

An Assessment of Space Weather Architectures to Support Deep Space Exploration

Joseph I. Minow¹, Linda Neergaard Parker², Christopher J. Mertens¹, John R. Allen³, Dan J. Fry⁴, Edward J. Semones⁴, Rachel A. Hock⁵, Insoo Jun⁶, Terry G. Onsager⁷, Antti A. Pulkkinen⁸, and Chris St. Cyr⁸

¹NASA Langley Research Center, Hampton, Virginia
²Universities Space Research Association, Huntsville, Alabama
³NASA Headquarters, Washington, D.C.
⁴NASA Johnson Space Center, Houston, Texas
⁵Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio
⁶The Jet Propulsion Laboratory, Pasadena, California
⁷NOAA Space Weather Prediction Center, Boulder, Colorado
⁸NASA Goddard Space Flight Center, Greenbelt, Maryland

SEE-MAPLD 2021 31 August – 2 September 2021, Virtual joseph.minow@nasa.gov

- Introduction
- NASA's Engineering and Safety Center (NESC) assembled a technical assessment team to evaluate space weather architecture options for use in protecting future human and robotic space systems from the space radiation hazards due to energetic ions in solar particle events (SPE)
- Stakeholders: HEOMD and SMD senior leadership
- Results from the assessment are published in a NASA Technical Memorandum titled "Space Weather Architecture Options to Support Human and Robotic Deep Space Exploration" available at:

URL: https://ntrs.nasa.gov/citations/20205000837

- The assessment includes a summary of past NASA work in evaluating SPE threats to crew and vehicles, an analysis of the operational response time and the relevant SPE ion energy threshold levels to support space operations, and a set of specific space weather architectures to support missions to the Moon and Mars.
- This presentation is a summary of the study and the contents of the final report.

NASA/TM-20205000837/Corrected Copy NESC-RP-17-01215

Space Weather Architecture Options to Support Human and Robotic Deep Space Exploration

Joseph I. Minow/NESC and Christopher J. Mertens Langley Research Center, Hampton, Virginia

Linda Neergaard Parker Universities Space Research Association, Huntsville, Alabama

John R. Allen NASA Headquarters, Washington, D. C.

Dan J. Fry and Edward J. Semones Johnson Space Center, Houston, Texas

Rachel A. Hock Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio

Insoo Jun Jet Propulsion Laboratory, Pasadena, California

Terrence G. Onsager NOAA Space Weather Prediction Center, Boulder, Colorado

Antti A. Pulkkinen and Chris St. Cyr Goddard Space Flight Center, Beltsville, Maryland

April 2020

Scope of the Study

- The assessment considered near-real-time monitoring assets, space radiation analysis tools, and forecast methods that could support NASA's crewed HEOMD and robotic SMD missions beyond low Earth orbit that meet the following constraints to the greatest extent possible:
 - $\circ~$ In-situ radiation and remote solar monitoring hardware planned for deployment on exploration vehicles,
 - Existing space environment sensors from NASA, NOAA, DoD, and other organizations, and
 - $\circ\,$ A minimal set of new hardware (spacecraft, instruments) only where necessary.
- The assessment goal was to provide NASA with options for a robust and cost-effective space weather situational awareness architecture that could effectively reduce space radiation risks for crewed and robotic operations in the inner heliosphere in orbits about Earth, cislunar space, and Mars.
- Space environment models were reviewed and used as key drivers for instrument selection, but validation and performance metrics for each were not assessed. This was considered beyond the scope of the assessment.

Study Elements

Task 1:	Previous Space Weather Studies
Task 2:	Operational Response Time for
	Space Weather Monitoring
Task 3:	Relevant Forecasting Tools
Task 4:	SPE Threshold Levels for
	Exploration Missions
Task 5:	Space Weather Architectures

Task 1: Previous Space Weather Studies

- Reviewed prior/current work on space weather architectures to understand any possible gaps in knowledge in fulfilling the requirements.
- Considered hardware requirements, habitat designs including storm shelters for manned missions; and space weather monitoring assets for future missions using information from NASA, NOAA, and DoD.

