National Aeronautics and Space Administration

EXPLORE MOON to MARS

Plasma for Crewed Transit and Planetary Habitation

NASA – Kennedy Space Center ICOPS (International Conference on Plasma Science) Sept 12th-16th, 2021

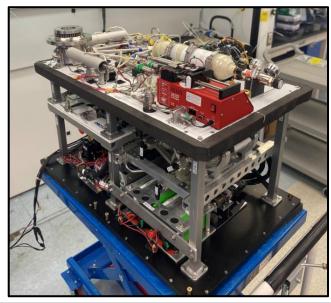
Human Logistics of Moon-to-Mars

- Human Life Support
 - Atmosphere leakage
 - Gaseous compounds of concern
 - CO₂ control (<8%)
- Waste Management
 - Trash management
 - Human metabolic processes
 - Science waste
- Food and Nutritional Needs
 - Water recovery
 - Space crop production
- Fuel Aspects
 - Fuel production off planet

Intro.

Projects at KSC

Plasma in Space


Table 7 - Crew	Consumables	Mass	Results	for	Mars		
Mission							

Item	Mass Required (kg)				
	600-Day Transit	400-Day Mars Vicinity	30-Day Conting ency	Total	
Oxygen	-	-	99	99	
Nitrogen	4	3	1	8	
Water	-	-	362	362	
Food	4,394	2,930	220	7,544	
Personal Stowage	200	-		200	
Operational Supplies	100	-	-	100	
Personal Hygiene Kit	29	22	-	51	
Hygiene Consumables	190	126	10	326	
Healthcare Consumables	216	144	11	371	
Wipes & Towels	468	312	23	803	
Trash Bags	26	18	1	45	
Clothes	528	352	26	906	
WC - fecal canisters WC - urine	540	360	27	927	
prefilters	150	100	8	258	
Total Mass	6,845	4,367	788	12,000	

*Partially closed loop. Does not include spares or maintenance items. Basic operations only. [1]

Current State-of-the-Art

- Waste Management
 - De-orbit burn-up
 - "On-site" storage
- Nutritional Needs
 - Long-term storage
 - Resupply
- Fuel Production
 - Earth-based only
- Resupply Logistics
 - Sanitation
 - Food

KSC Trash-to-Gas:

OSCAR

<u>Orbital Syngas</u> <u>Commodity</u> <u>Augmentation R</u>eactor

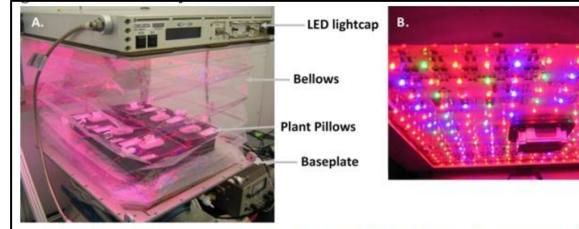


Figure 1. A) The Veggie vegetable production system, B) Close-up view of the Veggie lightcap.

Images of the Veggie vegetable production system taken from Conference paper. [2]

Plasma can be a versatile tool for crewed space exploration

Projects at KSC

Plasma in Space

Need for Plasmas in Space

Logistics of Waste Management

- Waste conversion processing
 - Mitigates need for resupply
- Electrical power and gases as consumable
- Abatement of gaseous VOCs
 - Possible reuse

Space Crop Production

- Nitrogen fixation of water
- Microbial mitigation
- pH adjustments
- Growth enhancement

Biohazard Mitigation

- Eliminate chemical storage and handling
- Reduce microbial risks
- Ensure reuse of 3D printed medical equipment

In-Situ Resource Utilization

 On-demand advanced chemical processing

Presentation with Focus on Plasma Research at Kennedy Space Center

Intro.

Projects at KSC

Plasma in Space

Plasma Projects at Kennedy Space Center

- Waste Gasification
 - Reduce waste volume
 - Gaseous resource production
- Plasma assisted nutrient recovery via ash leaching
 - Closing the Space Crop Cycle
- Lunar Regolith Reduction
 - H₂ plasma for oxygen extraction

- Plasma Agriculture (sanitation)
 - Mitigate biohazards of seeds and produce
- Plasma activated water
 - Agriculture, sanitation, acid-base production

- Plasma cleaning
 - Space systems processing and production

Planning to continue plasma work at KSC

Plasma Waste Gasification

- Current practice
 - Apollo
 - Waste "Dump" Sites
 - Artemis
 - Developing Trash-to-Gas Systems
 - TCPS (Trash Compacting and Processing System)
 - Mission Storage
 - ISS
 - Trash burn-up
 - Water Reclamation System

Plasma as a solution

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Electrical consumption ~ 200-400 Watts
- Ability to recirculate gas (removal of commodity usage)

