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Abstract: The colored (or chromophoric, depending on the literature) dissolved organic matter
(CDOM) spectral absorption coefficient, aCDOM(λ), is a variable of global interest that has broad
application in the study of biogeochemical processes. Within the funding for scientific research, there
is an overarching trend towards increasing the scale of observations both temporally and spatially,
while simultaneously reducing the cost per sample, driving a systemic shift towards autonomous
sensors and observations. Legacy aCDOM(λ) measurement techniques can be cost-prohibitive and
do not lend themselves toward autonomous systems. Spectrally rich datasets carefully collected
with advanced optical systems in diverse locations that span a global range of water bodies, in
conjunction with appropriate quality assurance and processing, allow for the analysis of methods
and algorithms to estimate aCDOM(440) from spectrally constrained one- and two-band subsets of
the data. The resulting algorithms were evaluated with respect to established fit-for-purpose criteria
as well as quality assured archival data. Existing and proposed optical sensors capable of exploiting
the algorithms and intended for autonomous platforms are identified and discussed. One-band
in-water algorithms and two-band above-water algorithms showed the most promise for practical
use (accuracy of 3.0% and 6.5%, respectively), with the latter demonstrated for an airborne dataset.

Keywords: ocean color; global (oceanic, coastal, and inland) waters; end members; radiometers; PAR;
hybridnamic; autonomous (AUV, USV, UAV, and float) platforms; remote sensing

1. Introduction

Autonomous oceanographic platforms, e.g., an autonomous underwater vehicle
(AUV) or an unmanned surface vehicle (USV), offer sampling benefits regardless of the
size of the water mass, because they remove the cost of supporting a human operator.
When the water body is very large or if a long time series is desired, the advantages are
more significant, because of the cost of deploying the requisite research team(s) for an
extended time period. If the sampling site is difficult to reach or dangerous for humans, e.g.,
polar water masses, researcher deployment costs increase further. Although the benefits of
autonomous sampling include other factors, the trajectory of increasing costs to achieve a
global sampling benefit is an underlying motivation for the study presented herein.

Of course, autonomous systems are also expensive and, in general, the more capable
they are, the higher the cost. For example, a longer duration system requires a more
sophisticated power system, which frequently translates into a larger or complicated
rechargeable battery circuit. To minimize the cost per sample ratio, lowering the amount of
power consumed to obtain a useful data product is a key design objective. This may also
be expressed in terms of weight, because for many autonomous platforms—for example,
an unmanned aerial vehicle (UAV)—weight can be a significant cost driver.
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For many design teams, the cost-benefit and cost-sample ratios are principal compo-
nents for an overall risk-reward paradigm. The discussion above is purposefully brief and
does not capture all the factors influencing the ultimate risk-reward ratio that determines
whether or not a particular autonomous sampling system is used. In general, however, the
more complicated the device and the more remote the operation, the greater the risk and
likely the greater the reward. An example of the ultimate expression of this dichotomy is a
spaceborne sensor.

This study is not based on just one aspect of the risk-reward spectrum, e.g., compli-
cated and costly satellites. Instead, the perspective adopted here is to minimize risk and
maximize reward with an approach that is applicable to a wide diversity of above- and
in-water autonomous systems capable of sampling inland, coastal, and oceanic waters,
i.e., capable of contributing to a diversity of scales, including global research. The global
perspective requires a data product that is applicable to all scales, which means sensor
systems typically deployed at those scales must be able to produce the data product with
sufficient accuracy (i.e., low uncertainty) to be scientifically useful.

The selected data product is the colored dissolved organic matter (CDOM) spectral
absorption coefficient, aCDOM(λ), where λ is wavelength. The temporal and spatial distri-
bution of aCDOM(λ) is widely used to investigate terrestrial and aquatic biogeochemical
processes at multiple scales [1,2].

CDOM is remotely sensed, impacts remote sensing algorithms, and can vary on short
time scales [3]. Developing algorithms for the in situ estimation of CDOM that are globally
applicable, and optimizing sensors to exploit these advances that are globally capable,
both in terms of radiometric performance and viability for network-scale observations, is
of interest to the scientific community. The selection of aCDOM(440) as the parameter of
interest is motivated by the relationships between CDOM and the solar illumination of
aquatic ecosystems as documented by many researchers, e.g., [4–7] .

The global perspective for applying an algorithm based on near-surface observations
is first considered based on the dynamic range of aCDOM(440), which spans more than
three decades in this study, i.e., 0.001–2.146 m−1, and includes similar representation
from oceanic, coastal, and inland waters. As a log-normal variable, unsampled waters
wherein aCDOM(440) exceeds 2.146 m−1 are unlikely to significantly expand the range
in aCDOM(440) when considered in log space. Furthermore, algorithms derived using a
narrower aCDOM(440) range in Houskeeper [8] produced similar algorithmic coefficients as
those derived using an expanded aCDOM(440) range in Houskeeper et al. [9], due to the log-
space linearity of the relationship between aCDOM(440) and ratios of optical observations
at UV and NIR wavebands. A perspective that accounts for observations uniformly spread
across oceanic, coastal, and inland waters, while spanning more than three decades of the
log-normal variable, is considered herein as global.

The global perspective for applying an aCDOM(440) algorithm derived from near-
surface observations is also considered based on aquatic surface area. If the surface area of
the oceans, marginal seas, and the 30 largest inland water bodies [10], for which aCDOM(440)
is on average less than 1 m−1, are removed from the global aquatic surface area, less than
1% of the surface area remains. Although applicability to more than 99% of the aquatic
surface area can arguably be considered global, the surface area of rivers and streams
[11] —which have residence times generally preventing extreme concentrations—further
reduces the percentage of the global aquatic surface area exceeding the three decades of
dynamic range considered herein.

The most direct observation of aCDOM(440) requires a laboratory water sample anal-
ysis and is not well suited for autonomous sampling. Recent advances with spectral
end-member analysis (EMA) by Hooker et al. [12], wherein optical measurements obtained
at discrete wavebands (typically 10 nm wide) are inverted to derive aCDOM(440), are com-
patible with autonomous sampling because only two wavelengths are used, i.e., usually
the shortest and longest. More importantly, Hooker et al. [13] showed that the two-channel
(i.e., band-ratio) EMA approach spans a global distribution in aCDOM(440) derived from
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in-water observations of the diffuse attenuation coefficient, Kd(λ). Houskeeper et al. [9]
extended that work by demonstrating a global relationship between aCDOM(440) and the
normalized water-leaving radiance,

[
LW(λ)

]
N, which can be derived from above- and

in-water optical observations (discussed below).
Some of the above- and in-water optical observations used in Houskeeper et al. [9] and

Hooker et al. [13] were obtained from semi-autonomous platforms manufactured by Bio-
spherical Instruments Inc. (San Diego, CA, USA), respectively: (a) the Compact-Airborne
Environmental Radiometers for Oceanography (C-AERO) above-water instrument suite,
which operates autonomously on a manned aircraft [14] ; and (b) the Compact-Optical
Profiling System (C-OPS) in-water instrument suite with Compact-Propulsion Option for
Profiling Systems (C-PrOPS) accessory [14] , which has two small digitally controlled
thrusters to allow profiling independent of the primary platform, e.g., a research vessel
or shoreline, or from a USV [15] . Both of these instrument systems use the Biospherical
Instruments Inc. (BSI) microradiometer [16] , an independent networkable miniaturized
radiometer (Section 2), as the core sensor technology. This study extends the use of the
latter for new autonomous applications based on smaller instruments as described below.

These sampling alternatives produced data of equal quality in comparison to fully
manned systems, but in both cases the optical systems were complex. For example, all of
them used three radiometers equipped with 19 channels, which means they are not easily
exploited for long-duration deployments, because of bio-fouling and power concerns, or
for a UAV, because of size and power constraints. To ensure cost efficiency, a single design
applicable to both above- and in-water autonomous platforms is appealing as is a very
small instrument to reduce weight and power requirements. The smallest and lowest
power instrument would be a one-band radiometer, but at present the simplest, common
aCDOM(440) algorithms use two or more wavelengths, e.g., [17]. It would also be desirable
if the instrument has a dynamic range satisfying the global requirements for water bodies.

As described by Hooker et al. [13] and Houskeeper et al. [9] , aCDOM(440) can be
inverted from Kd(λ) and

[
LW(λ)

]
N observations using two or more wavelengths, i.e.,

including multispectral techniques. The advantages and disadvantages of Kd versus[
LW(λ)

]
N are as follows: (a) Kd(λ) can be obtained accurately from an uncalibrated—

but stable—instrument, whereas
[
LW(λ)

]
N cannot [12] ; (b)

[
LW(λ)

]
N can be obtained

remotely, whereas inversion schemes to obtain Kd(λ) remotely are spectrally incomplete
and introduce undesirable inaccuracies , e.g., [18]; (c) Kd(λ) does not require a self-shading
correction, but

[
LW(λ)

]
N does; and (d) for long-term deployments (e.g., on unmanned plat-

forms), techniques to mitigate aperture biofouling are more straightforward for
[
LW(λ)

]
N,

as opposed to Kd(λ), data products [19] . For the latter, UV irradiation or stowage at great
water depth when not sampling are potentially useful fouling mitigators.