Summary

- At the time of Apollo, GCR and SPE risks were managed with a detailed ground based observational approach
- No major SPE event occurred during Apollo mission, plan was to continue nominal operations until radiation sensors onboard the Apollo CM confirmed elevated radiation environment
- $\circ~$ Humans have only operated in low Earth orbit since Apollo. risk was mitigated by the protection of Earth's magnetic field
- Mitigation has also been successful by diligent monitoring of radiation exposure and adherence to standards
- There has been significant advances in the understanding of the space environment (e.g., SPE, GCR), modeling, forecasting, biological requirements and risks, and affects on avionics since the 1970s

Figure 10. Solar proton events during the Apollo Program.

https://srag.jsc.nasa.gov/publications/tm104782/techmemo.htm

Cond Major solar flat predicted. Major solar flat Unconfirmed has occur Confirmed p

-

Apollo 1973 SPE Flight Rules				
Condition	Mission phase	Rule	Comments	
r solar flare has been redicted.	A11	Continue mission.		
r solar flare has occurred.				
nconfirmed particle event has occurred.	All	Continue mission.	Report: particles have not been confirmed. No mis- sion impact is indicated.	
and SPAN or real-time and SPAN or real-time analyses indicate the MOD will be exceeded	Prelaunch	Hold until data analysis indicates that the MOD will not be exceeded.		
during the mission.	Earth parking	Continue mission. If data analysis indicates that the MOD will be exceeded by a significant amount before mission comple- tion, translunar injec- tion is no-go.	Translunar injection is no-go only if firm computation before go/no-go indicates more than the MOD.	
	All other phases	Continue mission. Consid- eration will be given to early (or extended) transearth injection and		

Confirmed particle event Transiunar coast and spacecraft telemetry or personal radiation dosimeter read-out projections indicate the MOD will be exceeded during the mission.

	reduced significantly without increasing total risk to the crew.	quired for crew read-outs
Lunar orbit	Continue mission. Consider extending lunar orbit stay time if the total dose to the crew would be re-	Hatch-down attitude may be used to reduce the total dose.
	duced significantly by lunar shielding.	If a particle event is con- firmed, the crew will transfer from the lunar module to the command and service module.
Lunar stay	Consider reducing the lunar stay time or extravehic- ular activities if the total dose to the crew can be reduced significantly without increasing the total risk to the crew.	Comparison of command and service module and lunar surface personal radiatio dosimeters is advised.

rience Report—Protection aga

inhibiting crew transfer

to the lunar module.

Continue mission. Consid-

eration should be given

to entering in next best

preferred target point if the total dose can be

All other phases Continue mission.

Crew should begin personal

dosimeter and radiation

survey meter read-outs. A projection of greater than the MOD is not re-

quired for crew read-outs.

Task 2: Operational Response for SPE Monitoring

- Calculate statistics for critical SPE timing parameters using ESA's Solar Energetic Particle Environment Modeling (SEPEM) Reference Data Set Version 2.0 (RSDv2.0) data set:
 - $\circ~$ 41 years (1974 2015) IMP-8, GOES 5 MeV to 289 MeV protons
 - $\circ~$ Generate data set of SPE events with background-subtracted flux
 - Compute dose rates inside shielded spacecraft (using a proxy 10 g/cm² aluminum spherical shield) using the HZETRN radiation transport code
 - Identified SEP events that cause an increase in dose above background behind shielding
 - Calculated critical timing parameters for these dose-significant events
- Summary:
 - 192 SPE events in 41 years resulted in an increase in dose above background behind shielding (10 g/cm² aluminum sphere)
 - 19 (10%) of the events were multiple SPE events in quick succession, leading to elevated fluxes for up to 13 days
 - Once an SEP event begins, probabilistic values for duration, time to peak flux and dose rate, time to 10%, 50%, and 90% dose can be inferred from this study
 - If the time parameters and value of the peak flux can be predicted, it is possible to estimate:
 - The total dose
 - Determine whether 10%, 50%, or 90% dose has likely been reached
 - Dose mitigation actions will be most effective if they occur within the first 2 hours of an SPE, which will likely reduce at least 50% of the SPE dose

