
Formal Specification and Parametric Verification of the
ICAROUS Distributed Merging Protocol for Autonomous
Aircraft Systems

William Schultz
1
, Swee Balachandran

2
,

1
Formal Methods Group

Northeastern University

schultz.w@northeastern.edu

2
National Institute of Aerospace

NASA Langley

sweewarman.balachandran@nasa.gov

Aug 2021 @ NASA Langley

Intern exit presentation

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

1/35 schultz.w@northeastern.edu

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

2/35 schultz.w@northeastern.edu

The ICAROUS System

• ICAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)1

• Includes several software modules for high assurance operation and collision

avoidance

• Has a distributed algorithm for merging a set of aircraft through an intersection in a
decentralized fashion

1
Consiglio, María and Muñoz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee. ICAROUS: Integrated configurable algorithms for reliable operations of

unmanned systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE. 2016, pp. 1–5.
3/35 schultz.w@northeastern.edu

The ICAROUS System

• ICAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)1

• Includes several software modules for high assurance operation and collision

avoidance

• Has a distributed algorithm for merging a set of aircraft through an intersection in a
decentralized fashion

1
Consiglio, María and Muñoz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee, “ICAROUS: Integrated configurable algorithms for reliable operations of

unmanned systems”.
3/35 schultz.w@northeastern.edu

The ICAROUS System

• ICAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)1

• Includes several software modules for high assurance operation and collision

avoidance

• Has a distributed algorithm for merging a set of aircraft through an intersection in a
decentralized fashion

1
Consiglio, María and Muñoz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee, “ICAROUS: Integrated configurable algorithms for reliable operations of

unmanned systems”.
3/35 schultz.w@northeastern.edu

Overview of the ICAROUS Merging Protocol

• Set of n aircraft {a1, . . . , an} that want to merge through a designated intersection,
specified by a point in the airspace

• Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

• Each aircraft has an earliest and latest arrival time, Ri ∈ R+
and Di ∈ R+

, respectively

• Must compute schedule of arrival times T = (T1, . . . ,Tn) such that

∀i ∈ {1, . . . ,n} : Ri ≤ Ti ≤ Di − P

for some separation time P .

4/35 schultz.w@northeastern.edu

Overview of the ICAROUS Merging Protocol

• Set of n aircraft {a1, . . . , an} that want to merge through a designated intersection,
specified by a point in the airspace

• Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

• Each aircraft has an earliest and latest arrival time, Ri ∈ R+
and Di ∈ R+

, respectively

• Must compute schedule of arrival times T = (T1, . . . ,Tn) such that

∀i ∈ {1, . . . ,n} : Ri ≤ Ti ≤ Di − P

for some separation time P .

4/35 schultz.w@northeastern.edu

Overview of the ICAROUS Merging Protocol

• Set of n aircraft {a1, . . . , an} that want to merge through a designated intersection,
specified by a point in the airspace

• Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

• Each aircraft has an earliest and latest arrival time, Ri ∈ R+
and Di ∈ R+

, respectively

• Must compute schedule of arrival times T = (T1, . . . ,Tn) such that

∀i ∈ {1, . . . ,n} : Ri ≤ Ti ≤ Di − P

for some separation time P .

4/35 schultz.w@northeastern.edu

Overview of the ICAROUS Merging Protocol

• Set of n aircraft {a1, . . . , an} that want to merge through a designated intersection,
specified by a point in the airspace

• Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

• Each aircraft has an earliest and latest arrival time, Ri ∈ R+
and Di ∈ R+

, respectively

• Must compute schedule of arrival times T = (T1, . . . ,Tn) such that

∀i ∈ {1, . . . ,n} : Ri ≤ Ti ≤ Di − P

for some separation time P .

4/35 schultz.w@northeastern.edu

Overview of the ICAROUS Merging Protocol

• Newest version of the protocol uses a simplified consensus mechanism coordinating
the merging and schedule computation

• Designated radial zones expanding outward from the intersection point for aircraft to
execute various behaviors needed to achieve the necessary goals

Coordination

Schedule

Entry

ai

Intersection point

5/35 schultz.w@northeastern.edu

Overview of the ICAROUS Merging Protocol

• Newest version of the protocol uses a simplified consensus mechanism coordinating
the merging and schedule computation

• Designated radial zones expanding outward from the intersection point for aircraft to
execute various behaviors needed to achieve the necessary goals

Coordination

Schedule

Entry

ai

Intersection point

5/35 schultz.w@northeastern.edu

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

6/35 schultz.w@northeastern.edu

Formalizing the ICAROUS Merging Protocol

• The merging protocol is a real-time system with both continuous and discrete
dynamics, and its behavior depends on several environmental parameters

• Goal: formalize an abstract model of the protocol that allows us to understand under
what environmental parameters the system satisfies some given property.

