against each other and the reference. Both 

categorical and continuous statistics are vital for the characterization of systematic and random 

errors. Categorical statistics such as probability of detection (POD), success ratio (SR), critical 

success index (CSI) and the hit bias are defined as:      

 

                                      𝑃𝑂𝐷:
𝐻

𝐻+𝑀
                                     (1a)                            

                                      𝑆𝑅:
𝐻

𝐻+𝐹
                                                       (1b) 

                                      𝐶𝑆𝐼:
𝐻

𝐻+𝑀+𝐹
                                                  (1c) 

                                      𝐻𝑖𝑡 𝑏𝑖𝑎𝑠:
𝐻+𝐹

𝐻+𝑀
                                              (1d) 

where H represents ‘hit’ cases, i.e., both the satellite (P) and the reference (PRef) are greater than 

or equal to the rain/no-rain threshold (th); F represents ‘false alarms’, i.e., P is greater than or equal 

to th, but PRef is less than th; M represents ‘misses’, i.e., PRef is greater than or equal to th but P is 

less than th; Z represents ‘true negative’, i.e., P and PRef are both less than th. The contingency 

table parameters H, M, F, and Z are defined in Table 1. The ideal value for all the performance 

metrics (POD, SR, CSI and hit bias) is 1. Four different values for the threshold are used for this 

assessment for a 24-hour period: th ≥ 1 mm, th ≥ 25 mm, th ≥ 50 mm, and th ≥ 100 mm). 



Table 1: Contingency table 

              IMERG Early/GEOS-Forecast 
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 P ≥ th P < th 

PRef  ≥ th H M 

PRef  < th F Z 

 

Spatially averaged precipitation maps, spatial maps of temporal correlation coefficient (CC) 

and probability density functions (PDFs) are reported to investigate the continuous statistics.  

Landslides can be triggered by a variety of extreme precipitation conditions including heavy 

precipitation from thunderstorms, tropical cyclones, and short convective events. The occurrence 

and frequency of these events can vary seasonally. To consider the influence of seasonality on 

precipitation product performance, the datasets are segmented into four seasons: Summer (June 

July August-JJA), Fall (September October November-SON), Winter (December January 

February-DJF), and Spring (March April May-MAM) and the statistics are evaluated as a function 

of seasonality for the entire CONUS region as well as the high-susceptibility landslide regions 

(Appalachian, Pacific Northwest and California).  

Finally, for the three regions selected for this study outside of the U.S. (Mekong, Colombia 

and GBAO), the analysis over the entire study period (July 2018-Feb 2020) is complemented by 

event-based analyses for two selected extreme events for each region.  

3. Results  

        3.1 How close are IMERG Early and GEOS Forecast to the reference? 

Once IMERG Early and GEOS-Forecast precipitation products are spatio-temporally aligned, 

they are evaluated against the MRMS-based reference. Figure 2 shows the mean daily accumulated 

precipitation over CONUS during the study period for all products. The Midwest, Southeast and 

parts of West Coast (Pacific Northwest) show high average precipitation accumulations, 

characterized by moist continental mid-latitude and tropical climates that are wet throughout the 

year. Overall, both IMERG Early and GEOS-Forecast underestimate the average daily values 

compared to MRMS-based reference. In these average precipitation maps, IMERG Early is better 

matched to MRMS for the Midwest and Southeast regions, whereas GEOS-Forecast performs 

marginally better in the West, though high quality MRMS data in this region is sparser. Better 

performance of IMERG Early relative to GEOS-Forecast in the Midwest and Southeast regions 

could be the result of overall capability of satellite-based retrievals, which are influenced by the 

regional heterogeneities, precipitation intensities, seasonality and climatology (Tian and Peters-



Lidard 2010). The 99th percentile maps for IMERG Early and GEOS-Forecast over CONUS are 

shown in the supplementary material (SM1). 

 

Figure 2: Average daily accumulated precipitation maps (mm) for a) IMERG Early, b) GEOS-Forecast 

and c) MRMS-derived reference for study period (July 2018- Feb 2020). The white spaces indicate places 

where MRMS RQI ≤ 65. 

Next, in order to further enhance our understanding of an individual storm in the high-

susceptibility zones, two case studies assess the performance of IMERG Early and GEOS-

Forecast; one in the Pacific Northwest on Dec 21st, 2019 and another in the Appalachian region 

from Feb 5th – 7th, 2020. These events brought heavy downpours and landslides to these regions. 