SPE Event Parameters

- Event date
- Onset time
- Event end time
- Duration
- Inter-event time
- Peak 66-95 MeV flux
- >66 MeV fluence
- >95 MeV fluence

- Fluence spectrum
- Peak dose rate
- Total dose
- Time to peak flux
- Time to peak dose rate
- Time to 10% dose
- Time to 50% dose
- Time to 90% dose

Flux and Dose Timing Cumulative Distributions

Task 3: Relevant Forecasting Tools

- What types of space weather models are needed and available to support the future human space exploration operations?
 - Models selected based on their ability to provide useful predictions for SPE proton flux through some phase of operations timeline
- Develop model catalog with information on:
 - Prioritized modeling needs
 - Model input and output, input are the observational needs that drive the architecture design
 - o Model maturity

Operations Timeline

- Catalog of prioritized space environment models with observational requirements provide potential space weather nowcasting and forecasting tools:
 - Probabilistic pre-eruption flare/SPE/CME prediction modeling
 - Empirical post-eruption modeling
 - Post-eruption time profile models
 - Solar wind and CME transport models
 - Space environment effects models

Task 4: Relevant Forecasting Tools

- Pre-eruption
 - Use: all clear forecast and probability of flare, SPE, CME
 - Models: ASAP, ASSA, MAG4, SWPC/SpaceWOC (human generated)
- Post-eruption
 - Use: assessment of SPE parameters
 - Models: AER SEP, AF-DEPT, COMESEP, ESPERTA, FORSPEF, Proton Events, PPS, REleASE, SEPMOD, SEPsFLAREs, SOLPENCO, SPARX, SPRINTS, St Cyr model, SWPC, SWPC Protons, UMASEP
- Post-eruption time profile
 - Use: assessment of the SPE time profile
 - Models: AF-DEPT, PATH, PREDICCS, UMASEP
- Solar wind/CME transport
 - Use: situational awareness/SEP timeline
 - Models: SWMF corona/solar wind, LFM heliosphere, SWA-Enlil/Cone, CORHEL
- Space environment impact models
 - Use: tools that support space system design and real-time nowcast of radiation exposure effects
 - Models: CRÈME-MC, FLUKA, Geant4, HZETRN, NOVICE, Shieldose

MAG4 12 Aug 2021

https://www.uah.edu/cspar/research/mag4-page/

UMASEP 13 Aug 2021

http://spaceweather.uma.es/forecastpanel.htm

Task 4: Relevant Forecasting Tools

- Pre-eruption
 - Use: all clear forecast and probability of flare, SPE, CME
 - Models: ASAP, ASSA, MAG4, SWPC/SpaceWOC (human generated)
- Post-eruption
 - Use: assessment of SPE parameters
 - Models: AER SEP, AF-DEPT, COMESEP, ESPERTA, FORSPEF, Proton Events, PPS, REleASE, SEPMOD, SEPsFLAREs, SOLPENCO, SPARX, SPRINTS, St Cyr model, SWPC, SWPC Protons, UMASEP
- Post-eruption time profile
 - Use: assessment of the SPE time profile
 - Models: AF-DEPT, PATH, PREDICCS, UMASEP
- Solar wind/CME transport
 - Use: situational awareness/SEP timeline
 - Models: SWMF corona/solar wind, LFM heliosphere, SWA-Enlil/Cone, CORHEL
- Space environment impact models
 - Use: tools that support space system design and real-time nowcast of radiation exposure effects
 - Models: CRÈME-MC, FLUKA, Geant4, HZETRN, NOVICE, Shieldose