7/35 schultz.w@northeastern.edu

Formalizing the ICAROUS Merging Protocol

• The merging protocol is a real-time system with both continuous and discrete
dynamics, and its behavior depends on several environmental parameters

• Goal: formalize an abstract model of the protocol that allows us to understand under
what environmental parameters the system satisfies some given property.

7/35 schultz.w@northeastern.edu

Formalizing the Merging Protocol

• The protocol can be viewed as a hybrid automata2

• With some simplifying assumptions about aircraft speeds, however, we can consider
it more similar to a timed automata3, a special case of the former

• Avoids the need to model dynamics using differential equations

2
Thomas A Henzinger. The theory of hybrid automata. In: Verification of digital and hybrid systems. Springer, 2000, pp. 265–292.

3
Rajeev Alur and David L Dill. A theory of timed automata. In: Theoretical computer science 126.2 (1994), pp. 183–235.

8/35 schultz.w@northeastern.edu

Formalizing the Merging Protocol

• The protocol can be viewed as a hybrid automata2
• With some simplifying assumptions about aircraft speeds, however, we can consider
it more similar to a timed automata3, a special case of the former

• Avoids the need to model dynamics using differential equations

2
Henzinger, “The theory of hybrid automata”.

3
Alur and Dill, “A theory of timed automata”.

8/35 schultz.w@northeastern.edu

Formalizing the Merging Protocol

• The protocol can be viewed as a hybrid automata2
• With some simplifying assumptions about aircraft speeds, however, we can consider
it more similar to a timed automata3, a special case of the former

• Avoids the need to model dynamics using differential equations

2
Henzinger, “The theory of hybrid automata”.

3
Alur and Dill, “A theory of timed automata”.

8/35 schultz.w@northeastern.edu

Modeling the Merging Protocol in TLA+

• TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

• Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks

4

• Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

• Choice of TLA+ primarily influenced by its high degree of expressivity, our familiarity
with it, and its automated verification tools.

4
Leslie Lamport. Real time is really simple. In: Microsoft Research (2005), pp. 2005–30.

9/35 schultz.w@northeastern.edu

Modeling the Merging Protocol in TLA+

• TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

• Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks

4

• Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

• Choice of TLA+ primarily influenced by its high degree of expressivity, our familiarity
with it, and its automated verification tools.

4
Lamport, “Real time is really simple”.

9/35 schultz.w@northeastern.edu

Modeling the Merging Protocol in TLA+

• TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

• Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks

4

• Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

• Choice of TLA+ primarily influenced by its high degree of expressivity, our familiarity
with it, and its automated verification tools.

4
Lamport, “Real time is really simple”.

9/35 schultz.w@northeastern.edu

Modeling the Merging Protocol in TLA+

• TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

• Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks

4

• Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

• Choice of TLA+ primarily influenced by its high degree of expressivity, our familiarity
with it, and its automated verification tools.

4
Lamport, “Real time is really simple”.

9/35 schultz.w@northeastern.edu

Modeling the Protocol in TLA+

• Defining a system in TLA+ requires the definition of an initial state predicate and nextstate relation

• For example:

VARIABLE x

Init , x ∈ {0, 1, 2}
Next , ∃inc ∈ {1, 2} : x ′ = x + inc

Spec , Init ∧�[Next]x

10/35 schultz.w@northeastern.edu

Modeling the Protocol in TLA+

• Defining a system in TLA+ requires the definition of an initial state predicate and nextstate relation
• For example:

VARIABLE x

Init , x ∈ {0, 1, 2}
Next , ∃inc ∈ {1, 2} : x ′ = x + inc

Spec , Init ∧�[Next]x

10/35 schultz.w@northeastern.edu

Modeling the Protocol in TLA+

• Defining a system in TLA+ requires the definition of an initial state predicate and nextstate relation
• For example:

VARIABLE x

Init , x ∈ {0, 1, 2}
Next , ∃inc ∈ {1, 2} : x ′ = x + inc

Spec , Init ∧�[Next]x

10/35 schultz.w@northeastern.edu

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones
2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines

11/35 schultz.w@northeastern.edu

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones

2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines

11/35 schultz.w@northeastern.edu

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones
2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines

11/35 schultz.w@northeastern.edu

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones
2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines

11/35 schultz.w@northeastern.edu

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones
2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines

11/35 schultz.w@northeastern.edu

State Variables

Aircraft Dynamics
speed ∈ Node → N : aircraft’s initial speed

coordEntryTime ∈ Node → N : coordination zone entry time

coordLeaveAt ∈ Node → N : coordination zone exit time

schedLeaveAt ∈ Node → N : schedule zone exit time

entryLeaveAt ∈ Node → N : entry zone exit time

zoneStatus ∈ Node → Zone : current zone

Consensus Mechanism
leader ∈ Node → {True,False} : leader status

term ∈ Node → N : term number

arrivalTimes ∈ Node → (Node → N) : arrival time info known by each aircraft
zoneStatusInfo ∈ Node → (Node → Zone) : zone status info known by each aircraft
hbTimeout ∈ Node → (N ∪ {None}) : when next heartbeat from leader should occur
leaderTimeout ∈ Node → (N ∪ {None}) : when next election should occur

Real Time Clock
now ∈ N : current time

12/35 schultz.w@northeastern.edu

State Variables

Aircraft Dynamics
speed ∈ Node → N : aircraft’s initial speed

coordEntryTime ∈ Node → N : coordination zone entry time

coordLeaveAt ∈ Node → N : coordination zone exit time

schedLeaveAt ∈ Node → N : schedule zone exit time

entryLeaveAt ∈ Node → N : entry zone exit time

zoneStatus ∈ Node → Zone : current zone

Consensus Mechanism
leader ∈ Node → {True,False} : leader status

term ∈ Node → N : term number

arrivalTimes ∈ Node → (Node → N) : arrival time info known by each aircraft
zoneStatusInfo ∈ Node → (Node → Zone) : zone status info known by each aircraft

hbTimeout ∈ Node → (N ∪ {None}) : when next heartbeat from leader should occur
leaderTimeout ∈ Node → (N ∪ {None}) : when next election should occur

Real Time Clock
now ∈ N : current time

12/35 schultz.w@northeastern.edu

State Variables

Aircraft Dynamics
speed ∈ Node → N : aircraft’s initial speed

coordEntryTime ∈ Node → N : coordination zone entry time

coordLeaveAt ∈ Node → N : coordination zone exit time

schedLeaveAt ∈ Node → N : schedule zone exit time

entryLeaveAt ∈ Node → N : entry zone exit time

zoneStatus ∈ Node → Zone : current zone

Consensus Mechanism
leader ∈ Node → {True,False} : leader status

term ∈ Node → N : term number

arrivalTimes ∈ Node → (Node → N) : arrival time info known by each aircraft
zoneStatusInfo ∈ Node → (Node → Zone) : zone status info known by each aircraft

hbTimeout ∈ Node → (N ∪ {None}) : when next heartbeat from leader should occur
leaderTimeout ∈ Node → (N ∪ {None}) : when next election should occur

Real Time Clock
now ∈ N : current time

12/35 schultz.w@northeastern.edu

Environmental Parameters of Interest

HBInterval ∈ N : time between heartbeat messages sent by a primary

LeaderTimeout ∈ N : time an aircraft waits before running an election

coordDist ∈ N : coordination zone length

schedDist ∈ N : schedule zone length

entryDist ∈ N : entry zone length

13/35 schultz.w@northeastern.edu

Initial States

Init ,

Aircraft Dynamics



∧zoneStatus = [n ∈ Node 7→ “None”]
∧coordLeaveAt = [n ∈ Node 7→ 0]

∧schedLeaveAt = [n ∈ Node 7→ 0]

∧entryLeaveAt = [n ∈ Node 7→ 0]

∧speed ∈ [Node → MinInitSpeed ..MaxInitSpeed]
∧schedTime = [n ∈ Node 7→ 0]

∧schedUpdate = [n ∈ Node 7→ FALSE]

∧coordEntryTime ∈ [Node → 0,CoordEntrySepTime]

Consensus Mechanism



∧leader = [n ∈ Node 7→ FALSE]

∧arrivalTimes = [n ∈ Node 7→ [i ∈ Node 7→ None]]
∧zoneStatusInfo = [n ∈ Node 7→ [i ∈ Node 7→ “None”]]
∧hbTimeout = [n ∈ Node 7→ None]
∧leaderTimeout = [n ∈ Node 7→ None]
∧term = [n ∈ Node 7→ 0]

Real Time Clock

{
∧now = 0

14/35 schultz.w@northeastern.edu

Transition Relation

Next ,

Aircraft Dynamics


∨∃i ∈ Node : EnterCoordZone(i)
∨∃i ∈ Node : EnterSchedZone(i)
∨∃i ∈ Node : EnterEntryZone(i)
∨∃i ∈ Node : Exit(i)

Consensus Mechanism


∨∃i ∈ Node : BecomeLeader(i)
∨∃i ∈ Node : IncTerm(i)
∨∃i ∈ Node, sub ∈ SUBSET Node : BroadcastHB(i , sub)
∨∃i ∈ Node : ComputeSchedule(i)

Real Time Clock

{
∨Tick

15/35 schultz.w@northeastern.edu

Modeling Real Time

• Current time is modeled with an explicit variable, now

• The Tick action advances the clock by some discrete increment, subject to
preconditions

• The general form of the Tick action is as follows:

Tick ,
∃d ∈ DiscreteTime :

∧ TimerConds
∧ now ′ = now + d

• DiscreteTime is the set of possible clock increment values the clock can take, and
TimerConds are preconditions that prevent the clock from ticking past a deadline e.g.