The offsetting pros and cons of using Kd(λ) and
[
LW(λ)

]
N for a global single-band

aCDOM(440) algorithm mean both are potentially attractive, with the former more attractive
for an in-water platform and the latter for an above-water platform. Consequently, the ob-
jectives of this study are as follows: (a) establish the efficacy of one-band global algorithms
to derive aCDOM(440) from above- and in-water platforms obtained from highly accurate
one-band microradiometer measurements from which

[
LW(λ)

]
N or Kd(λ), respectively,

are derived; (b) assess one-band algorithms versus established [9,13] two-band algorithms;
and (c) provide notional concepts for the one- and two-channel instruments to be integrated
onto existing autonomous platforms.

2. Materials and Methods

The dataset used for the study herein is a subset of the [13] open ocean, coastal zone,
and inland waters sampling area. The subset is based on selecting stations classified as
representing conservative and near-conservative water masses. A water mass is considered
conservative if the inflow and outflow of properties constrain the range in the gradient of a
constituent [13] . A near-conservative water body is a slightly modified portion of a larger
parent water body that is conservative. For example, a water mass within line-of-sight
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proximity of the marginal ice zone (MIZ), but far from it such that MIZ meltwater has only
a small influence on water properties associated with the surrounding parent water body
[13] , is considered near-conservative. The influence of uncertainty sources that are absent
from conservative or near-conservative water masses is provided in Hooker et al. [13,20] .

The geographical area for the dataset is as follows: Japan, the western North Pacific
Ocean (e.g., the Kuroshio and Oyashio Currents), the central North Pacific Ocean, the
Bering Sea, the Chukchi Sea, the Beaufort Sea, the western U.S. (i.e., California, Oregon,
Washington, Nevada, Utah, and Idaho), Hawaii, and Puerto Rico. Data collection spanned
29 April 2013 to 13 September 2017. The inclusion of near-conservative samples expands
the [13] dataset from 613 exclusively conservative samples, as used in Houskeeper et al.
[9] , to 789 samples. The expansion allows a cross-validation analysis, wherein 80% of the
total dataset is randomly selected for algorithm fitting and compared to the remaining 20%.
Repetitive random selection and analysis allows for a statistical description of algorithm
efficacy (described below).

Measurements of the apparent optical properties (AOPs) of water masses were ob-
tained with instruments built as a cluster of 19 microradiometers, wherein a microradiome-
ter is a fully functional instrument built with a single printed circuit assembly (PCA). A
microradiometer is explained in detail by Morrow et al. [16] , so only a brief description
is as follows: (a) the device consists of a photodetector, three-gain preamplifier, 24 bit
analog-to-digital converter (ADC), microprocessor, and an addressable digital port; (b) the
sampling rate is typically 15 Hz, with the newest generation capable of 30 Hz sampling;
(c) the linear dynamic range spans 10 decades, i.e., it can view the sea and Sun without
saturating and is sensitive enough to view the Moon with no loss in precision or accuracy
(most radiometers have 5–6 decades of dynamic range and are not as capable); and (d) it is
a fully networkable sensor on one small, thin, conformal-coated PCA sleeved inside a metal
cylinder for mechanical support and electromagnetic shielding. The microradiometer sen-
sor building block, although originally deployed in clusters, lends itself to single-channel
sensors (Figure 1).

Bulkhead
ConnectorDiffuser

Support 
Electronics

Microradiometer
in Metal Sleeve

Microradiometer
PCA

Microradiometer
in Metal Sleeve

Photodetector

Filter Sleeve
with Fore Optics

Integration 
PCA

Filter Sleeve
with Fore Optics

Figure 1. The two-sided microradiometer PCA with photodetector positioned (top) above a metal-
sleeved unit with black front-end optics (red ruler to 10 cm). A single-channel (PAR or fixed wave-
length) irradiance sensor (bottom and not to the same scale) optimized for autonomous in-water
platforms (e.g., an AUV) with 2.0 in (5.1 cm) diameter diffuser (cosine collector) attached to a 1.2 in
(3.0 cm) diameter housing that is 7.2 in (18.3 cm) long. The total weight is 0.6 lb (0.3 kg).

The microradiometer PCA is machine assembled, which substantially improves qual-
ity over handmade legacy devices. The support electronics include a precision direct
current (DC) power supply and may contain an aggregator, which creates a composite
device, if the instrument design includes a cluster of microradiometers or optional ancillary
sensors, e.g., water temperature and pressure. Although the inclusion of ancillary sensors
is easily supported by the microradiometer architecture, the perspective of this study is
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that ancillary sensors are present on the integration platform hosting the optical sensor(s).
Consequently, the optical sensors presented here omit ancillary sensors in favor of an
optimization driven by the reduction in mass and power consumption. Demonstrated life
cycles for instruments built with microradiometers presently exceed 15 years with a failure
rate well below 1%. The 10 decades of dynamic range and 15–30 Hz high-speed sampling
allow above- and in-water light contamination effects to be properly dealt with, as follows
(respectively): surface light perturbations due to oblique wave facets that reflect sunlight
can be discretized and properly removed [9] , and the central tendency of non-Gaussian
brightening from wave focusing can be properly determined with minimal bias [13] .

Relative to single-channel legacy measurement capabilities (e.g., the BSI QCP-2150),
the mass of the Figure 1 instrument has been reduced (nominally 50%) to minimize impact
on the energy budget for the overall sampling system. The mass reduction is notable,
because while the irradiance sensor does not suffer from self-shading concerns, its requisite
positioning at the top of the integrated platform means its mass must be at least partially
driven above the air–water interface during autonomous profiling, e.g., for satellite com-
munications. The depth rating is restricted to 2000 m as part of the mass reduction, but is
consistent with the common float populations servicing the global sampling community,
e.g., profiling floats. The integration of the microradiometer to a single-channel application
may extend the noise-equivalent irradiance (NEI) of in-water PAR observations by up
to four decades of dynamic range compared to legacy technologies without a multistage
preamplifier.

Utilizing the same nominal form factor as the single-channel irradiance sensor, a
two-channel radiance embodiment for above-water sampling is presented in Figure 2. The
second spectral channel permits band-ratio algorithms to be implemented in environmental
scenarios where the results from single-channel algorithms may be diminished (Section 4).
The Gershun tubes limit the half-angle field of view (FOV) to 5◦, and the shroud mitigates
environmental contamination and prevents scattering from off-angle incident light at long
wavelengths, e.g., the short-wavelength infrared (SWIR). The shroud is removable (if
not needed), which facilitates easy cleaning of the optical aperture and customization
for unique mounting scenarios. Although anticipated for above-water radiometry for
deriving

[
LW(λ)

]
N, the sensor is equally applicable for in-water use and has a depth rating

of 2000 m. Variations of the sensor with greater depth capability are easily fabricated
with the tradeoff of increased mass. Although sensitive to self-shading effects and solar
geometry requirements, an in-water radiance sensor does have the following benefits:
(a) immersion factors are easily computed; (b) mass is less critical to the power budget
of an autonomous profiler, because the sensor is usually not driven above the air–water
interface, and the aperture is typically pointed downwards, thereby mitigating bio-fouling
or sediment deposition.

Bulkhead
Connector

Shroud

Support 
Electronics

Microradiometer
in Metal Sleeve

Integration 
PCA

Filter Sleeve
with Fore Optics

Gershun Tube Assembly

Figure 2. A two-channel radiance sensor optimized for autonomous above-water platforms (e.g.,
a UAV) with a 1.3 in (3.4 cm) diameter and 1.5 in (3.8 cm) long shroud attached to a 1.2 in (3.0 cm)
diameter housing that is 7.5 in (19.1 cm) long. The total weight is 0.5 lb (0.2 kg).
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2.1. C-OPS In-Water Optical Observations

In-water AOPs were measured with a handheld, free-falling C-OPS instrument suite
[16] . For almost all data acquisition (97%), C-OPS was deployed with the C-PrOPS acces-
sory, which has two small thrusters [14] that propel and steer (using differential thrust) the
profiler backplane into the sampling location. Thrusters also improve the quality of data
products as a result of a multitude of sampling advantages that cannot be similarly achieved
without their use [14] , so only brief descriptions of important aspects are presented here,
as follows:

1. The backplane is stabilized prior to profiling, which increases the amount of data
obtained within planar orientation limits (only in-water light observations level to
within 5◦ are used to derive data products);

2. Combined with C-OPS hydrobaric buoyancy (i.e., varying inversely with depth) and
a 15 Hz data rate, low thrust levels reduce the velocity of profiler descent, thereby
improving the vertical sampling resolution (VSR), i.e., the extrapolation layer thickness
(set by z1 and z2) divided by the number of planar samples obtained;

3. Differential thrust applied prior to profiling aligns the backplane with respect to the
solar principal plane to minimize self-shading effects;

4. Thrusters keep the profiler at the surface before profiling commences with the pres-
sure transducer measuring atmospheric pressure, so each profile can be individually
pressure tared;

5. In non-navigable water masses (e.g., a shallow river or a lake closed to small boats to
prevent the spread of invasive species), the profiler can be launched from the shoreline;
and

6. At the bottom of the profile (typically the 1% light level, but at least the 10% light
level to remove perturbations from bottom reflection), thruster power prevents depth
overshoot and the likelihood of a bottom impact, plus the subsequent rapid return
of the profiler to the surface decreases the time lapse between profiles, thereby mini-
mizing environmental variability effects and cast-to-cast differences in data products
(especially in heterogenous water masses).