MAG4 31 Jul 2011

https://www.uah.edu/cspar/research/mag4-page/

UMASEP 8 Nov 1987, 21 Apr 2002

Nunez, Space Weather, 2011

NASA

Task 5: SPE Threshold Levels for Exploration Missions

- Identify the dominant proton energy range relevant to crew radiation risk that needs to be measured to have sufficient knowledge of the environment to protect crew health and safety
 - $\circ~$ Lower and upper energy threshold
 - $\circ~$ Risk metric: dose to blood-forming organs (BFO)
- Methodology
 - Set of 65 historical SPE/GLE events
 - $\circ~$ Vehicle models focus on MPCV (Orion), including storm shelter and body self shielding
 - Compare with point dose in MPCV alone to assess expectations of instrument response
 - $\circ~$ Determine BFO dose as a function of different proton energy bins
- Results
 - o Protons with energies ≤1 GeV need to be incorporated to include more variance among ensemble of relatively hard spectra
 - Generally, only protons of energy >30 MeV can penetrate the pressure vessel
 - Flux increases at lower energies have served as a signature for adverse space weather conditions
 - Real-time information on proton flux at energies as low as 10 MeV are valuable for EVA operations

11

Space Weather Architectures

Moon (and Sun-Earth Line at ~1 AU)

- No new types of instruments are required beyond currently available space weather monitoring assets and planned in-situ energetic particle monitors on crewed spacecraft
 - Continued work in maturing predictive SPE modeling and prediction making use of the measurements will be essential
- Assumes current space weather assets are available during lunar missions, but some (e.g., ACE, SOHO, STEREO, SDO) have exceeded their design life
 - NASA and other Federal Agency support for replacement assets is essential
- Architectures:
 - Baseline: currently available assets to obtain measurements of photospheric magnetic field maps, energetic ions and electrons, soft x-ray flux with flare location detection
 - Enhanced: Baseline measurements plus white-light coronal emissions, and in-situ magnetic field and solar wind plasma
 - Comprehensive: Enhanced measurements plus space-based solar rate (e.g., Type II, III) measurements

	Con-ops Component	Modeling Objectives	Modeling Requirement	Measurement Requirement	Instruments Required	Mission Requirements	Existing Assets, Assumed Available for Lunar 2024
Mission planning and situational awareness (launch, EVAs)			24-hour/ 6-hour lead-time forecast	Photospheric magnetic field LOS or vector)	Photospheric magnetograph		GONG (operational), SDO/HMI R
	Pre-eruption modeling	of solar eruptions (flare, SEP, CME) Probability of >10 MeV p+ NOT exceeding 10- 100 pfu or >100 MeV, not exceeding 1 pfu in next 24 or 6 hours	Solar continuum/ white-light	Continuum/ white-light solar imager	Carry out all measurements along Sun-crewed vehicle line (Sun-Earth line for lunar	SOON (operational), SDO/HMI R	
			Solar soft X-ray	Soft X-ray spectrograph		GOES O	
Deploy and enter storm shelter or return to lander			SEP onset time prediction	Solar soft X-ray	Soft X-ray spectrograph	missions), or close to line 100%	GOES O
				Flare location	EUV imager/ H-alpha imager/ X-ray imager		GOES O SDO/AIA R
	Post-eruption modeling	SEP peak flux prediction	Energetic protons	Energetic charged particle detector	instrument and modeling duty cycle for soft X-rays 24/7 observational and modeling data feeds	GOES O	
			CME parameters	Coronagraph		SOHO/LASCO R Stereo/COR R	
		Probability of >10 MeV p+	(Interplanetary) Energetic electrons	Energetic charged particle detector		SOHO/COSTEP R ACE/EPAM R	
			10-100 pfu or >100 MeV p+ exceeding	Solar radio bursts (Type II & III)	Solar radio telescope		Ground-based Radio Solar Telescope Network O
		три	CME parameters	Coronagraph		SOHO/LASCO R Stereo/COR R	