Projects at KSC

Plasma in Space

 Able to achieve 74-87% gasification (air, CO₂ respectively) at KSC

Image from nasa.gov

Air-foam

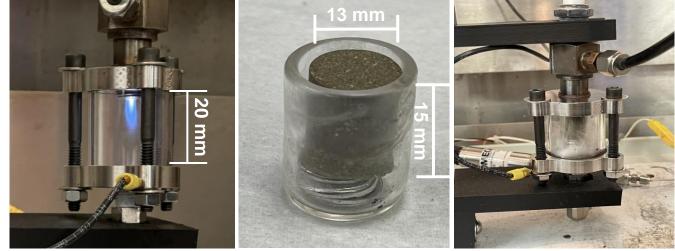
CO₂-foam

Plasma Waste Gasification: One Astronaut's Trash Production

550 days (Mars mission) 800 kg of waste 2536 'footballs'

1 day 30 days 7 days 1.5 kg 43.5 kg 10 kg 5 'footballs' 138 'footballs' 32 'footballs' Slide Credit: Dr. Joel Olson; KSC Trash-to-Gas Team; ICES 2021 [3]

Plasma Assisted Nutrient Recovery Via Ash Leaching


- Thermal plasma treatment
 - 300 Watts
 - Thermal degradation
 - ≈ 3g pellet size
- Closing the crop production cycle
 - Acid leaching remaining nutrients
 - K, Na, Ca, Mg, P
- Plasma treat with air, CO₂, N₂
 - Modify plasma parameters
 - Modify reaction chemistry

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Explore different commodities

Projects at KSC

CO₂ plasma plume

Crucible with pellet and Al shims **Experimental set-up**

Plasma Processing

Plasma in Space

00000000

Air Plasma processed pellet

CO₂ Plasma processed pellet

Lunar Regolith Reduction

- H₂ plasma produces H⁺ ions
 - Readily reduces oxides
 - Enables silicate reduction
 - $H_2O \rightarrow O + H_2$ via electrolysis
 - H₂ recycled
- Promising In-Situ Resource Utilization Technology

Plasma in Space

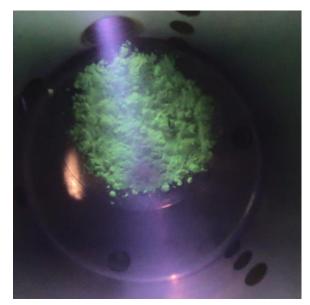
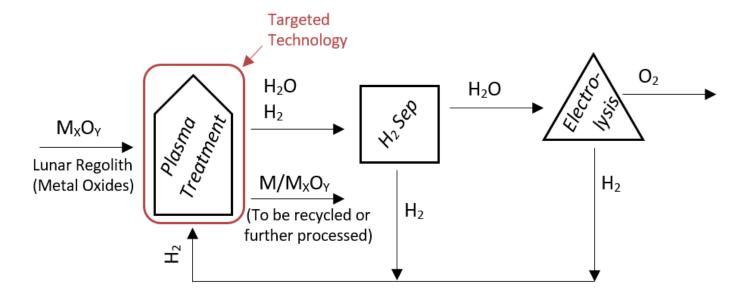



Image of regolith treatment with plasma

A schematic of the concept is shown above.

Intro.

Projects at KSC

Agriculture: Sanitation

- Plasma produces reactive oxygen and nitrogen species
 - In surrounding gas and at seed surface
- Oxygen species deactivate and reduce microbial loads
- Key reactions are localized to plasmacontact region
 - Oxygen species are short-lived

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

• RF, AC, and DC Jet plasmas used at KSC

Projects at KSC

Plasma in Space

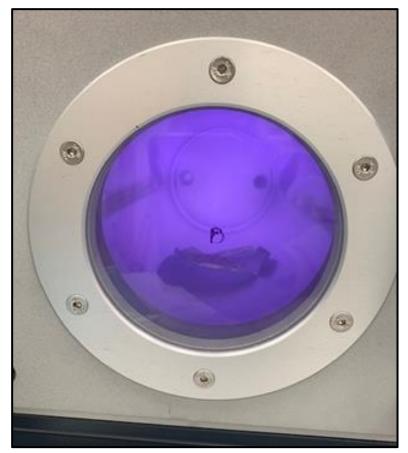
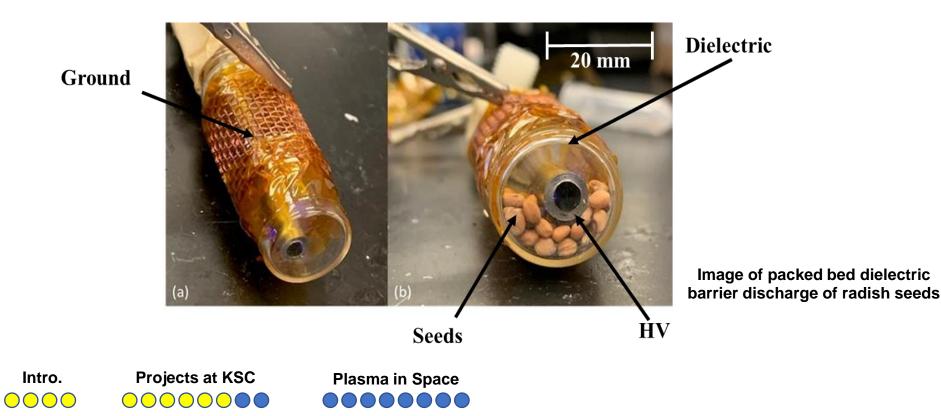