The spatial variability of precipitation for the extreme events is shown in Figure 3 (a, b, c and e, f, 

g). An underestimation of the GEOS-Forecast with respect to MRMS-based reference is apparent 

in the southern and central Pacific Northwest, whereas IMERG Early also underestimates but to a 

lesser extent than GEOS-Forecast overall. However, the amount of relative underestimation is 

variable across the Pacific Northwest region for this event. The distributions over the Pacific 

Northwest (Figure 3d) show IMERG Early (blue) is left skewed (<20mm). There is a higher 

density of medium range precipitation accumulations (10-40mm) for the GEOS-Forecast (green), 

and an almost uniform spread (0-100mm) for MRMS-based reference (red).  

 

The steep slopes of the Appalachian mountains exacerbate the occurrence of debris flows in 

the central and southern Appalachian Mountains (Wieczorek and Morgan 2008). Heavy 

precipitation accumulation can be observed in central and southern parts of the Appalachian region 



(Figure 3e, 3f, and 3g). Overall, IMERG Early (Figure 3e) is closely matched to MRMS, especially 

in the lower section of Appalachians. Comparatively, the GEOS-Forecast (Figure 3f) captures 

slightly higher rain estimates in the northeast Appalachian relative to IMERG, but both products 

still underestimate in this region. Figure 3h shows that GEOS-Forecast has a higher density of light 

and medium precipitation (≤70mm) and misses the highest precipitation values (>150mm) (green). 

The IMERG Early and MRMS-based distributions are similar at higher accumulations >120mm, 

but MRMS is more sensitive to rainfall rates in the 50-100mm range.  
 

 

Figure 3: Accumulated precipitation maps (in mm) over the event durations and PDFs (d and h) for 

Pacific Northwest (top panel) and Appalachian (bottom panel) region respectively: a, e) IMERG Early, b, 

f) GEOS-Forecast and c, g) MRMS-derived reference (Ref.). 

 

3.2 How do the performance of the precipitation products differ by season?  

The influence of seasonality on the performance of IMERG Early and GEOS-Forecast 

precipitation estimates over CONUS is shown in Figure 4, represented by seasonal and regional 

correlation coefficients against MRMS. The performance of GEOS-Forecast relative to MRMS 

has the worst correlation in summer (Figure 4b), moderate performance in spring (Figure 4h) and 

somewhat comparable performance to IMERG in fall and winter. The performance of IMERG 

Early is more consistent across the seasons, except for winter in northern regions (Figure 4e) and 

summer in the West coast (Figure 4a). The low correlation in northern regions during winter could 

be attributed to the detection capability of IMERG in snowy conditions. Overall, the best 

performance in terms of correlation coefficient for IMERG Early is during the fall season (Figure 

4c), and for GEOS-Forecast during the winter season (Figure 4f).  



 

Figure 4: Seasonal correlation maps for IMERG Early (a, c, e and g) and, GEOS-Forecast (b, d, f and 

h) against MRMS-derived reference for summer (JA-2018 and JJA-2019), fall (SON-2018 and 2019), 

winter (DJF-2018&2019) and, spring (MAM-2019). 

For an in-depth performance analysis in the 3 high-susceptibility landslide zones, we examine 

the seasonal dependence of categorical statistics at four different thresholds across the three 

regions. All the statistics presented in Figure 5 clearly show dependence of the performance on 

seasonality and rainfall thresholds. For th ≥ 1mm, the POD over Appalachian region for both 

IMERG Early and GEOS-Forecast is consistently high (>0.65) compared to the Pacific Northwest 

and California region. The POD degrades significantly with increasing rainfall thresholds, whereas 

the SR depicts a more gradual change. This is attributable to rainfall underestimation by both 

GEOS-Forecast and IMERG Early. The poorest performance of GEOS-Forecast in terms of CSI 

is observed in the Appalachian region and is consistent across all seasons. The hit bias shows the 

largest variability in spring (Pacific Northwest) and winter (Appalachian) for IMERG Early and 

in spring and summer for GEOS-Forecast (Appalachian). The seasonal PDFs of all three products 

for Appalachian, Pacific Northwest and California regions are shown in the supplementary 

material (SM2).  



 

Figure 5: Seasonal (summer, fall, winter and spring) and overall study period categorical statistics for high 

landslide hazard regions: Appalachian (Aplch.), Pacific Northwest (PNW) and California (Calif.). Four 

performance metrics, POD (I), SR (II), CSI (III) and Hit bias (IV) are presented. For each metric, the 

performance against MRMS-derived reference (Ref.), for GEOS-Forecast (left panels) and IMERG early 

(right panels), at four precipitation thresholds, ≥1mm (a and b), ≥25mm (c and d), ≥50mm (e and f) and 

≥100mm (g and h), are shown.  