The three C-OPS radiometers simultaneously measure the in-water downward ir-
radiance (Ed) and upwelling radiance (Lu), plus the above-water global solar irradiance
(Es). The radiometers have 19 identical wavebands with 10 nm bandwidths spanning the
ultraviolet (UV), visible (VIS), and near-infrared (NIR) domains, i.e., 313–875 nm. The
313 nm waveband was added as part of an instrumentation upgrade after field sampling
commenced, so 313 nm is present for 55.4% of the data and all other wavelengths used
herein are always present.

The ability to derive in-water data products at any wavelength depends on the optical
characteristics of the water mass and strict adherence to the NASA Ocean Optics Protocols
[21–23] , hereafter The Protocols, encompassing the requirements for instrument specifica-
tions and characterization, illumination and environmental conditions in the field, plus
data acquisition, and data processing. The latter two are significantly important because
they must properly implement a substantive inventory of corrections based on laboratory
and field characterizations as applicable. A comprehensive inventory of applicable correc-
tions are presented by Hooker et al. [15] , so only a brief summary is presented, as follows:
(a) non-real-time serial communications; (b) individual instrument characterizations and
calibrations; (c) gain stage transitions and dark current characterizations in the field (man-
ual capping of the apertures); (d) illumination geometry and normalization; (e) aperture
tilting and planar offsets; (f) temperature-induced and responsivity nonlinearities; (g)
transducer hysteresis and pressure tares, plus (h) backplane and instrument self-shading.

2.2. In-Water C-OPS Irradiance Data Products

In-water C-OPS data products were derived by selecting upper (z = z1) and lower (z =
z2) depths to define an extrapolation interval within a homogenous near-surface layer. The
resulting derived irradiance data products were evaluated by comparing Es(λ) transmitted
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through the interface to null depth (z = 0− m) and Ed(λ) extrapolated to null depth. If the
two products did not agree to within the calibration uncertainty (nominally 3%), z1 and z2
were redetermined—while keeping both within the shallowest homogeneous layer [13] .
This process was repeated on a profile-by-profile basis [12] , with all extrapolation intervals
kept as close to the water surface as possible. The average z2 value for the dataset was
0.7 m (i.e., all data products were derived in the top 1 m of the water column). The average
planar tilt and descent velocity within the extrapolation interval were 1.4◦ and 0.1 m s−1,
respectively, and the average VSR was 0.6 cm, but for very shallow or turbid waters, the
average VSR was 0.9 mm.

The Kd(λ) data products are obtained from the individual Ed(λ) regressions. Follow-
ing The Protocols, the latter includes more than 5 wavelengths spanning the VIS domain
(approximately 13 plus 2 VIS neighbors at 395 nm and 710 nm) and can be used to accurately
derive photosynthetically available radiation (PAR). The computation of PAR requires the
following: (a) converting irradiance (energy) to quanta, (b) weighting the contributions
based on the separation between center wavelengths, and (c) integrating across the wave-
lengths to calculate PAR. A spectrally bulk measure of attenuation is derived from the PAR
estimates as a function of depth following the same regression procedures used to derive
Kd(λ) and is denoted Kd(PAR) to emphasize the derivation of PAR from Ed(λ).

The computation of PAR from discrete bands allows ultimate control over the weight-
ing of the bands within the VIS domain. The use of broadband filters to accomplish the
same observation using a single PAR channel (Figure 1) tends to result in more variability
through the passband, e.g., as a result of turn-on and cutoff wavelength differences. Sec-
ondary filter combinations can be used to tune each overall filter response to be within
certain bounds, but the consistency and stringency is less than what can be achieved with
discrete spectral bands.

Assuming KPAR represents the attenuation of PAR measured with a one-band PAR
instrument, a comparison of Kd(PAR) versus KPAR for C-OPS instruments containing a sep-
arate PAR channel and at least 13 VIS channels, shows agreement to within the uncertainty
of calibration plus a nominal contribution from environmental variance (principally wave-
focusing effects), i.e., less than 3.5% [14] . These differences are not considered significant
for the results presented herein, because the algorithmic approach involving PAR is based
on the attenuation of PAR in the water column rather than the absolute value of PAR.

2.3. In-Water C-OPS Radiance Data Products

The C-OPS Lu(λ) regressions within the extrapolation interval defined by z2 and
z1 yield the individual extrapolations to null depth, Lu(0−, λ), from which the in-water
derivation of the spectral water-leaving radiance, L̃W(λ), is obtained directly, as follows
(with geometrical terms removed for brevity, but it is important to recall Lu(λ) is observed
from a nadir-viewing radiometer):

L̃W(λ) = 0.54 Lu(0−, λ), (1)

where the constant 0.54 accurately accounts for the partial reflection and transmission of
the upwelled radiance through the water surface (Mobley 1999). A bulk or broadband
equivalent for PAR, but based on

[
LW(λ)

]
N, is not proposed or used herein.

To account for dependencies on the solar flux, which is a function of atmospheric
conditions and time of day, the L̃W term is normalized by Es measured during the time
interval corresponding to z1 and z2:

Rrs(λ) =
L̃W(λ)

Es(λ)
, (2)

where Rrs is the remote sensing reflectance. An additional refinement includes the bidirec-
tional nature of the upwelled radiance field, which is to a first approximation considered
as the hypothetical water-leaving radiance that would be measured in the absence of any
atmospheric loss with a zenith Sun at the mean Earth–Sun distance [24,25]. The latter is
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accomplished by adjusting Rrs(λ) with the time-dependent mean extraterrestrial solar
irradiance, F0 (ignoring all dependencies except wavelength for brevity):

[
LW(λ)

]
N = F0(λ) Rrs(λ), (3)

where F0(λ) is obtained from look-up tables [26] by applying a sequential day of the
year correction. An additional correction for a so-called exact normalized water-leaving
radiance is required for satellite and sea-truth matchups, as explained in The Protocols, but
that level of completeness is not needed here (discussed in more detail below). Although
only a few wavelengths are presented herein, the dataset includes data products for all
19 wavelengths acquired in all water masses. When considering the Kd(λ) or

[
LW(λ)

]
N

data products herein, an important distinction is that in-water Ed(z, λ) data used to derive
Kd(λ) was obtained as shallow as z = 3.0 cm, whereas the in-water Lu(z, λ) data used to
derive

[
LW(λ)

]
N was never shallower than z = 0.3 m (due to the length of the downward-

pointing Lu radiometer).

2.4. Above-Water C-AERO Optical Observations

The C-AERO airborne instrument suite uses three above-water radiometers that are
functionally identical to the C-OPS radiometers but are configured differently to simultane-
ously measure Es plus the total radiance measured at the sea surface (LT) and the indirect
sky radiance (Li). The latter two radiometers are fitted with shrouds to minimize long-
wavelength scattering at the glass aperture [15] . The instruments have 16 wavelengths
that match the C-OPS UV–NIR domains plus 3 in the SWIR domain. In addition, C-AERO
radiometers sampled at both 15 and 30 Hz, whereas C-OPS only sampled at 15 Hz. The LT
observations are obtained at a specified angle with respect to nadir (typically 40◦), and Li
is measured in the same plane, but at a complementary zenith angle as LT . The aircraft
flies into or out of the principal solar plane with the radiance instruments pointed abeam,
i.e., LT and Li observations are obtained perpendicular to the principal plane with a planar
stability as The Protocols require.

The airborne radiance radiometers have a narrow field of view (2.5◦ full view an-
gle) and can also be used for sun photometry [27]. The first six items in the inventory
of corrections described for in-water observations and based on laboratory and field
characterizations (Section 2.1) were also applied for above-water observations, with the
following clarifications: (a) a spectrally-dependent synthetic or predictive dark current
method—based on an operational range of environmental and instrument-specific parame-
ters characterized in the laboratory—ensures an accurate removal of the dark current bias
during flight when the instrument apertures are not accessible [28]; (b) flight data were
acquired at the lowest safe altitude (LSA), typically about 100 ft (30.5 m), making elevation
dependencies (e.g., atmospheric correction) negligible; and (c) self-shading corrections are
not required, because the LT radiometer is pointed perpendicular to the aircraft heading
into or out of the principal plane and at a 40◦ nadir angle, so the surface spot is significantly
far from the aircraft shadow, which is in the principal plane.

2.5. Airborne Data Products

The determination of the water-leaving radiance from airborne observations, denoted
L̂W(λ), was derived by filtering out sun glint in the LT(λ) data. The C-AERO instrument
suite enabled rapid LT sampling, at 15 or 30 Hz depending on the acquisition date, for su-
perior glint discretization (and subsequent rejection). The sky reflection was then removed
based on a spectral reflectance model depending on the viewing geometry (i.e., pointing
angle of the radiometers) and true wind speed (W) as measured on the aircraft (removing
geometrical terms for brevity):

L̂W(λ) = LT(λ) − ρ(λ, W)Li(λ), (4)

where ρ(λ, W) is the water surface reflectance and is obtained from look-up tables based
on the surface roughness as parameterized by W [29] . The derivation of L̂W is based on
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15 s flight segments wherein the sun glint filter selects the lowest 5% of the data in terms of
radiance in the NIR bands, which are used as a temporal mask for all other wavebands
[30] . This very high rejection rate (95% of the data recorded during each flight segment)
was adopted for the processing of all airborne data.