Image of air plasma discharge in RF subatmospheric system at 150mTorr.

Agriculture: Seed Treatment

- Reactive species can help enhance plant growth
 - Nitrogen act as direct fertilizer
 - Oxygen species force stress responses
 - Improve germination rates and times
- Timing of treatment important, can oversaturate and damage seeds

Plasma Activated Water

- Ionizing different gases produces a plethora of reactive species
 - Argon increases UV
 - pH adjustments
 - Conductivity changes
- Air plasma interaction with H₂O
 - O₂ species
 - OH, O₃, H₂O₂, etc.
 - N₂ species
 - NO₂⁻, NO₃⁻, etc.

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Fixate nitrogen for Space Crop Production
- Acid-base production for chemicals
- Sanitizer production for biohazard mitigation

Plasma in Space

Projects at KSC

Image of argon plasma discharge in water.

Plasma Cleaning

- Diener atmospheric plasma generator
- Grease and nonvolatile residue
 - Explore alternative precision cleaning
 - Environmentally friendly method
 - KSC uses blend of fluorinated and chlorinated solvents
 - Tested on coupons
 - 300 Watt, air plasma Diener tech. PlasmaBeam
 - Varied height, speed, distance, step-over
- Did not meet most severe cleanliness standards for aerospace components

[4] Image from Diener website

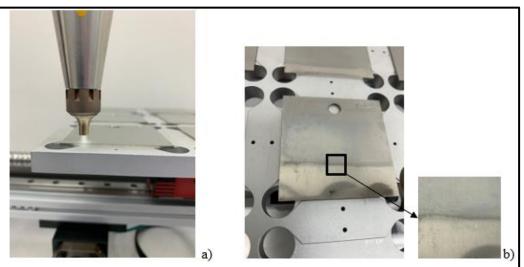


Figure 8: a) Plasma system during coupon cleaning with a 4 mm height; b) Cleaned (bottom) vs. contaminated (top) portions of the coupon

Images of the plasma cleaning system taken from NASA internal report.

Projects at KSC

Plasma in Space

Challenges of Plasma in Space

- Plasma not well understood
- Complex technology
 - Expensive or hard to replace components
 - Finicky processes and systems
- Electrically expensive
 - Scale up of processing can be costly
- Lacking electrical infrastructure
 - Electrical grounding and EMI

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Dissipation of charge build-up

Projects at KSC

CO₂ Jet in air

Plasma in Space

N₂ DC 'Torch'

N₂ Pellet Processing

AC Argon Jet 14

Waste Management Financial Comparisons

- Power aboard ISS and Commercial Cost Waste Gasification Example
 - 44 kW aboard the ISS
 - NASA proposed Private Astronaut Mission (PAM) cost (\$42 per kW-hr) (June 2019)^[5]
 - Trash disposal on ISS (\$3,000 per kg with 35 kg max per company per year)^[5]

Feedstock Gas	Conversion %	Power (W)	Time/gram (sec)	^[6] \$/kg (Earth)	\$/kg (ISS)
Air	88.74	200	101	0.59	236.65
CO ₂	74.39	300	242	2.10	846.89

External Handling: 35 kg (PAM) x $\frac{$3,000}{1 kg} \approx $115,000$: 35kg for private company

Or Air Plasma: 35 kg (PAM) x $\frac{\$236.65}{1 kg} \approx \8300 : 35kg for private company

CO₂ Plasma ≈ *\$30,000*: 35kg

Projects at KSC

Crop Production and CO₂ Expenses

- Shipping Logistics Examples for Comparable items
 - Hoagland nutrient solution
 - \approx \$60,000 per kg, then dilute with water
 - florikan: polymer coated, controlled release fertilizer (100-180 days)^[7]
 - Different polymer fertilizer required for each plant type
 - Prosan ® wipes for sanitation
 - 10 wipes per produce harvest
 - 120 ct/box ≈ 0.786 kg -> \$21,000 ≈ 12 'sanitations'
 - CO₂ scrubbing Unit
 - Lithium hydroxide need replaced over time
 - 450 lbs unit = 202 kg = \$552,000 'shipping' cost
 - Less reliance on a single unit