3.3 How do IMERG Early and GEOS-Forecast compare globally? 

A global comparison between GEOS-Forecast and IMERG Early is presented in terms of 95th 

percentile difference (mm/day) between IMERG Early and GEOS-Forecast during the study 

period (Figure 6). The 50th, 75th and 99th percentile difference maps are shown in supplementary 

materials (SM3-SM5). The positive difference (red color) indicates higher IMERG Early 

estimates, and negative difference (blue), higher GEOS-Forecast estimates, respectively. The mid-

latitude regions characterized by drier climates show minimal difference (±10mm). On average, 

GEOS-Forecast has lower rainfall (red) in mid-latitudes such as Australia, eastern CONUS; and 

higher rainfall (blue) in tropics (Central Africa and South America), some parts of the mid-latitudes 

such as high mountain Asia region (Central Asia and Asia-pacific), and West Coast of CONUS. 

These regions have temperate climates, characterized by mid-latitude cyclones, and marine 

climates, and often receive stratiform precipitation (S. Khan and Maggioni 2020). Moreover, in 

complex terrains such as western US, Andes, Central Asia, the relative performance appears to be 

dependent on elevation, where IMERG Early is showing lower precipitation values consistently. 

Satellites often underestimate precipitation in complex terrain, because infrared and microwave 

remote sensing of precipitation is less accurate within areas of orographic uplift where warm rain 

processes can dominate. 

  

 

Figure 6: 95th Percentile difference between IMERG Early and GEOS-Forecast precipitation map 

(mm/day) for the study period. Red colors indicate that IMERG Early has higher values than GEOS-

Forecast and blue color correspond to greater GEOS-Forecast 95th percentile precipitation accumulation. 

In order to evaluate GEOS-Forecast and IMERG Early at a global scale, we further expand the 

analysis to global landslide hotspots. Two case studies are considered in each location to compare 

how these products perform at an event scale. First, Colombia is strongly influenced by the El 

Nino and La Nina climatic phenomena as well as strong convective systems originating from the 



tropical Pacific. Figure 7 shows the spatial distribution of precipitation for IMERG Early (Figure 

7a) and GEOS-Forecast (7b) across Colombia. The best CC (0.6) is observed in the southwestern 

part of the country where precipitation totals are greatest. Two events with significant rainfall (5-

6 November 2018 and 27 May to 3 June 2019) show that GEOS-Forecast captures higher rainfall 

accumulations (Figure 7e, 7h) compared to IMERG Early (Figure 7d, 7g) over the same region. 

This region is characterized by tropical as well as temperate oceanic climates. The distributions 

(Figure 7f) almost overlap in the Nov 2018 event. However, for the late May to June 2019 event 

the distribution for the GEOS-Forecast is slightly skewed towards the left compared to IMERG 

Early, with a peak around 100mm. For both cases, the GEOS-Forecast estimates higher rainfall 

accumulations than IMERG Early. The underestimation of rainfall by IMERG Early in the western 

part of the country could be attributed to the warm-precipitation process associated with orographic 

uplift caused by onshore flow toward the Andes, also reported in the study by (Dinku et al. 2010), 

where different satellite-based products underestimated rainfall relative to gauges in western 

Colombia.  

 

 

Figure 7: Colombia region: a) and b) average daily accumulated precipitation maps; d), e) Nov 5th-6th, 

2018 and g), h) May 27th -June 3rd, 2019 event-based precipitation maps and f) and i) event-based PDFs. 



We also compare GEOS-Forecast and IMERG Early in Gorno-Badakhshan Autonomous 

Oblast (GBAO) province of Tajikistan. This region is located in the Pamir Mountain range, also 

known as the roof of the world. Overall, the CC is high (~0.60) for the western part of the province 

(Figure 8c). Examination of two high-intensity rainfall events suggest that the GEOS-Forecast 

exhibits higher rainfall for both Jan 2019 (tail~27mm) and June 2019 (tail~30mm) events relative 

to IMERG Early (Figure 8f, 8i).   

 

Figure 8: Gorno-Badakhshan Autonomous Oblast (GBAO-Tajikistan) region: a) and b) average daily 

accumulated precipitation maps; d), e) Jan 6th-8th, 2018 and g), h) June 4th-7th, 2019 event-based 

precipitation maps and f) and i) event-based PDFs. 