In general, L̃W (1) is not exactly equivalent to L̂W (4), because LT is not obtained at the
same nadir viewing angle as Lu (the former is at 40◦ and the latter is at 0◦). Consequently,
computing normalized forms (2)–(3) from (4) are similarly incorrect. A bidirectional
correction for the viewing geometry is not applied, because the dataset used herein includes
Case 2—waters with a turbidity range for which the needed bidirectional terms [31] are
a challenge exceeding the scope of the present study, e.g., [32] . In addition, algorithm
development (Section 2.7) is based on in-water data not requiring correction, and above-
water data are only used to demonstrate applicability for an airborne (remote sensing)
platform.

Two-dimensional survey maps were generated from the C-AERO observations using
a spatial interpolation scheme based on the natural neighbor technique provided by Sibson
[33] . For approximately homogenous targets, e.g., a clear-water lake, the spatial variability
in remote aCDOM(440) estimates using C-AERO observations was quantified using the
coefficient of variation (CV). The CV was calculated as the ratio of the standard deviation
to the mean and expressed herein as a percentage.

2.6. Water Sample Analyses

The determination of in-water constituents typically involves preservation of a water
sample (as noted above) and subsequent laboratory analysis as described by The Protocols.
Complete details of water sample analyses are provided in Hooker et al. [13] , so only a
brief summary is provided here. Three optical profiles were obtained in rapid repetition,
which were followed by collecting a volume of surface water. Duplicate or triplicate water
samples were collected for all coastal and inland waters. For open-ocean campaigns in the
Arctic (about 5% of the data herein), a single seawater sample was collected, with some
duplicates for quality assurance. Following community protocols, selected volumes of each
water sample were filtered. The filter and filtrate were stored and then analyzed in the
laboratory, except for some Arctic samples (about 3% of the dataset), wherein the analysis
was done onboard ship.

The filter was analyzed to determine the concentration of phytoplankton pigments
with high performance liquid chromatography (HPLC) using the [34] C8 column method or
slight modifications thereof. The total chlorophyll a concentration,

[
TChl a

]
, was computed

as the sum of monovinyl and divinyl chlorophyll a, plus applicable allomers, epimers,
and degradation products (e.g., chlorophyllide a). The dynamic range of

[
TChl a

]
spanned

more than three decades—i.e., the oligotrophic, mesotrophic, and eutrophic regimes (0.056–
67.484 mg m−3)—and further established the global perspective adopted herein.

The filtrate was used to determine the absorption spectrum of CDOM using a spec-
trophotometer [13,35] or UltraPath liquid waveguide [13,36]. The blank-corrected ab-
sorbance spectrum was baseline-corrected and then converted to the absorption coefficient
by including the path length. A single absorbance analysis was generally carried out for the
samples collected in the open ocean, whereas duplicate and occasionally triplicate analyses
were conducted for the coastal and inland water samples. The different methods used in
this study for determining CDOM absorption do not influence the results as shown by the
[13] sensitivity analysis.

2.7. Algorithmic Approach and Cross-Validation

The algorithmic approach adopted here follows from Hooker et al. [12,13], wherein
spectral information from outside the VIS domain is used, while maintaining an ability
to exploit legacy data by also including a VIS option. Both one- and two-channel Kd(λ)
and

[
LW(λ)

]
N empirical algorithms are used to estimate aCDOM(440), which are based on

a global dynamic range of optical data and contemporaneous water sample analyses. To
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mitigate the confounding influences of phytoplankton, wavelength choices are restricted to
the shortest and longest available, i.e., the UV and NIR next-generation end members plus
the blue and red legacy end members. The Kd(λ) algorithms are anticipated for in-water
applications and the

[
LW(λ)

]
N algorithms for above-water (remote sensing) applications.

The efficacy of the one- and two-band algorithms was evaluated using 10,000 cross-
validation replications, in which the dataset was randomly partitioned into validation and
fitting subsets, using a 20% and 80% split, respectively, and based on unique sampling
stations. The total number of observations within the validation and fitting subsets within
each iteration are defined as NV and NF, respectively, and may vary between iterations
based on differences in the number of observations collected at each sampling station
(recalling that in general three optical profiles were obtained at each water sampling
station).

Median statistics from the 10,000 cross-validation iterations were obtained using
the coefficient of determination (R2) based on log-transformed values plus three other
measures. The other statistics are the root mean square difference (RMSD), the mean
absolute difference (MAD) or mean absolute error (MAE), depending on the literature,
plus the mean bias (MBIAS). The RMSD follows a standard statistical formulation [9] , and
both the MAD and MBIAS were derived following Seegers et al. [37] , as follows:

RMSD =

[
1

NV

NV

∑
i=1

(Xi − Yi)
2

]1/2

, (5)

MAD = 10ˆ

[
1

NV

NV

∑
i=1

∣∣ log10(Xi) − log10(Yi)
∣∣
]

, (6)

and

MBIAS = 10ˆ

[
1

NV

NV

∑
i=1

(
log10(Xi) − log10(Yi)

)
]

, (7)

where i is an index variable (i = 1, 2, 3 . . . NV), and X is the fitted CDOM variable and Y
is the in situ CDOM variable within the NV subset. The RMSD allows comparison of the
results presented herein with prior applicable studies, e.g., [12,13] .

The MAD variable is a measure of accuracy and is always greater than or equal to
unity, wherein a value of 1.500 indicates a relative measurement error of 50.0%, i.e., the
measurement error in percent is obtained by subtracting 1 and multiplying by 100. The
MBIAS can be greater than, less than, or equal to 1. An MBIAS value of 1.200 indicates
that the fit is on average 20.0% greater than the in situ observations. The optimal result
for both variables is a unity value, which indicates zero measurement error (MAD) and
zero bias (MBIAS), as appropriate. Unity values are rare for algorithms based on in situ
variables with environmentally induced variance, so whether or not an algorithm is fit
for its intended purpose requires thresholds for the MAD and MBIAS variables, wherein
if they exceed the respective thresholds, the algorithm is not deemed fit for its intended
purpose.

Appropriate thresholds are selected for this study by comparing the algorithm cross-
validation statistics with those reported for algorithms routinely used in the community of
practice. For example, Seegers et al. [37] reported MAD values for satellite observations
spanning a large dynamic range in

[
TChl a

]
, as a function of trophic levels, as follows:

oligotrophic 47–82%, mesotrophic 52–58%, and eutrophic 62–105%, or an overall value
of 61–76%. Considering that Seegers et al. [37] did not include extreme values, shallow
coastal, or inland waters, the 76% overall MAD value may be considered a defensible—but
possibly underestimated—threshold for establishing whether a method provides a useful
environmental observation, hereafter termed fit for purpose.
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2.8. Algorithmic Testing with Independent Archival Data

The NASA bio-Optical Marine Algorithm Dataset (NOMAD) v2.a [38] is a quality
assured subset of a larger data archive established at the start of the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) satellite mission [39] . The larger repository is called the
SeaWiFS Bio-optical Archive and Storage System (SeaBASS) and is described by Hooker et
al. [40] . Contemporaneous aCDOM(440) plus UV and NIR radiometric data products, as
used for a significant part of the spectral domains considered in this study, are not included
within the NOMAD database.

The NOMAD database, however, includes radiometric data products spanning legacy
VIS wavelengths plus the contemporaneous dissolved (Gelbstoff) spectral absorption coeffi-
cient at 443 nm, ag(443), spanning approximately 0.001–1.116 m−1. Following Röttgers and
Doerffer [41], the latter is functionally equivalent to aCDOM(443). The consequences of the
3 nm shift in wavelength for ag(443) with respect to aCDOM(440) are considered negligible
for a generalized inquiry involving legacy optical data for the following reasons: (a) the
fixed wavelengths involved have 10 nm bandwidths, and (b) there are multiple sources of
uncertainties in the derived radiometric data products of equal or greater importance [12] ,
e.g., pressure tares, aperture depth offsets, dark currents, wave-focusing effects, etc.

Unlike in the C-OPS cross-validation analysis, in which the NF and NV dataset par-
titions were based on stations rather than individual observations, each NOMAD data
point was treated as an independent observation, due to the lesser degree of ancillary
information recorded in the NOMAD repository compared to the C-OPS dataset. Potential
interdependencies between the fitting and validation NOMAD dataset partitions were con-
sidered negligible for the purpose of this work, because NOMAD is included to provide an
independent algorithmic perspective, and the C-OPS dataset provides the greatest number
of relevant wavelengths and the highest quality data for algorithm fitting and validation.

3. Results

The focus of this study is to establish the efficacy of one-band algorithms to derive
aCDOM(440) from

[
LW(λ)

]
N or Kd(λ) data products that can be used with notional concepts

for appropriate new sensors presented in Section 2 and expanded upon in Section 4.2. In
addition to presenting the one-band algorithms, the following sections document the
efficacy using the following: (a) a cross-validation analysis (Section 2.7), (b) performance
comparisons to established two-band algorithms, and (c) validation based on independent
archival data (Section 2.8), as applicable (i.e., to the spectral extent possible).

3.1. C-OPS One-Band Kd(λ) Algorithms

The derived Kd(λ) values used in this study are shown in Figure 3, wherein two
panels are used to display all applicable spectral data products. The figure shows Kd values
for a particular aCDOM(440) value generally decrease with increasing wavelength, with
Kd(PAR) most similar to Kd(412). Variance (dispersion) in the data increases with increas-
ing wavelength—notably in clearer waters—which is likely due, in part, to wave-focusing
effects. The latter means some longer-wavelength observations at low aCDOM(440) values
are obscured by the shorter-wavelength data in Figure 3, but the statistical descriptions of
data distribution and fitting presented below are not affected.
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Figure 3. The in situ observations for the one-band C-OPS Kd(λ) algorithms to derive aCDOM(440)
with the spectral bands chosen to emphasize both a next-generation (UV) and legacy (blue domain)
perspective: (a) the data for 313, 340, and 412 nm (left panel), and (b) the data for 320 and 380 nm
plus PAR (right panel).