Plasma technologies could mitigate resupply needs

The Moon and Beyond

- Logistics for Lunar Missions and Operations
 - Power Requirements
 - Infrastructure volume

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Resupply chains
- Logistics beyond LEO, Gateway, and Lunar Operations
 - Price increases for Mars transit per kg
 - Chemical storage and shelf-life

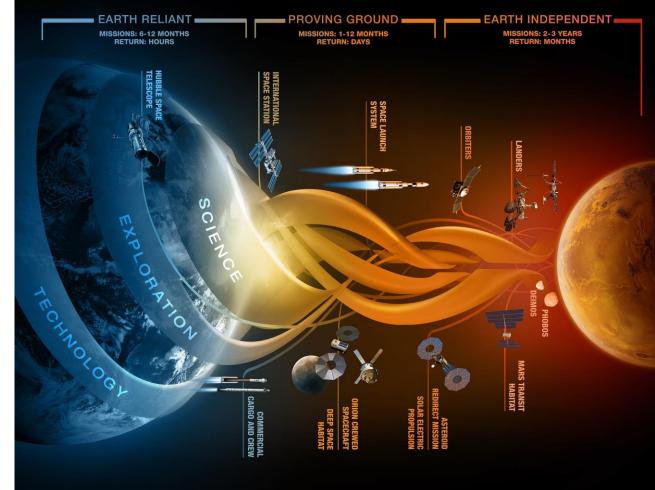


Image from nasa.gov

Technology Gaps for Plasma to Address

Plasma in Space

- Biofilm Mitigation
 - Water systems
 - Hydroponic systems
- Dusty plasma for lunar surface operations
 - Plume effects
 - Dust cleaning of panels and equipment
- Sanitation
 - 3-D printed items
 - Medical equipment
- Space Crop Productions
 - Plasma activated water
 - Seed and produce treatment
- Environmental Control and Life Support Systems

Projects at KSC

- Brine Processing
- VOC removal (gas/liquid)

Intro.

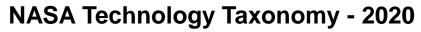


Image from nasa.gov

Concluding Remarks

Plasma in Space

- Paradigm shift for life support systems
 - Advance processing with little to no consumables
- Pioneering new technologies

Intro.

Not yet developed for space applications

Projects at KSC

- Development now leads to infusion into crewed missions
- Break away from traditional chemical production means
 - New off-planet manufacturing
 - Less reliance on industrial processing and infrastructure

Plasma processes are cost-effective solutions in extraterrestrial environments to support human life and exploration

Plasma in Space

Team Members and Colleagues

NASA Personnel

Elspeth Petersen

Deborah Essumang

Dr. Nilab Azim

Dr. Gioia Massa

Malay Shah

Misle Tessema

Dr. Annie Meier

LASSO Personnel

Dr. Carolina Franco

Dr. Joel Olson

Jason Fischer

Griffin Lunn

Bruce Link

Dr. Tracy Gibson

Intro.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Eric Parrish

NPP Post-Doc

Dr. Ryan Gott

Dr. Christina Johnson

Open Post-Doc Position Email: kenneth.engeling@nasa.gov for info

OSTEM Intern Support Aniya Norvell Courtney Golman Victoria Brown Alex Senig Haley Boles

Projects at KSC

Plasma in Space

References

[1] Lopez Jr., Schultz, Marrfeld, Stromgren, Goodliff. "Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission," 2015. IEEE Areospace Conference. Big Sky, MT.

[2] G. Massa, R. Wheeler, R. Morrow, and H. Levine. "Growth Chambers on the International Space Station for Large Plants," International Symposium on light in horticulture. East Lansing, MI May 2016

[3] J. Olson, D. Rinderknecht, D. Essumang, M. Kruger, C. Golman, A. Norvell, and A. Meier.. "A Comparison of Potential Trash-to-Gas Waste Processing Systems for Long-Term Crewed Spaceflight," 50th International Conference on Environmental Systems. July 12th, 20201. (Virtual)

[4] Diener electronic – plasma treatments - Plasma.com; https://www.plasma.com/en/ (accessed Aug. 10th, 2021)

[5] Elburn, D. Pricing Policy http://www.nasa.gov/leo-economy/commercial-use/pricing-policy (accessed Apr 15, 2020).

[6] U.S. Energy Information Administration https://www.eia.gov/electricity/monthly/ (accessed Apr 13, 2020).

[7] florikan company website. https://www.florikan.com/ (accessed Aug. 11th, 2021).

Questions?