Region- and event-based precipitation maps for Mekong region are presented in Figure 9. The 

CC between IMERG Early and GEOS-Forecast ranges from 0.1-0.8, where the best CC can be 

seen in northern and southern parts of Laos. Moreover, CC >0.40 is observed in northern Thailand 

and Myanmar, and along the western shoreline of Myanmar. The distributions (Figure 9f) 

demonstrate a peak of around 50mm for both IMERG Early and GEOS-Forecast. IMERG Early 

distribution approaches its tail around 220mm, whereas GEOS-Forecast is around 350mm. 

 



 

Figure 9: Mekong region: a) and b) average daily accumulated precipitation maps; d), e) Sep 4th-13th, 

2018 and g), h) Sep 6th, 2019 event-based precipitation maps and f) and i) event-based PDFs. 

 

Figure 10: Mean bias for entire study period (blue) and for Event-A (turquoise): GBAO (Jan 6th-8th, 

2018), Colombia (Nov 5th-6th, 2018) and Mekong (Sep 4th-13th, 2018) and Event-B (yellow): GBAO (June 

4th-7th, 2019), Colombia (May 27th -June 3rd, 2019) and Mekong (Sep 6th, 2019). 



Lastly, we compute the mean bias (Bias=µGE0S-Forecast - µIMERG Early) at event-scale and for the 

entire study period for the three regions. Figure 10 demonstrates that the bias is more pronounced 

at the event-scale than for the entire study period for all three regions, where GEOS Forecast tends 

to overestimate relative to IMERG Early. The bias apparently is dependent on regions and specific 

events. 

3.4 Will GEOS-Forecast rainfall data help to predict landslide events?  

 Even if the GEOS-Forecast generally succeeds at forecasting rainfall a day in advance, it could 

still be possible that the forecasts are less accurate in landslide-prone terrain. To further explore 

the feasibility of using a global precipitation forecast to characterize landslide hazard, we extract 

the rainfall forecast and IMERG Early precipitation values at the time and place of recent 

landslides. Because NASA’s Global Landslide Catalog (D. Kirschbaum, Stanley, and Zhou 2015) 

is not complete for the year 2018, we used a new collection of landslide reports derived from 

Twitter with machine learning (Data Curator: Dr. Dimitrios Zekkos, University of California at 

Berkeley, USA). The process merges multiple tweets into a single report that represents a unique 

landslide event. These reports were categorized into 6 quality levels. Only the top 2 categories 

were used in this analysis. The database also contains tags that identify various causes of 

landsliding. Using these, only rainfall-triggered landslides were selected. After filtering, 497 

landslide events were available to compare with the GEOS-Forecast and IMERG Early data. These 

are spread globally, but are most heavily concentrated in the United States, United Kingdom, and 

South Asia due to the fact that the reports were only gathered for English language tweets.  

The estimates of daily rainfall from GEOS-Forecast and IMERG Early were extracted at each 

point in R (Analytics and Weston 2014; Grolemund and Wickham 2011; Hijmans 2020; Pebesma 

2018; Team 2013), based on the first time at which a tweet was posted. There is no guarantee that 

every landslide was promptly reported on Twitter. Thus, some events might be associated with 

precipitation that occurred after the landslide.  

In addition to the analysis of Twitter data, we examined six landslide inventories, each of which 

describes a single major event (Table 3). Because these inventories were derived from satellite 

imagery, the spatial precision is likely to be much better than for the Twitter-based inventory, 

however, there is a certain degree of temporal uncertainty. In the cases of the Rio de Janeiro and 

Burundi events, the timing of the landslide event is well known, but the landslides that occurred 

near Thrissur, India happened multiple times over a period of weeks. It was not possible to 

determine the exact date of each landslide individually, so the dates of the most intense landslide 

activity (as revealed by media reports) was chosen. The dates of landslides associated with tropical 

cyclones Idai, Manghkut, and Prapiroon are not known with certainty, but are constrained to a very 

narrow window of time. 

 

 

 



Table 2: Summary statistics for estimates of daily rainfall from GEOS-Forecast (mm) and IMERG (mm) at 

recent historical landslides. Box-whiskers plot of IMERG Early and GEOS-Forecast for twitter-based 

analysis are included in supplementary material (SM4). 