Figure 3 also shows the shortest wavelengths (313, 320, and 340 nm) exhibit a signif-
icant linear response as a function of aCDOM(440) as revealed by the log-scale curvature
towards an apparent constant Kd(λ) value—indicative of the anticipated pure-water value,
Kw(λ)—at low aCDOM(440) values. The longer wavelengths (380 and 412 nm plus PAR),
however, do not exhibit a distinctive tail at low concentrations. Instead, the log-transformed
data exhibit a rather constant slope, which evidences adherence to a power law. These
observations establish likely functional forms for the fits, which are confirmed by the
statistical parameters derived by performing both types of fitting and selecting the best
performance. The best performance is associated with maximal R2, minimal MAD, and
near-unity MBIAS values (Section 2.4).

The efficacies of the final one-band Kd(λ) algorithms are presented in Table 1, wherein
only the best performing algorithm type is displayed and the type is identified by the
resulting fitted equation (linear or power). The R2 values exhibit significant correlation for
all wavelengths and span values of 0.877–0.986. The shortest wavelengths (313 and 320 nm)
have approximately 99% of the variance explained by linear fits, which is in keeping with
Hooker et al. (2020). The MAD is best interpreted by recalling a value of 1.50 indicates
a relative measurement error of 50%. Consequently, the measurement errors provided
in Table 1 are less than 50% for all discrete wavelengths and less than 25% for the three
shortest wavelengths; the PAR results have a measurement error slightly larger than 50%.
All the fits in Table 1 have a small absolute bias of approximately 0.1–0.3% (a negative
value indicates the algorithm under-predicts the in situ variable). The rapid cycle times of
optical profiles obtained with the C-PrOPS accessory usually result in an environmental
variability less than 5% even in heterogenous water bodies, so the MBIAS results indicate
the fits are unbiased to within environmental uncertainty.
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Table 1. The one-band Kd(λ) algorithms, organized spectrally with individual λ values in units of nanometers, and based
on linear and power functions as appropriate, i.e., y = mx + b and y = axk, respectively. The NF and NV variables usually
differ from wavelength to wavelength, because of the random selection process used with the cross-validation technique
(Section 2.4). The equivalents for the RMSD, MAD, and MBIAS terms expressed in percent are indicated in parentheses for
all three parameters.

λ Fitted Equation NF NV R2 RMSD MAD MBIAS

313 y = 0.070x − 0.001 202 59 0.986 0.063 ( 2.9%) 1.170 (17.0%) 0.997 (−0.3%)

320 y = 0.079x − 0.003 627 162 0.986 0.064 ( 3.0%) 1.154 (15.4%) 0.999 (−0.1%)

340 y = 0.100x − 0.002 645 144 0.976 0.066 ( 3.1%) 1.201 (20.1%) 0.999 (−0.1%)

380 y = 0.146x1.012 626 163 0.934 0.096 ( 4.5%) 1.351 (35.2%) 0.996 (−0.3%)

412 y = 0.187x1.038 667 122 0.884 0.134 ( 6.2%) 1.492 (49.4%) 0.996 (−0.3%)

PAR y = 0.492x1.304 628 161 0.877 0.229 (10.7%) 1.536 (53.6%) 1.002 ( 0.2%)

3.2. C-OPS and NOMAD One-Band
[
LW(λ)

]
N Algorithms

The C-OPS
[
LW(λ)

]
N data products used in this study are shown in Figure 4 and

follow the format established in Figure 3. Again, the presentation format means some
longer-wavelength observations are obscured by the shorter-wavelength data, but the
statistical descriptions of data distribution and fitting presented below are not affected. A
comparison of Figures 3 and 4 reveals the following:

1. The corresponding
[
LW(λ)

]
N values for a particular aCDOM(440) value decrease with

decreasing wavelength, whereas Kd(λ) values increase with decreasing wavelength;

2. The dispersion (or variance) in
[
LW(λ)

]
N values as a function of aCDOM(440) increases

with increasing turbidity, whereas the corresponding dispersion in Kd(λ) increases
with increasing clarity (so they are opposite);

3. The
[
LW(λ)

]
N data generally exhibit more dispersion than the corresponding Kd(λ)

data; and

4. Both datasets exhibit similar sensitivity as measured by the range of values corre-
sponding to the x-axis, although the

[
LW(λ)

]
N data artificially appear to have a

slightly larger range due to the increased variance for high aCDOM(440) values.

The opposing trends in dispersion are likely due to Kd(λ) being more sensitive to
wave focusing in clear waters and

[
LW(λ)

]
N being more sensitive to broad-spectrum

brightness effects (e.g., due to an elevated nonalgal particle concentration) in turbid waters.
As optical complexity increases, upwelled radiant flux at the shortest wavelengths is often
significantly modified, so small absolute differences in the magnitude of derived data
products lead to large dispersions or variance [20] . Both Houskeeper et al. [9] and Hooker
et al. [13] found that the correlation between aCDOM(440) and above- or in-water data
products, respectively, was the most significant at the spectral end members. Both studies
also showed the algorithmic relationships based on spectral end members were the most
robust cross a global range in water bodies, e.g., waters varying in algal pigmentation,
spectral slope of aCDOM(440), or suspended particles.
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Figure 4. The in situ observations for the one-band C-OPS
[
LW(λ)

]
N algorithms to derive

aCDOM(440) emphasizing a next-generation (UV) and legacy (blue domain) perspective: (a) the
data for 313, 340, and 412 nm (left panel), and (b) the data for 320, and 380 nm (right panel).

The median efficacies of the final one-band
[
LW(λ)

]
N algorithms plus the NOMAD

results are presented in Table 2, wherein only the best performing algorithm type (linear or
power) is displayed for each data product. In all cases, the best results are always obtained
with power fits. The R2 values exhibit the most significant correlation (i.e., more than
80% of the variance explained) for the shortest wavelengths (313, 320, and 340 nm), with
R2 spanning 0.825–0.876. All R2 and MAD results in Table 2 are less than and greater
than, respectively, the corresponding Kd(λ) fits in Table 1. The measurement uncertainties
in Table 2 are more than 50% for all wavelengths and exceed 76% (MAD) for the two
longest wavelengths (380 and 412 nm), including the NOMAD results. For both the Kd(λ)
and

[
LW(λ)

]
N fits, the R2 values decrease with increasing wavelength, and the MAD

values increase with increasing wavelength (with a small exception for 313 nm, presumably
because of the lesser amount of data at this wavelength). All the curve fits in Table 2 have a
negligible bias of approximately 0.1–0.7%.

Table 2. The one-band
[
LW(λ)

]
N algorithms following the formatting and reporting procedures established for Table

1, with the NOMAD results for
[
LW(412)

]
N indicated as NOM. The NOMAD aCDOM(440) data span approximately

0.001–1.116 m−1, compared to the C-OPS aCDOM(440) range of 0.001–2.146 m−1.

λ Fitted Equation NF NV R2 RMSD MAD MBIAS

313 y = 0.004x−1.210 233 51 0.876 0.311 (14.5%) 1.626 ( 62.6%) 1.001 ( 0.1%)

320 y = 0.006x−1.043 638 151 0.851 0.499 (23.3%) 1.588 ( 58.8%) 1.002 ( 0.2%)

340 y = 0.010x−1.167 625 164 0.825 0.795 (37.1%) 1.648 ( 64.8%) 1.004 ( 0.4%)

380 y = 0.017x−1.277 625 164 0.747 0.495 (23.1%) 1.828 ( 82.8%) 1.005 ( 0.5%)

412 y = 0.027x−1.497 635 154 0.648 0.362 (16.9%) 2.063 (106.3%) 1.007 ( 0.7%)

NOM † y = 0.031x−1.099 844 212 0.460 0.165 (14.8%) 2.165 (116.5%) 1.002 ( 0.2%)

† NOMAD
[
LW(412)

]
N data are provided as quality assured and were used unfiltered.

Although the performance of the 412 nm data in Table 2 is the worst, the separate
realizations using C-OPS and NOMAD data provide a similar algorithmic perspective. The
exponential slope coefficient for the NOMAD fit is significantly less negative compared
to the C-OPS fit, consistent with the two-waveband

[
LW(λ)

]
N algorithms presented in

Houskeeper et al. [9] , which noted that differences in the range of aCDOM(440) between
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the NOMAD and C-OPS datasets would result in differences in slopes due to fitting or
due to potential log-space nonlinearities in the algorithmic relationship. The NOMAD
R2 value is also poorer, which indicates the NOMAD data have more dispersion than the
C-OPS equivalent. Given that NOMAD was created by contributions from a multitude of
practitioners, whereas the C-OPS data were created by one practitioner, increased variance
in the former is anticipated. Algorithms for additional

[
LW(λ)

]
N wavelengths cannot be

similarly validated because NOMAD does not include the shorter wavelengths of interest.

