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Lithium-ion batteries are commonly used to power unmanned aircraft vehicles (UAVs).
The ability to model and forecast the remaining useful life of these batteries enables UAV
reliability assurance. Building accurate models for battery state of charge and state of health
based on first principles is challenging due to the complex electrochemistry that governs bat-
tery operations and computational complexity required to solve them. Therefore, reduced
order models are often used due to their ability to capture the overall battery discharge. Un-
fortunately, these simplifications lead to residual discrepancy between model predictions and
observed data. In this paper, we present a hybrid modeling approach merging reduced-order
models and neural networks. In this approach, while most of the input-output relationship is
captured by Nernst and Butler-Volmer equations, data-driven kernels reduce the gap between
predictions and observations. We validate our approach using data publicly available through
the NASA Prognostics Center of Excellence repository. Results showed that our hybrid battery
prognosis model can be successfully calibrated, even with a limited number of observations.

I. Nomenclature

Λ = Loss function
MLP = Multi-layer perceptron
RNN = Recurrent neural network
� = Diffusion constant
� = Faraday constant
�8 = Current density
�8,0 = Exchange current density
' = Universal gas constant
'0 = Lumped internal resistance
) = Electrode temperature
* = Potential
+ = Voltage
b = Neural network model bias vector
2 = Li-ion concentration
8 = Current
< = Number of Electrons transferred during reaction
= = Sub-script of negative electrode
? = Sub-script of positive electrode
@ = Charge, available Li-ions
u = Battery input vector
G = Mole fraction
y = Battery observable state vector
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II. Introduction

Lithium-ion batteries are commonly used to power electric unmanned aircraft vehicles (UAVs) [1--3]. Therefore,the ability to model both the state of charge as well as battery health is very important for reliable and affordable
operation of UAV fleets. Even though models based on first principles are accurate and trustworthy, the complex
electro-chemistry that governs battery operation makes it hard to build and use such models for in-time monitoring
of battery conditions. Moreover, the careful tuning or estimation of high-fidelity model parameters hamper the
straightforward deployment in the field. Reduced order models and machine learning models present computationally
tractable alternatives to high-fidelity physics-based simulations, they can be run on-board relatively small vehicles at
the cost of lower precision.
Reduced-order physics-based models are built by carefully simplifying the physics such that computational cost is

dramatically reduced while maintaining the ability to describe the system main dynamic behavior. This approach can
lead to a number of parameters to be estimated based on data as well as residual model-form uncertainty; a property
shared with machine learning models. The latter are solely built on the basis of data, and can capture unexpected
nonlinearities. The drawback is that traditional machine learning tends to require large number of data points hard
to retrieve in many scientific and engineering fields like, for example, the field of battery discharge and degradation
prediction.
In this paper, we use a hybrid modeling approach for battery usage-based lifing that directly implements physics

kernels within deep neural networks. We leverage a reduced-order physics-based model for battery state of charge
developed in [4, 5]. Then, we pair this model with data-driven kernels in order to reduce the gap between predictions and
observations as well as to perform uncertainty quantification. The numerical integration of the resulting time-dependent
state space model is performed with a recurrent neural network [6--9].
The developed approach is validated using data publicly available through the NASA Prognostics Center of

Excellence repository [10, 11]. This data set contains a collection of reference discharge (constant loading) cycles as
well as random discharge cycles for a set of eight Li-ion batteries. Results showed that our hybrid battery usage-based
lifing model can be successfully calibrated with data from this small population of batteries. Moreover, the model can
help optimizing battery operation by offering long-term forecast of battery capacity.
The remaining of the paper is organized as follows. Section III gives an overview on the reduced-order battery

discharge model and presents our proposed physics-informed neural network model. Section IV describes in detail our
main results including model fitting and validation as well as random-loading discharge predictions. Finally, section V
concludes the paper by summarizing significant remarks, and providing insight on potential future studies.

III. Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Lifing

A. Reduced-order Physics-based Model
We adopted the electro-chemistry surrogate model proposed in [4], which mixes physics-derived and empirical

equations, and was originally proposed for real-time applications. It relies on ordinary differential equations rather than
partial differential equations, making it computationally efficient. Here, we report only a summary of the model. The
interested reader is referred to [4] for more details and a thorough description.
The model uses Nernst’s equation for the equilibrium potential:

+*,8 = *0 +
')

< �
ln
1 − G8
G8
++8=C ,8 , (1)

where: 8 indicates the subscript of the electrode (negative = or positive ?); ' is the universal gas constant; ) is the
electrode temperature; < is the number of electrons transferred in the reaction; � is the Faraday constant; G is the mole
fraction for the Lithium-intercalated host material; *0 is the reference potential; and +8=C is the internal voltage and
activity correction term, null in ideal conditions. Details about +8=C will be provided later in the section. The mole
fraction is computed as the ratio between the amount of Li-ion @ in electrode 8 = {=, ?}, and the amount of available
(moving) Li-ions @<0G :

G8 =
@8

@<0G
, and @<0G = @= + @? . (2)

In order to accommodate the concentration gradient at the surface of the electrode, the total volume of the battery is
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split into two control volumes, bulk E1 and surface EB , and the concentrations of Li-ions are calculated accordingly:

21,8 =
@1,8

E1,8
, 2B,8 =

@B,8

EB,8
. (3)

The number of Li-ions in the different volumes must satisfies the following equalities: @? = @B, ? + @1,?,
@= = @B,= + @1,=, as well as the second equality in Eq. (2). The diffusion rate from the bulk to the surface is:

¤@1 B,8 =
1
�
(21,8 − 2B,8) , (4)

where � is the diffusion constant. The equations for the rates of change of the charges @ are not reported from the sake
of brevity and can be retrieved in [4]. The concentration overpotential is calculated using the Nernst’s equation for the
surface, which is by substituting G8 with GB,8:

GB,8 =
@B,8

@<0G
B,8

, and @<0G
B,8 = @<0G EB,8

E8
. (5)

The solid-phase Ohmic resistance, electrolyte Ohmic resistance, and current collector resistance can be lumped
together into '0 to calculate the voltage drop: +0 = 80?? '0, where 80?? is the required current [4].
The surface overpotential is represented by the Butler-Volmer equation [4], which for Li-ion batteries can be

expressed in terms of voltage +[ :

+[,8 =
')

�U
arcsinh

(
�8

2�80

)
, (6)

where �8 and �80 are the current density and exchange current density, defined in [4]. This way, the battery output
voltage is defined by:

+ = +*,? −+*,= −+0 −+[,? −+[,= , (7)
which will serve as output of the physics-informed model.
As part of the simplifications used to obtain the described reduced-order physics-based model, we selected the

internal voltage +8=C , battery resistance '0, and amount of available Li-ions @<0G as trainable elements of the hybrid
framework. As already mentioned, the internal voltage is the activity correction term needed to compute +* .
Focusing on +8=C , the model in [4, 5] fits the experimental data using the Redlich-Kister expansion:

+8=C ,8 (G8; A8) =
1
< �

#8∑
:=0

�:,8

(
(2G8 − 1):+1 + −

2G8: (1 − G8)
(2G8 − 1)1−:

)
. (8)

The mole fraction G8 is the independent variable, the coefficients �:,8 are identified through data-fitting, and the number
of elements in the sum #8 is empirically-derived as well. For the batteries tested in this work, the reference papers
[4, 5] kept #? = 12 and #= = 0, thus using a constant internal voltage for the negative side of the electrode.
The rationale behind our selection of the trainable elements is the following. The model prediction performance

heavily depends on the lumped internal resistance, '0, and maximum number of available Li-ions, @<0G . Such influence
appears at both the inter- and the intra-specimen level; those two parameters change as a battery ages. The loss in
active material can be represented by a drop in @<0G , while an increase in '0 is representative of a constant Ohmic
drop, which causes an increase in total resistance independent of the battery charge state [12]. Such effects should
be accounted for when training on multiple discharge curves of the same battery type. Moreover, different samples
of the same fleet of batteries also have slightly different '0 and @<0G , thus varying from one battery to another and
contributing to inter-specimen variability. The selection of the internal voltage came naturally as the surrogate model
already makes use of a numerical interpolation technique to provide an estimate of +8=C . The Redlich-Kister expansion
is substituted with a machine learning model that is not restricted by the equation form and can provide uncertainty
estimates of the model parameters, as described later in the paper.