Inventory Twitter reports Major events 

Product IMERG Early GEOS-Forecast IMERG Early GEOS-Forecast 

Minimum 0.0 0.0 8.5 1.3 

1st Quartile 1.0 1.9 180.8 166.5 

Median 10.3 12.3 224.6 166.5 

Mean 31.0 33.0 220.5 186.8 

3rd Quartile 35.2 37.7 272.1 217.1 

Maximum 511.5 416.6 357.9 279.0 

In general, the rainfall derived from IMERG Early and GEOS-Forecast is of similar magnitude 

(Table 2). The 1st quartile and median of the GEOS-Forecast for major events are identical because 

over 1/4th of landslides in the major events inventory are in one inventory, located within a single 

GEOS-Forecast pixel. However, sizable differences in estimated precipitation can be seen in many 

individual events (Figure 11). Moreover, Figure 12 shows that a consistent global bias does not 

appear to exist. The relative overestimation and underestimation of the two products varies with 

respect to region, and more specifically, with the individual events. Very low or even null rainfall 

occurred on the same date as numerous reports from this dataset. This is attributed to both to 

uncertainties associated with the precise timing of landslides within the database as well as 

potential underestimation of rainfall for a particular event. However, many landslides coincided 

with much higher values (>100 mm).  

 

 

Figure 11: Scatter plot between IMERG Early and GEOS-Forecast. Red circles correspond to rainfall 

accumulations for event-based landslide reports whereas black circles correspond to tweets-based report.    



 

Figure 12: Additive Bias between IMERG Early and GEOS-Forecast rainfall (mm). Red color indicates 

high IMERG Early rainfall accumulations, whereas blue color indicates high GEOS-Forecast rainfall 

accumulation at landslide points across the globe during the study period (July 2018-Feburary 2020). 

 

Table 3: Comparison of IMERG Early and GEOS-Forecast rainfall estimates (mean in mm) by major event 

inventory shows typically higher values in the former dataset. However, both show surprisingly low rainfall 

for the events in Burundi and Rio.  

Inventory IMERG Early  GEOS-Forecast                                                                     

Burundi1 27.9 6.7 

Cyclone Idai2 178.19 144.7 

Typhoon Mangkhut 110.8 214.8 

Typhoon Prapiroon1 251.7 207.7 

Rio de Janeiro1 15.3 1.8 

Thrissur Monsoon 79.98 38.8 
                                                                1 (Amatya, Kirschbaum, and Stanley 2019) 2 (Amatya et al. 2021) 

Similar to the landslides from social media, rainfall estimates vary widely across remotely 

sensed landslides (Table ). The overall range of values is quite similar to those derived from the 

report-based inventory, but the estimated rainfall is typically much higher. While this could be the 

result of better spatial accuracy, the bias towards collecting landslide inventories for the most 

extreme meteorological events probably has a much stronger effect. It is important to remember 

that although the event-based inventories contain thousands of individual landslides, these 

represent a handful of meteorological events; this fact may explain the smaller range of rainfall 

values seen in Table . Although IMERG typically shows higher rainfall estimates for extreme 

events, Typhoon Mangkhut was an exception (Table 3). The most striking failures are for the 

storms in Burundi and Brazil, where GEOS-Forecast predicted <10mm of rainfall. However, 



IMERG Early also estimates relatively low daily rainfall for events that have been described as 

“downpour” or “heavy rainfall” triggers. In contrast, both products show extreme precipitation for 

the three tropical cyclones. This suggests that some storms are more reliably identified, and that a 

global landslide forecast would be more effective for major tropical cyclones, which is in line with 

the previous study where GEOS model demonstrated ability to predict tropical cyclones in terms 

of frequency and track locations (Putman and Suarez 2011).  

4. Discussion 

This study assesses the performance of model-based precipitation forecast and satellite-based 

precipitation estimates to determine the feasibility of applying a global precipitation forecast 

within the LHASA global landslide modeling framework to better anticipate future landslide 

hazard around the world. Comparing GEOS-Forecast to IMERG provides a first step in 

characterizing the regional differences in extreme precipitation that triggers landslides and 

exploring the possibility of using the GEOS-Forecast in place of IMERG in the LHASA model. A 

ground-based reference is used as an independent reference to evaluate the performance of both 

products at CONUS scale. The results over CONUS highlight that for the GEOS-Forecast, warm 

summer precipitation presents a bigger challenge than the cold winter phase. GEOS-Forecast is 

better correlated to MRMS in winter, which could be attributed to the fact that data assimilation 

techniques employed in observation-based model outputs make these superior to other indirect 

measurements such as snow derived from satellites (Girotto, Musselman, and Essery 2020; Houser 

et al. 1998).  Therefore, for snow-dominant landslide hazard zones, the forecast could be 

generalized to be more reliable than the regions with warm precipitation. The methodology 

developed here for assessment of the precipitation products could be transferred to other regions 

where regional forecast and in-situ measurements are available.  