3.3. C-OPS Two-Band (Band-Ratio) Kd(λ) and
[
LW(λ)

]
N Algorithms

Two-band algorithms are considered herein for two reasons: a) band-ratio formula-
tions can partially cancel out broadband sources of variance, e.g., wave focusing, that can
increase the variance in data products and, thus, degrade algorithm performance; and b)
for legacy datasets, wherein wavelength choices are usually limited to the VIS domain, the
use of a band ratio might provide improved algorithmic performance compared to a single
channel. The latter possibly safeguards significant research opportunities, because it might
not be possible to detect long-term changes or trends in aquatic ecosystems without legacy
datasets.

The original [12] linear equation for the Kd(320)/Kd(780) algorithm was y = 0.2556x−
0.0030. The Hooker et al. [13] study confirmed the global application of this algorithm, and
for a maximally expanded dataset composed of conservative and near-conservative water
bodies including analysis of independent (Chesapeake Bay) data, the agreement was to
within 1%. The corresponding fit in Table 3 has the same intercept as Hooker et al. [12]
and the slope agrees to within approximately 1%, so the two are considered functionally
equivalent for the purposes of this study.

Table 3. The band-ratio Kd(λ) and
[
LW(λ)

]
N algorithms following the formatting and reporting procedures established for

Table 1. To save table space, the λ1
λ2

notation indicates the two bands in the ratio with λ1 as the numerator term and λ2 as the

denominator term, i.e., Kd
( λ1

λ2

)
is equivalent to Kd(λ1)/Kd(λ2) and LW

[ λ1
λ2

]
N equals

[
LW(λ1)

]
N/
[
LW(λ2)

]
N.

λ1
λ2

Fitted Equation NF NV R2 RMSD MAD MBIAS

Kd
(320

780
)

y = 0.256x − 0.003 630 159 0.996 0.037 (1.7%) 1.075 ( 7.5%) 0.999 (−0.1%)

Kd
(412

670
)

y = 0.165x1.268 636 153 0.916 0.146 (6.8%) 1.393 ( 39.3%) 0.997 (−0.3%)

LW
[320

780
]

N y = 0.254x−0.544 629 160 0.913 0.140 (6.5%) 1.414 ( 41.4%) † 0.993 (−0.7%)

LW
[412

670
]

N y = 0.232x−0.854 610 179 0.924 0.160 (7.4%) 1.398 ( 39.8%) † 0.998 (−0.2%)

† Although agreeing within the calibration uncertainty, differences are explained in the text.

The efficacy of the final band-ratio algorithms are presented in Table 3, wherein only
the best performing algorithm type (linear or power) is presented. The Kd(320)/Kd(780)
results are distinguished by near-unity R2 and MBIAS values and a very low MAD value
of 7.5%. The R2 and MAD values are superior to any of the single-channel Kd(λ) results in
Table 1, and the MBIAS results are generally better. The Kd(412)/Kd(670) results in Table 3
are rather similar to the Kd(412) results in Table 1, although the band-ratio MAD and R2

values are both somewhat lower and higher, respectively, and the MBIAS value is slightly
improved.

The
[
LW(λ)

]
N algorithm results shown in Table 3 have high R2 values of 0.913 and

0.924, the MAD values are similarly equal (close to 40%), and the MBIAS value is close to
zero or nonetheless rather small (−0.7%). The R2 and MAD values are superior to any of
the single-channel

[
LW(λ)

]
N results in Table 2, and the MBIAS results are generally better

(albeit MBIAS is near unity for all algorithms presented herein). When comparing the
algorithm validation results within Tables 1–3, the distinguishing metrics are associated
with goodness-of-fit or accuracy, i.e., R2, RMSD, and MAD.
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In regard to comparing Tables 1–3 and the assessments of accuracy therein, the follow-
ing generalizations emerge:

1. The most accurate algorithms include the shortest (UV) wavelength(s);
2. The Kd(λ) algorithms are more accurate than the

[
LW(λ)

]
N equivalents (although the

former PAR algorithm has no equivalent in the latter);
3. The Kd(PAR) algorithm is approximately as accurate or more accurate than the[

LW(λ)
]

N algorithms;
4. The spectrally shortest one-band Kd(λ) algorithms (i.e., 313, 320, and 340 nm) are

more accurate than the best (band-ratio)
[
LW(λ)

]
N algorithms; and

5. The most accurate algorithm is the Kd(320)/Kd(780) band ratio [12,13] .

The fifth assessment requires a qualifier, because the amount of data collected at
313 nm was less than collected at 320 nm and the difference in performance for the former
with respect to the latter was not substantially worse (Table 1).

From the vantage of above- versus in-water perspectives, the in-water measurements
used to derive the algorithms were challenged at 780 nm relative to 670 nm, because of the
following: (a) lower signal levels and higher attenuation for the NIR as opposed to the red
domain, and (b) a typically deeper start of the Lu(z, λ) data versus Ed(z, λ) data within the
extrapolation interval (set by z1 and z2) used to derive in-water data products. An in-depth
comparison of applying above-water algorithms was documented in Houskeeper et al. [9] ,
which found that the most spectrally separate above-water algorithms produced the most
robust statistics across a global range in water bodies.

3.4. C-AERO One-Band Results Applied to Lake Tahoe Observations

Airborne
[
LW(λ)

]
N observations of Lake Tahoe (LT), located on the California-Nevada

border, were obtained using C-AERO radiometers mounted on a Twin Otter fixed-wing
(propeller) aircraft flying at LSA. Coincident water samples during aircraft overflights were
obtained on the eastern edge of the lake from a small boat. The left panel of Figure 5 demon-
strates that the aCDOM(440) estimated from the

[
LW(λ)

]
N algorithms using the spectrally

shortest available wavelengths (i.e., 320 and 340 nm) predominantly overlap the range of
in situ sampling, while the longest wavelength

[
LW(λ)

]
N algorithms (i.e., 380 and 412 nm)

do not and, thus, over predict aCDOM(440). Recalling that the derived algorithms show no
significant bias across the global range of water bodies, the local over prediction for the
longer-wavelength algorithms when applied to a single, clear, substantially homogeneous
sampling area (i.e., LT) may result from linear regression, as well as increasing log-space
nonlinearities in the relationship between

[
LW(λ)

]
N and aCDOM(440) as wavelength in-

creases, which is evident for the
[
LW(380)

]
N and

[
LW(412)

]
N relationships shown in

Figure 4.
For the better performing shorter wavelength algorithms, the potential to survey LT

using a drone with a one-band radiometer is demonstrated in the right panel of Figure 5,

which shows aCDOM(440) estimated using the
[
LW(320)

]
N algorithm, and spatially inter-

polated using the natural neighbor method [33] . The color scheme was chosen to empha-
size uncertainties in the remote estimation of aCDOM(440) using a one-band, above-water
algorithm, but the spatial variability is low (CV= 8.8%) relative to the algorithm MAD
uncertainty estimated in Table 2 (MAD= 58.8%). Low inter-pixel variability combined
with good agreement to in situ water sampling is in part due to the bio-optical characteris-
tics of LT, which is oligotrophic and optically simple, and therefore more conducive to a
one-band, above-water algorithmic perspective.
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(a) (b)

Figure 5. The one-band
[
LW(λ)

]
N algorithms to derive aCDOM(440) at LT: (a) The distribution

of remotely estimated aCDOM(440) results using the color-coded algorithms (none of which are
significantly biased across the global dataset) with respect to the in situ aCDOM(440) values indicated
by labeled dashed and solid lines (left); and (b) the spatial interpolation of the

[
LW(320)

]
N algorithm

applied to the airborne observations, with the in situ sampling sites indicated as red circles (right).

4. Discussion

Using the maximum, combined water type MAD value of 76%—proposed in Section 2.7
based on the performance of algorithms commonly used by the community of practice
[37] —as an overall threshold to determine whether an algorithm is fit for purpose, all the
Kd and both types of band-ratio algorithms are compliant. The only algorithms that fail
the MAD 76% threshold are the

[
LW(380)

]
N and

[
LW(412)

]
N one-band algorithms (Table

2). From the point of view of adopting a one-band approach for deriving aCDOM(440),
this restriction is minor, because the compliant bands are equally easy to implement as
the noncompliant bands. A possible application wherein the restriction is inconvenient
and unavoidable is with archival data, wherein there are perhaps no other wavelength
alternatives, e.g., legacy measurements often have 412 nm as the shortest wavelength.

Another consideration in algorithm selection is the advantage of minimizing bias.
For the most accurate results in Seegers et al. [37] , which considered matchups using
algorithmic results from satellite data and in situ water samples, the MBIAS results spanned
−20% to 39%. For the algorithmic results presented here, which are based on in-water
optical observations and contemporaneous water samples, MBIAS values for all algorithms
were to within the environmental uncertainty and ranged from −0.3% to 0.9%. Applicable
reasons for the latter negligible bias are as follows: (a) the in-water sampling strictly
adhered to The Protocols [19] ; (b) the optical observations were obtained with consistent
and advanced instrumentation, e.g., C-PrOPS was used in almost 97% of the data [13] ; and
(c) all data were acquired and processed with the same advanced software [15] . These three
points are generically applicable to remote sensing data—i.e., The Protocols are followed
plus advanced instrumentation and software are used—but satellite data also require
atmospheric correction, which in situ optical data do not. This point is counterbalanced,
to some degree, by the use of quality control measures when determining matchups (e.g.,
filtering, binning, and median statistics), whereas the study presented here was based
on accepting data regardless of variance measures—including within optically complex
waters.
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4.1. One- Versus Two-Band Algorithms and Wavelength Selection

In regard to the algorithms considered herein, the two-channel Kd(λ) algorithm based
on Hooker et al. [13] , which uses 320 and 780 nm, provided the most accurate estimation
for aCDOM(440), with a MAD value of 7.5% and approximately uniform log-scale resid-
uals across the full range in aCDOM(440). The single-channel Kd(λ) algorithms for the
shorter wavelengths (i.e., 313, 320, and 340 nm) provided slightly less accurate estimation
of aCDOM(440), with a MAD value of 17.0%, 15.4%, and 20.1%, and also produced approxi-
mately uniform log-scale residuals across the full range in aCDOM(440). The small decrease
in accuracy for one- versus two-band Kd(λ) algorithms indicates one-band instruments
are potentially useful for research scenarios in which lowering the cost, power budget,
or data transmission and storage requirements warrants a small reduction in algorithmic
accuracy. The consistent performance across oligotrophic, mesotrophic, and eutrophic
regimes supports the use of one- and two-channel Kd(λ) algorithms—in which the princi-
pal wavelength is within the UV domain—for obtaining consistent observations at global
scales.