B. Physics-Informed Neural Network Model
Our proposed approach for modeling the time-dependent battery state of charge is based on recurrent neural networks

(RNNs). RNNs [13--15] differ from traditional feed forward networks, as they are designed to handle time-dependent
responses. At every time step C, recurrent neural networks apply a transformation to a state y such that:

[yC hC ]> = 5 (uC , yC−1, hC−1) , (9)
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where the subscript C represents the time discretization index, y ∈ IR=H are the observable states, h ∈ IR=ℎ are the internal
states, u ∈ IR=D are input variables, and 5 (·) defines the transition between time steps (function of input variables and
previous states).
While typical RNN architectures are trained solely from data, such as the long-short term memory [16] and the

gated recurrent unit [17], in this work, we focus on a relatively new class of models that hybridize RNNs for numerical
integration of ordinary differential equations [6--9]. In this approach, the building blocks of the governing equations
are connected through directed acyclic graph [18, Ch. 2] to form the RNN repeating cell. For the reduced-order
physics-based model describing battery discharge, the RNN representation is illustrated in Fig. 1.

Fig. 1 Physics-informed RNN cell performing the state-space step-ahead prediction.

This RNN cell takes the state vector at the previous time step, hC−1 together with the input at the current time step,
uC , and updates the state vector hC and the output HC . This RNN cell produces a one-step-ahead prediction of the entire
state-space model such that

h = [),+>, +[,=, +[,? , @1,=, @B,=, @1,? , @B, ?]> , D = 8 , and H = + . (10)

In the model previously discussed and illustrated in Fig. 1, the blue nodes are pure physics-blocks, which perform
the same calculations of the physics-based model. The dashed-rounded white nodes show variable selectors. The green
nodes are representative of the two data-driven models used to estimate the internal voltages, while the yellow circles
represents the adjustable physical model parameters, @<0G and '0. The internal resistance '0, the amount of available
Li-ions @<0G , and the internal voltages +8=C , ? and +8=C ,= need to be empirically adjusted based on observed data. With
this mix of physics-based and data-driven nodes, the RNN model can capture the main trend of the battery discharge
behavior through the physics, while the data-driven nodes reduce the discrepancies between predicted and observed
outputs. Internal voltages +8=C , ? and +8=C ,= are modeled through multi-layer perceptrons (MLPs):

+8=C ,= = MLP= (G=; w=, b=) and +8=C , ? = MLP? (G?; w? , b?) , (11)

where w=, b=, w? , and b? , are MLP parameters.
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Fig. 2 Constant-loading discharge samples curves used for training (top panel) and examples of model pre-
dictions (bottom panel). The solid curves underneath the dashed curves are the ground truth curves used for
model performance assessment.

IV. Results and Discussion
Our implementation is all done in TensorFlow∗ using the Python application programming interface (version 2.3).

First, we trained our hybrid physics-informed neural network, which simultaneously optimizes the values of @<0G , '0,
and the MLP parameters (w=, b=, w?, and b?). We chose to do so using the constant-loading data available in [10].
We extracted the first 3 constant-loading discharge curves from each of the 12 batteries in the data set. Each curve was
generated with a current draw of 1 A from the fully charged condition of 4.2 V down to a value of 3.2 V, when the tests
stopped. Then, we used the mean squared error as loss function Λ:

Λ =
1
#

(
V − V̂

)) (
V − V̂

)
, (12)

where # is the number of observations, vector V contains the observed battery voltages over time, and V̂ contains the
predicted battery voltages by the physics-informed neural network. We trained our model with the Adam optimizer
[19] set with a learning rate of 5 × 10−3 for 3000 epochs. All other Adam parameters were kept equal to their default
values. Figure 2 summarizes the training results by contrasting the observed data and model predictions.
Once the hybrid physics-informed neural network model is trained with constant loading, we use it to make

predictions at random loading conditions (also available in [10]). As opposed to reference constant loading, random
loading better approximates the realistic battery usage. Figure 3 shows the prediction of the first random-loading
discharge curves, after the batteries were tested in constant-loading conditions. For most batteries the predictions are
very accurate, except for battery #1, that reportedly had problems in much of the recorded data.
From the engineering understanding of how these batteries operate, we know that over time, as the batteries

accumulate cycles, the amount of available Li-ions @<0G decreases while the internal resistance '0 increases. The
internal voltages +8=C , ? and +8=C ,= curves do not change with usage. Therefore, if we keep performing constant loading
cycles regularly, we could use that information for tracking @<0G and '0.
As a matter of fact, Fig. 4a shows battery capacity and @<0G as a function of the cumulative energy provided by the

battery. We used the constant-loading cycles (which were performed regularly) to estimate the @<0G values shown on
top of battery capacity values. The clear correlation can, in principle, allow us to model aging by modeling the decay of
its two proxies (@<0G and '0) as a function of the past energy drawn. We also observe that up to 1 kWh, all batteries
show a very narrow dispersion of the capacity and @<0G drop, manifesting low inter-specimen variability. The curves
then start diverging. Nevertheless, battery capacity and @<0G trends remain highly correlated. Once @<0G and '0 are
tracked, predictions for random discharge cycles are expected to improve. Figure 4b illustrates the impact in one of the
random-discharge cycle data. The bias in the model prediction due to the misestimation of @<0G and '0 is removed
once these parameters are updated.

∗www.tensorflow.org
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Fig. 3 Prediction of first random-loading discharge curves for batteries 1 to 8 from model trained only with
reference discharge curves (constant load).

(a) Decrease in maximum capacity (left-vertical
axis) and @<0G (right-vertical axis) as a function
of the cumulative energy.

(b) Model voltage prediction under random input current loading be-
fore and after update the model parameters (@<0G , '0). The black
curve is the observed data, the red curve is the prediction with outdated
model parameters (RMSE 8.1e-02) and the blue curve is the prediction
with updated model parameters (RMSE 3.1e-02)

Fig. 4 Variation of @<0G as batteries accumulate loading cycles.
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V. Summary and Future Work
We proposed a hybrid physics-informed neural network model for Li-ion battery discharge as well as aging

prediction. The methodology blends physics-based models with the capability of machine learning algorithms to learn
from data, thus providing a flexible model yet constrained by physics.
The results we showed here suggest that the hybrid model can successfully represent voltage discharge cycles under

constant- and random-loading conditions after being trained with a few sample discharge curves. That same model can
also track the aging of the battery over time by updating the estimates of the parameters @<0G and '0, which were used
as proxies of the inner degradation phenomena of the batteries.
However, the ability to predict the remaining time to discharge of a single cycle, as well as the ability to track

aging, depend upon several reference discharge cycles. That means several discharge curves obtained at different
stages of the battery life using constant- and low-loading conditions. The need for such reference discharge cycles
clearly has a negative impact on the application and deployment of the model in real-life operations; the parameter pair
(@<0G , '0) should be re-calibrated by executing a reference discharge cycle on each battery at regular intervals. This
means interrupt operations by taking the battery out of the fleet, perform the necessary reference-discharge test, and
reintroduce the battery into the fleet.
As topic of future research, we suggest addressing the need for reference cycles and propose a methodology to

update the aging parameter pair (@<0G , '0) using random-loading discharge curves. If such re-calibration stages during
the aging stage are eliminated, the hybrid model could be applied to batteries operating in the field and learn the new
values of @<0G and '0 as the battery is being used, without the need to disrupt operations. Another important research
topic is how the hybrid model can account for uncertainty in the output voltage as well as future capacity drop. As a
result, the parameters of the hybrid model would be defined by probability distributions instead of deterministic values,
thus making the application of the approach look more attainable, as the aging predictions would be accompanied by
confidence intervals.
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