This analysis reveals that the difference between the two precipitation products is greater in 

tropical regions. In the absence of a global ground truth, these differences cannot be completely 

reconciled. These differences could indicate either that GEOS-Forecast is better than IMERG at 

resolving rainfall totals for strong tropical convective events or that the GEOS-Forecast 

overestimates these events. The 95th percentile difference (Figure 6) from the short record over 

which we have GEOS-Forecast data highlights these differences. The variability in tropical regions 

with high landslide susceptibility, such as the Andes, the Philippines and Indonesia, and Central 

America, needs to be further investigated using regional ground-based reference data. While the 

analysis over CONUS could be generalized to regions with analogous topography and landslide 

climatology, assessment of the model biases requires a long historical record and ground truth to 

draw significant conclusions. Ground-based data is very important for validation of both satellite-

derived and model-based precipitation products. Considering global gauge-based products e.g. 

Global Precipitation Climatology Project (GPCP) may help to better characterize the regional 

differences over longer time scales and provide insight into systematic biases that may impact both 

IMERG and GEOS-Forecast (Adler et al. 2020; Huffman et al. 2021). Alternatively, local ground 

data can be used for local bias correction of the products (Enayati et al., 2021; Laverde-Barajas et 

al., 2020). Although the comparison between the products considered the uncertainties associated 



with the different spatiotemporal resolutions, resampling the products to a common 0.1° spatial 

resolution could have introduced some discrepancies.  

A comparison of rainfall estimates from IMERG Early and GEOS-Forecast at the location of 

recent historical landslides reveals a moderate level of correlation (0.27≤CC≥0.58) between the 

two precipitation products. Most of the landslides reported in Twitter are associated with low daily 

accumulated precipitation, but many landslides were caused by extreme rainfall events. The 

overall distribution of the two datasets is similar, although IMERG Early reached a maximum 

much greater than GEOS-Forecast. The validation over landslide points reveals that some storms 

are more reliably identified by GEOS-Forecast, and both IMERG Early and GEOS-Forecast 

correspond well for rainfall accumulations >100mm and tropical cyclones in general. The absence 

of regional diverse and available landslide inventories limits more extensive analysis in different 

morphologies; however, as the inventories become more available through global initiative (e.g. 

LandAware ; Calvello et al., 2020), will help to advance the validation reliability. 

IMERG Early and GEOS-Forecast have the potential to substitute for in situ rainfall 

measurements in data-sparse, ungauged, or large-scale catchments. However, the capability of 

both satellite and model-based estimates vary largely due to differences in topography, season, 

climate, basin size, and product type (Jiang and Wang, 2019). Therefore, should be cross validated 

with the rain gauge networks or ground-based radar and local weather forecast models (WRF) for 

estimation of geo-hydrological hazards.  

 For this study, the most consistent and longest historical versions of GEOS-Forecast (GEOS-

FP 5.21 and GEOS-FP 5.22) have been utilized. While this provides a 2-year product from which 

to evaluate differences, a longer record would better characterize patterns in extreme precipitation 

events. However, retrospective runs of the current or earlier versions of GEOS-FP are not 

available. The updates in the GEOS-forecast product present a challenge for its integration into 

LHASA framework. Though any modification to the GEOS-Forecast product does not necessarily 

represent a drastic change in the precipitation field, forecast product versioning should still be 

considered an important factor in contributing uncertainty within the predictive capability of 

LHASA model. As we intend to use the latest version of the GEOS-Forecast product in LHASA 

framework, the evaluation of the past versions (prior to GEOS-FP 5.21) of the model is out of 

scope of this study. Furthermore, given the difference in the spatial and temporal resolution of the 

satellite-derived and model-based products, the incorporation of the datasets at their native 

resolutions is not straightforward. Hydrological applications such as landslide modeling and flood 

forecasting require estimates of precipitation at a fine scale. The coarse spatial resolution of models 

such as the GEOS-Forecast product (0.25º×0.31º) makes landslide characterization difficult. One 

of the known limitations of GEOS-Forecast is the accuracy of the spatial location of extreme 

convective precipitation events (Gary S. Partyka-GMAO/NASA, Personal Communication). 