Space Weather Architectures

Moon (and Sun-Earth Line at ~1 AU)

- No new types of instruments are required beyond currently available space weather monitoring assets and planned in-situ energetic particle monitors on crewed spacecraft
 - Continued work in maturing predictive SPE modeling and prediction making use of the measurements will be essential
- Assumes current space weather assets are available during lunar missions, but some (e.g., ACE, SOHO, STEREO, SDO) have exceeded their design life
 - NASA and other Federal Agency support for replacement assets is essential
- Architectures:
 - Baseline: currently available assets to obtain measurements of photospheric magnetic field maps, energetic ions and electrons, soft x-ray flux with flare location detection
 - Enhanced: Baseline measurements plus white-light coronal emissions, and in-situ magnetic field and solar wind plasma
 - Comprehensive: Enhanced measurements plus space-based solar rate (e.g., Type II, III) measurements

Con-ops Component	Modeling Objectives	Modeling Requirement	Measurement Requirement	Instruments Required	Mission Requirements	Existing Assets, Assumed Available for Lunar 2024
Inform crew about expected evolution	SEP Time profile/ duration; post- threshold SEP	Flux as function or estimate of time below threshold) for >10 MeV p+	Energetic protons	Energetic charged particle detector		GOES O ACE R
and end of SEP event	event model/ determine CME arrival		CME parameters	Coronagraph		SOHO/LASCO R Stereo/COR R
Nowcasting	NA	NA	Flux at >10 MeV p+, >30 (or >50) MeV p+, >100 MeV p+	Energetic charged particle detector		GOES O ACE R

Space Weather Architecture: Mars

Baseline:

- Sustained Sun-Earth line baseline instruments plus suite of instruments on the Mars vehicle:
 - Solar photospheric magnetic field maps
 - $\circ~$ Solar soft X-ray fluxes and flare location
 - $\circ~$ Energetic ion and electron spectra and fluxes

Enhanced:

- Sustained Sun-Earth line baseline instruments plus an improved suite of instruments on the crewed Mars vehicle:
 - White-light coronal imaging
 - $\circ~$ In-situ magnetic field
 - Solar wind plasma properties
 - Space-based radio measurements

Comprehensive:

- Sustained Sun-Earth line baseline instruments and new constellation of three space weather spacecraft in solar orbit at 1 AU and 120° apart. Each spacecraft carry a suite of remote sensing and in situ instruments including:
 - Solar EUV imager
 - \circ Heliospheric imager
 - EUV/FUV solar spectral irradiance
 - o Intravehicle dosimeter

HEO Mission					
Target	Classification	Description			
Moon	Lunar 2024	No additional hardware required over the existing NOAA & USAF assets. However, lunar platform should be used as a proving ground for future Mars missions (see Bridging Missions)			
Mars	Baseline	Sustained Sun-Earth line assets. Crewed vehicle flying with Mars baseline instrumentation.			
	Enhanced	Sustained Sun-Earth line instrumentation. Crewed vehicle flying with Mars enhanced instrumentation.			
	Comprehensive	3 spacecraft 120° apart @ 1 AU; all spacecraft have the same remote sensing and <i>in situ</i> instrumentation.			
Bridging Missions	ISS Platform	Proving ground for the Lunar/Mars mission. Instrument priorities: magnetograph, coronagraph.			
	Gateway Phase I	Energetic charged particle sensors.			
	Gateway Phase II	Develop a Mars vehicle instrument package using lessons learned from the ISS proving ground and Phase I.			
	Mars	Instrumentation flying as a hosted payload on robotic Mars science missions.			

Report is available to the public from the NASA Technical Report Server:

URL: https://ntrs.nasa.gov/citations/20205000837.

Questions?