In-water Kd(λ) algorithms based on longer wavelengths (i.e., 380 and 412 nm) are
more degraded relative to the two-band algorithms, with the greatest MAD value of 53.6%
produced by the Kd(PAR) algorithm, which arguably has the longest wavelength responsiv-
ity, because it spans the VIS domain. PAR instruments, however, have been—and continue
to be—routinely deployed in many existing oceanographic observing systems. Conse-
quently, the potential applications for PAR data products and an aCDOM(440) algorithm
based on Kd(PAR) are useful.

For the
[
LW(λ)

]
N algorithms, the addition of a second, NIR wavelength conferred on

average a greater improvement to algorithm accuracy than to the Kd(λ) algorithms and
improved the robustness of the

[
LW(λ)

]
N approach across global waters, or across olig-

otrophic, mesotrophic, and eutrophic ecosystems. For example, the two-channel
[
LW(λ)

]
N

algorithm based on Houskeeper et al. [9] using 320 and 780 nm produced a MAD value of
41.4%, compared to 58.8% for the best performing one-channel

[
LW(λ)

]
N algorithm eval-

uated herein, which was based on
[
LW(320)

]
N . The two-channel

[
LW(λ)

]
N algorithm

was applicable to global waters, i.e., algorithm log-scale residuals were approximately uni-
form across the global range in aCDOM(440), but the single-channel

[
LW(λ)

]
N algorithms

were significantly degraded in higher aCDOM(440) waters, which is consistent with the
findings of Hooker et al. [20], in which

[
LW(λ)

]
N was most sensitive to increasing optical

complexity within the UV and NIR domains.
Using aCDOM(440) of 0.1 m−1 as an approximate partition separating global waters

into oceanic waters and coastal or inland waters, the findings presented herein indicate
that one-band approaches using either above- or in-water observations are appropriate for
observations of oceanic waters, with greater algorithmic accuracy for in-water compared to
above-water approaches. In the higher aCDOM(440) partition corresponding to coastal and
inland waters, above-water algorithms using one band were less useful based on increased
variance in the algorithm residuals. For operational considerations, however, above-
water observations are in some circumstances more favorable for coastal and inland water
observation because coastal and inland waters are generally more spatially heterogeneous
(drifting floats are unlikely to sample across frontal boundaries) and may contain significant
and uncharted navigational hazards in comparison to oceanic waters.

The Houskeeper et al. [9] study found that two-channel
[
LW(λ)

]
N algorithms that

use an expansive spectral range (i.e., UV to NIR) improve estimation of aCDOM(440) across
a global range in water bodies, including coastal and inland waters. The more expansive
spectral range was also found to produce algorithms that were more robust to natural
variability in the aquatic constituents. The expanded dataset considered herein yielded
results consistent with the earlier, more limited dataset [9] and also supports the use
of a two-channel

[
LW(λ)

]
N approach—in which the principal wavelength is within the

UV domain—for obtaining globally consistent observations. This two-channel, above-
water approach does not necessarily require significant increases in the weight or power
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requirements for above-water systems, and data storage or transmission constraints can be
managed with onboard preprocessing. For example, information collected from a two-band
sensor could be reduced to a single channel by computing a band ratio before storage or
transmission of the data, although there would be a commensurate loss in reconstructing
the performance of each channel (if desirable).

4.2. Technology Constraints and Opportunities

The constraints and opportunities technology places on determining whether to use
Kd(λ) or

[
LW(λ)

]
N algorithms naturally sorts the discussion into the following: (a) Kd(λ)

is best for in-water platforms (no self-shading correction but cannot be measured directly
from above the water surface), and (b)

[
LW(λ)

]
N is the most advantageous for above-

water platforms (self-shading effects are easily avoided, but supporting measurements
are needed). Consequently, hereafter, the Kd(λ) perspective is applied only to AUVs, and
the

[
LW(λ)

]
N perspective is restricted to UAVs (albeit, nonetheless possible for AUVs). In

terms of the simplest architecture possible, while satisfying algorithm efficacy (Tables 1–3),
an AUV or float is anticipated for a one-channel irradiance sensor and a UAV for a two-
channel radiance sensor.

The description of deployments for AUVs and UAVs may use similar language that is,
in fact, rather different, so the following clarification is made: a long AUV deployment lasts
weeks and months, whereas a long UAV deployment lasts hours. Although UAV designs
capable of deploying for periods as long as AUVs are feasible, the community of practice
supporting the algorithmic research presented here is poised to exploit profiling floats
for in-water measurements and drones for above-water observations. In both UAV and
AUV deployments, the one- or two-channel algorithms enabled by the sensors presented
herein provide the advantages of reductions in power consumption, mass, data storage,
and cost relative to most multispectral or hyperspectral radiometers, with an application-
dependent disadvantage of less spectral information being acquired from the targets.
Additionally, the simplicity of the sensors presented allow opportunistic integration into
existing UAV and AUV architectures in scenarios where budgetary or time constraints
preclude extensive customization. The actual range of conditions (e.g., depth and duration)
for which useful data may be acquired is limited by the temporal and spatial nature of
a specific deployment and the integration platform, but the low-power requirements in
conjunction with the extended dynamic range relative to legacy sensors is anticipated to
enhance the applicability of the sensors described herein both in mission duration and
observable flux levels relative to legacy technologies.

The difference in deployment time scales for AUVs and UAVs means bio-fouling is
an anticipated problem for the former but not the latter (although possible due to random
episodic events, which cannot be prevented). Polytetrafluoroethylene (PTFE) is an ideal
material to construct diffusers for measuring solar irradiance over the UV–VIS range,
because it is hydrophobic and can be formed into an optimal shape with a compliant cosine
response (per The Protocols) for underwater collectors while presenting a well-defined
reference plane for calibrations and withstanding the hydrostatic pressure associated with
euphotic sampling depths [42] . The same shape with compliant cosine response is suitable
for above-water irradiance radiometers. To minimize energy and weight budgets, passive
in-water antifouling is preferred, e.g., stowing the AUV at depth well below the 0.1% light
level. The hydrostatic pressure at such depths, however, also makes acrylic with sufficient
UV transmission an attractive alternative to PTFE.

The above-mentioned technology considerations, plus the results presented in Tables 1–3,
suggest a single-channel algorithmic approach is viable for an in-water sampling system,
but an above-water system requires a band-ratio approach, i.e., two channels, for com-
parable performance. Although this conclusion provides sampling guidance for a wide
diversity of water masses, it does not provide a mechanism for expanding the generation
of data products in extremely difficult or unmeasurable environments, e.g., during twilight
and moonlight, transitional seasons, and polar winters, plus the deep ocean or very turbid
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waters. Strategies for increasing the generation of data products for previously difficult
or unmeasurable environments include the following: (a) predictive dark current (PDC)
correction [28] to account for instrument performance fluctuations (e.g., due to tempera-
ture) when signal levels are very low; and (b) pairing a photomultiplier tube (PMT) with a
microradiometer to produce a hybridnamic sensor, which extends the dynamic range for
very dark targets [14] .

PDC improves the quality of data products when the signal-to-noise ratio (SNR) is
low and degraded by significantly variable instrument performance parameters. This is
typically an above-water sampling issue, because airborne platforms can experience large
fluctuations in performance variables within a short amount of time (e.g., by changing
altitude), whereas an in-water platform usually does not. An exception for in-water
platforms is for long-term deployments spanning large distances or during short-term
deployments when an instrument system is left on the deck of a ship in sunlight. The latter
is an easily avoided problem [19] and is not considered here.

In regard to previous studies and the working hypothesis that one- and two-channel
algorithms are suitable for above- and in-water sampling systems, a future research di-
rection of benefit to the community is to pair a PMT with a microradiometer and include
PDC characterization for both. This combination extends the total number of decades
in the linear dynamic range from 10 to approximately 14 decades [14]. A PMT has an
operational vulnerability, however, if it is exposed to very bright light sources, which can
potentially degrade sensitivity and stability. The construction of a PMT-microradiometer
dyad allows the power to the PMT to be automatically controlled (on or off) based on
the simultaneous observations of the microradiometer photodiode, thereby significantly
mitigating an overexposure risk to the PMT. Additional safety margin can be implemented
by including a temporal trend test to ensure illumination anomalies are discounted.