While the model may accurately predict a strong convective core, it may not place it in the same 

location as that observed by satellite data, which can cause large discrepancies in the precipitation 

totals in areas where strong convective events predominate such as in the tropics. However, 

upgrades in the GEOS-FP system (GEOS-FP 5.25 onward) with changes in model physics and 



land model parameterization (https://gmao.gsfc.nasa.gov/researchbriefs/land_changes_GEOS-

FP/land_changes_GEOS-FP.pdf) has allowed improvements in the known issues.  

 GEOS-Forecast dataset offers global coverage at an hourly resolution, which distinguishes it 

from other global precipitation forecast products such as the NCEP Global Ensemble Forecast 

System (GEFS-1°/6hrs) and Climate Hazards Infrared Precipitation with Stations (CHIRPS)-

GEFS (0.05°/day, 5-day, 10-day and 15-day forecast). This makes GEOS-Forecast a better 

candidate for global landslide hazard early warning systems. Comparison of GEOS-Forecast 

beyond 24 hours would be valuable to better understand the feasibility of potential lead times for 

extreme events. Contingent upon the short-term and long-term precipitation forecast accuracy of 

the GEOS-Forecast model at a local scale, it could be integrated into a landslide early warning 

system. While it is not straight forward, there are several approaches to make GEOS-Forecast more 

relevant to LEWS (e.g. scaling, bias correction if possible). Further analysis with other ground 

based datasets would provide more confidence in the applicability of GEOS-Forecast for landslide 

prediction, particularly at local scales. 

This work highlights the potential utility of the GEOS-Forecast for global landslide early 

warning system. However, our preliminary analysis suggests that its integration in the current 

LHASA framework requires some adaptation (rescaling, transformation) to achieve comparable 

accuracy as the near-real time probabilistic landslide hazard estimates. Past studies have applied 

gamma and log-normal distributions over satellite rainfall to account for the disparity in the 

empirical data (Cho et al., 2004). A recent study by Tan et al., 2020 uses the nominal satellite 

retrieval to restore the PDF of the precipitation field by introducing a new algorithm called Scheme 

for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood 

(SHARPEN). The proposed scheme could be applied to model-based algorithms particularly as 

these models increase in their spatial resolution. Bias correction of GEOS-Forecast with respect to 

IMERG Early does not appear to be a viable option given the uncertainties associated with IMERG 

Early.  

In our prospective work, we are working to identify the optimal approach to rescale forecast 

precipitation and determine what treatment of the GEOS-Forecast could be most useful to forecast 

landslide hazard. As an example, LHASA nowcast and forecast outputs for Hurricane Eta in 

Central America on Nov 4, 2020 are shown in supplementary material (SM7) for a brief overview 

of the ongoing feasibility study (Khan et al., 2021). We will also explore ways to incorporate 

GEOS-Forecast precipitation into LHASA framework, such as assigning categorically alert levels 

based on precipitation extremes. Moreover, it should be emphasized that different factors, such as 

amount of rainfall, its ground accumulation and the local terrain, influence translational slides, 

debris flows, rockfalls and other type of mass movements in different ways. While the global 

landslide model LHASA indirectly incorporates theses regional factors along with precipitation, it 

could be enhanced by including customized regional attributes.  

https://gmao.gsfc.nasa.gov/researchbriefs/land_changes_GEOS-FP/land_changes_GEOS-FP.pdf
https://gmao.gsfc.nasa.gov/researchbriefs/land_changes_GEOS-FP/land_changes_GEOS-FP.pdf


5. Conclusions 

Forecasted precipitation data can provide a valuable estimate of future extreme rainfall that 

may trigger landslides, offering emergency responders, decision makers, aid agencies and other 

international groups insight into potential impacts from extreme events in advance. Before 

assuming the forecast product to be spatially and temporally accurate, this study evaluates global 

forecast data and satellite rainfall at different spatiotemporal scales and outlines the potential for 

its use in landslide hazard forecasting. The conclusions are summarized below: 

1) Overall, the lowest agreement indices are found for extreme events, attributed to both poor 

performance of the products at high thresholds as well as the sensitivity of the categorical 

statistics towards the sample size, where extremes events are rare above a certain threshold. 

2) For two extreme events in Pacific Northwest and Appalachian region in USA, the PDF of 

daily amount of rainfall in case of IMERG Early and GEOS-Forecast have different peak 

location, peak height, absolute values and different tail as compared to the reference 

(Figure 3).  

3) Seasonality influences the performance of both near-real time satellite precipitation 

estimates and modeled forecasts, which can be attributed to factors such as topography 

(mountainous regions) and morphology of precipitation (snow, drizzle etc.) among others 

The correlation between GEOS-Forecast and MRMS is high in US west coast and 

northeast, also GEOS-Forecast is better correlated with MRMS in winters. 

4) The performance of the satellite/model-based products, the amount and intensity of rainfall 

needed to trigger landslides differs based on geography, climatology, etc., which prevents 

extrapolation on the globe and highlights the importance of a regional reference such as 

MRMS over CONUS.  

5) For regions that are evaluated, including the United States, Colombia, Mekong, and GBAO 

province in Tajikistan, the GEOS-Forecast appears to resolve extreme rainfall (~>70mm) 

at event-scale relative to a near-real time satellite product.  

6) The GEOS-Forecast shows comparable performance to satellite estimates in many parts of 

United States, however, validation over landslide points reveals that GEOS-Forecast 

precipitation for tropical cyclones correspond well with near-real time satellite estimates 

(IMERG Early) compared to other types of storms. 

In conclusion, GEOS Forecasted precipitation for extreme events that can trigger landslides 

shows temporal coherence with the ground truth, albeit with seasonal and regional variation. At 

recent landslide points, and specifically for tropical cyclones, 24hr accumulated global 

precipitation forecast >100mm appears to correspond well with near-real time daily accumulated 

IMERG Early precipitation estimates. Overall, the performance of the GEOS-Forecast at the 

global scale varies with respect to location, rainfall intensities, and type of precipitation events. In 

light of these findings, future studies and different applications could apply the same methodology 

and assessment metrics to inter-comparison of a global forecast product with local WRF data at 

multi-spatiotemporal scale.  



Our follow-up research will involve assessing the effect of precipitation differences between 

the near-real time and forecast products in the context of landslide nowcast and forecast. 

Nevertheless, consultation and engagement with user communities is essential to develop products 

of highest utility for their applications. The development of these predictive models is critical for 

the emergency preparedness and civil defense agencies to take preventive steps in advance of 

severe triggering events to mitigate the disaster outcomes.  
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Supplementary Material 

 

 

SM1: 99th percentile precipitation maps (mm) over CONUS for a) IMERG Early and b) GEOS-Forecast 

for study period (July 2018-Feb 2020). 

 

Both IMERG Early and GEOS-Forecast show high precipitation values in Midwest and Southeast. 

Analogous to average daily precipitation values (Figure 2), GEOS-Forecast exhibits higher 99th 

percentile values in the West (e.g. California) relative to IMERG Early. 



 
SM2: Seasonal PDFs for Appalachian (left panels), Pacific Northwest (middle panels) and California 

region (right panels) respectively. Red lines are for MRMS, blue lines show IMERG Early PDFs and 

green lines are for GEOS-Forecast. 

 

SM2 indicates that PDFs of both satellite and model-based estimates vary with respect to seasons 

and regions relative to MRMS. In case of IMERG Early, the best agreement with MRMS is found 

in winter for Appalachian, whereas for GEOS-Forecast in summer for California region. The PDFs 

for IMERG Early and GEOS-Forecast almost overlap for all four seasons in Pacific Northwest.  

 



 

 

 

 

 
SM3: 50th Percentile difference between IMERG Early and GEOS-Forecast precipitation map (mm/day) 

for the study period. Red color indicates IMERG Early greater than GEOS-Forecast and blue color 

correspond to greater GEOS-Forecast 50th percentile precipitation accumulation. 

 

 



 
SM4: 75th Percentile difference between IMERG Early and GEOS-Forecast precipitation map (mm/day) 

for the study period. Red color indicates IMERG Early greater than GEOS-Forecast and blue color 

correspond to greater GEOS-Forecast 75th percentile precipitation accumulation. 

 

 
SM5: 99th Percentile difference between IMERG Early and GEOS-Forecast precipitation map (mm/day) 

for the study period. Red color indicates IMERG Early greater than GEOS-Forecast and blue color 

correspond to greater GEOS-Forecast 99th percentile precipitation accumulation. 

 

 

 

 

 



 
SM6: Box-Whiskers plot for IMERG Early and GEOS-Forecast for recent twitter reports-based landslide 

points. 

 

 



 

SM 7: Top panels show daily accumulated precipitation (mm) for GEOS-Forecast (left) and IMERG 

Early (right) for Hurricane Eta on Nov 4, 2020 over Central America. Bottom panels show probability of 

landslide in the LHASA forecast output (left) and LHASA Nowcast (right) respectively. 

 

SM7 (bottom panels) suggests that the spatial location of the forecasts may be similar to the 

nowcasts, but that if the forecast is used “as is” the magnitude probability values are diverge. 