The efficacy of the single-channel algorithms when using UV wavelengths further
mitigates the PMT overexposure risk because of reduced UV light levels inherent to the
solar spectrum (the steepest decline in flux of the solar spectrum is in the UV domain)
combined with anticipated and likely problematic research environments (e.g., low solar
zenith angles and low transmission through water). An in-water PMT-microradiometer
sensor is considered first, because it is the simplest, i.e., based on a single wavelength, for
providing a Kd(λ) data product in the UV (Table 1). Figure 6 shows a PMT-microradiometer
irradiance dyad, wherein the microradiometer components follow directly from Figure 1.
The miniature and ruggedized PMT views the underside of the diffuser, but it is slightly
longer than the microradiometer. A PMT adapter PCA and integration PCA allow the two
detector technologies to function as a single hybridnamic sensor permitting deep sea plus
twilight and winter observations, particularly in polar regions.

A two-channel (fixed wavelength) radiance sensor based on a PMT-microradiometer
dyad pair is shown in Figure 7, which has the same housing diameter as the irradiance
sensor shown in Figure 6. The two-channel hybridnamic sensor can provide data products—
and allow a two-channel algorithm implementation—while observing significantly darker
targets than microradiometer technology alone. Observations during twilight and lunar
illumination at night are feasible and allow diurnal variations to be studied [14]. In-
water use of this hybridnamic sensor has the same benefits and drawbacks as discussed
previously, with the PMT benefitting from being downward-pointing to provide protection
against excess illumination, regardless of the spectral bandpass.



Sensors 2021, 21, 5384 21 of 25

Bulkhead
Connector

Support 
Electronics

PMT
Module

Integration 
PCA

Filter Sleeve
with Fore Optics

PMT Adapter 
PCA

Microradiometer
in Metal Sleeve

Diffuser

Filter Sleeve
with Fore Optics

Figure 6. Paired PMT and microradiometer detector technologies in a irradiance sensor dyad (PAR
or fixed wavelength) with a 2.0 in (5.1 cm) housing diameter that is 9.5 in (24.1 cm) long, and a total
weight of 1.8 lb (0.8 kg). The nominal depth rating is 2000 m, although variations of the design with a
greater depth capability are easily fabricated.

Bulkhead
Connector

Support Electronics 
Not Visible

PMT
Module

Integration 
PCA

Filter Sleeve
with Fore Optics

PMT Adapter 
PCA

Microradiometer
in Metal Sleeve

Filter Sleeve
with Fore OpticsShroud

Figure 7. Two paired PMT-microradiometer radiance sensor dyads with a 1.7 in (4.3 cm) diameter
and 1.5 in (3.8 cm) long removable shroud attached to a 2.0 in (5.1 cm) diameter housing that is 9.7 in
(24.6 cm) long and a total weight of 2.1 lb (1.0 kg). Following from the common architecture in the
irradiance dyad, the radiance sensor shown is pressure rated to 2000 m for in-water deployments.
Mass reductions exceeding 25% are easily achieved for above-water applications.

5. Conclusions

Establishing the efficacy of one- and two-band algorithms opens a path to smaller and
less expensive sensor requirements (Figures 1 and 2) for the acquisition of data required
to derive a useful data product. Based on the methods presented, existing and minimally
modified sensors utilizing the same underlying technology to create more advanced hy-
brids were identified and discussed (Figures 6 and 7). The identified sensors either are, or
can readily be, optimized for inclusion on above- and in-water applications (UAV or AUV,
respectively), consistent with the paradigm of expanding the volume of observations while
reducing the sensor, platform, and personnel costs.

How an individual researcher might exploit the algorithms presented in Tables 1–3
depends on the interplay of the factors controlling the research, e.g., environment(s) of
interest, legacy needs, above- or in-water sampling, wavelength selection, radiometric
configuration, technological constraints, and performance requirements (proposed herein
as compliance with the overall MAD fit-for-purpose threshold of 76%). To present the
conclusions associated with these six considerations, a one-band algorithm is denoted λ1
and a two-band algorithm λ1/λ2 (following Table 3).

From an overall perspective, the Kd(λ) and
[
LW(λ)

]
N algorithms exhibited similar

sensitivity as measured by the dynamic range in both data products (Figures 3 and 4). The
most accurate algorithms used the shortest (UV) wavelengths with the Kd(λ) algorithms
being superior and providing the simplest (linear) relationships (Tables 1 and 3). All the
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[
LW(λ)

]
N algorithms were nonlinear and performed worse than their Kd(λ) equivalents

(Tables 2 and 3). The Kd(PAR) algorithm provided compliant estimates of aCDOM(440)
(Table 1) and could take advantage of legacy instrumentation or observations.

All the Kd(λ1) and Kd(λ1/λ2) algorithms (Tables 1 and 3) complied with the proposed
MAD fit-for-purpose threshold of 76%, whereas the

[
LW(λ1)

]
N algorithms (Table 2) for

380 nm and 412 nm did not (and the NOMAD data did not); the
[
LW(λ1/λ2)

]
N algorithms,

however, were compliant (Table 3). The λ1/λ2 algorithms provided superior performance
with respect to their λ1 principal constituent, e.g., Kd(320/780) and

[
LW(320/780)

]
N were

superior to Kd(320) and
[
LW(320)

]
N, respectively.

The overall summary results suggest an in-water sampling approach is preferred,
because Kd(λ) can be obtained. From the perspective of environmental λ1 sampling
objectives, the Kd(320) algorithm provided the best MAD (15.4%) performance, with
no significant MBIAS and consistent log-scale performance across open ocean, coastal,
and inland waters. Consequently, the Kd(320) algorithm is anticipated to be the best
option where in-water λ1 deployment is suitable (e.g., no navigational hazards or access
limitations). A similar result is likely for the Kd(313) algorithm but should be confirmed
using more data.

Some of the challenges in sampling coastal and inland waters with an in-water λ1
system can be overcome with an above-water λ1 approach, but in these same regions the
efficacy of an above-water method also decreases. For example, the variance in

[
LW(λ)

]
N

increased as a function of aCDOM(440) (Figure 4), such that performance was optimal in
clearer waters and relatively worse in eutrophic waters. This change in log-scale perfor-
mance as a function of aCDOM(440) was less evident for the shortest wavelengths. The[
LW(320)

]
N algorithm provided the best λ1 performance in terms of MAD (58.8%), al-

though the
[
LW(313)

]
N algorithm is also anticipated to produce a robust relationship (but

more data is required for confirmation).
Although the same logic is applicable to in-water λ1 sampling, the more significant

variance associated with above-water λ1 performance can be improved by adopting a
λ1/λ2 approach (Table 3). In-water sampling is subject to an additional constraint , because
there is an ultimate deployment restriction that is reached when the water depth limits the
ability for an in-water system to make profiles. Presently, at a 0.5 m water depth and less,
an above-water

[
LW(λ1/λ2)

]
N algorithm is likely the most practical (assuming turbidity

prevents bottom reflection perturbations). Using wavelengths with high attenuation (i.e.,
the spectral end members) also mitigates bottom reflectance for shallow-water remote
sensing. The study of Houskeeper et al. [9] demonstrated robust

[
LW(λ1/λ2)

]
N log-scale

performance across a global range in water bodies, including oligotrophic, mesotrophic,
and eutrophic environments, which was confirmed herein with a larger dataset and a
fit-for-purpose criterion (Table 3). From an instrument integration perspective, the addition
of a second channel does not significantly increase weight or power, because the microra-
diometer building block is small and two may be easily integrated within a single housing
with shared electronics. This also enables dual λ1 and λ2 observations to be combined at
the sensor as a ratio to lessen data storage and transmission requirements.

Both Kd(λ1/λ2) and
[
LW(λ1/λ2)

]
N algorithmic approaches were shown to be suit-

able, because both had a MAD value less than 76%, but Kd(320/780) was significantly
superior overall (Table 3). In terms of the global domain, there are partitions wherein one
algorithmic approach is nonetheless preferred or is an agreeable substitute. In oligotrophic
waters the lower variance of the above-water λ1 approach is likely suitable (Figure 5)
when in-water sampling is challenging, e.g., water body access closed to prevent the
spread of invasive species. In mesotrophic (typically coastal) waters, the variance for the[
LW(λ1/λ2)

]
N algorithm is more robust than

[
LW(λ1)

]
N, indicating a need for two bands,

whereas a Kd(λ1) algorithm can still suffice. For the latter, an ecosystem requiring diurnal
study or with canopy effects, e.g., a kelp forest, is anticipated to require a hybridnamic
in-water sensor Figure 6). Within increasingly shallow inland waters, turbidity, optical
complexity, and eutrophic conditions predominate (although exceptions are possible, e.g.,
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in lakes). When turbidity creates significant loss of signal, e.g., in the UV domain, a
hybridnamic above-water approach is anticipated (Figure 7).

An examination of an algorithm to estimate aCDOM(440) using Kd(PAR), i.e., Kd based
on PAR calculated from discrete spectral channels in near-surface waters (top 1 m) wherein
no channels were flux limited, showed viability and deserves separate comment. The
Kd(PAR) approach is potentially useful, because PAR has utility across multiple research
disciplines and is the most widely deployed and recorded single-channel measurement in
service, both on present and legacy AUV platforms. As such, these results show promise
for the general applicability of a broadband PAR algorithm and are intended to encourage
further investigation but should not be directly used without a careful consideration of the
limitations inherent to single broadband detectors and the inherent impact of increasing
depth on the spectral composition of downward irradiance in the water column.
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