∀i ∈ Node : (hbTimeout [i] 6= None)⇒ (now + d ≤ hbTimeout [i])

16/35 schultz.w@northeastern.edu

Modeling Real Time

• Current time is modeled with an explicit variable, now
• The Tick action advances the clock by some discrete increment, subject to
preconditions

• The general form of the Tick action is as follows:

Tick ,
∃d ∈ DiscreteTime :

∧ TimerConds
∧ now ′ = now + d

• DiscreteTime is the set of possible clock increment values the clock can take, and
TimerConds are preconditions that prevent the clock from ticking past a deadline e.g.

∀i ∈ Node : (hbTimeout [i] 6= None)⇒ (now + d ≤ hbTimeout [i])

16/35 schultz.w@northeastern.edu

Modeling Real Time

• Current time is modeled with an explicit variable, now
• The Tick action advances the clock by some discrete increment, subject to
preconditions

• The general form of the Tick action is as follows:

Tick ,
∃d ∈ DiscreteTime :

∧ TimerConds
∧ now ′ = now + d

• DiscreteTime is the set of possible clock increment values the clock can take, and
TimerConds are preconditions that prevent the clock from ticking past a deadline e.g.

∀i ∈ Node : (hbTimeout [i] 6= None)⇒ (now + d ≤ hbTimeout [i])

16/35 schultz.w@northeastern.edu

Modeling Real Time

• Current time is modeled with an explicit variable, now
• The Tick action advances the clock by some discrete increment, subject to
preconditions

• The general form of the Tick action is as follows:

Tick ,
∃d ∈ DiscreteTime :

∧ TimerConds
∧ now ′ = now + d

• DiscreteTime is the set of possible clock increment values the clock can take, and
TimerConds are preconditions that prevent the clock from ticking past a deadline e.g.

∀i ∈ Node : (hbTimeout [i] 6= None)⇒ (now + d ≤ hbTimeout [i])

16/35 schultz.w@northeastern.edu

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

17/35 schultz.w@northeastern.edu

Parametric Verification with the TLC Model Checker

• Goal: semi-automated way to discover parameter values for which protocol satisfies
some property

• Idea is to use the model checker to verify discretized parameter regions

• Visualize the safe and unsafe regions of the parameter space

18/35 schultz.w@northeastern.edu

Parametric Verification with the TLC Model Checker

• Goal: semi-automated way to discover parameter values for which protocol satisfies
some property

• Idea is to use the model checker to verify discretized parameter regions

• Visualize the safe and unsafe regions of the parameter space

18/35 schultz.w@northeastern.edu

Parametric Verification with the TLC Model Checker

• Goal: semi-automated way to discover parameter values for which protocol satisfies
some property

• Idea is to use the model checker to verify discretized parameter regions

• Visualize the safe and unsafe regions of the parameter space

18/35 schultz.w@northeastern.edu

Methodology

• Consider the system as a parameterized specification S (k1, . . . , kn) for parameters
ki ∈ N

• For a given property P , check

S (k1, . . . , kn) � P

over a range of numeric parameter values (k1, . . . , kn) ∈ K1 × · · · ×Kn for finite

domains Ki ⊆ N.
• Initially focused on examining 2D parameter spaces, with bounded time

• For all parameters k1, . . . , kn , vary two distinct parameters i and j and fix the rest
• Place an upper bound on the clock value now

19/35 schultz.w@northeastern.edu

Methodology

• Consider the system as a parameterized specification S (k1, . . . , kn) for parameters
ki ∈ N

• For a given property P , check

S (k1, . . . , kn) � P

over a range of numeric parameter values (k1, . . . , kn) ∈ K1 × · · · ×Kn for finite

domains Ki ⊆ N.

• Initially focused on examining 2D parameter spaces, with bounded time

• For all parameters k1, . . . , kn , vary two distinct parameters i and j and fix the rest
• Place an upper bound on the clock value now

19/35 schultz.w@northeastern.edu

Methodology

• Consider the system as a parameterized specification S (k1, . . . , kn) for parameters
ki ∈ N

• For a given property P , check

S (k1, . . . , kn) � P

over a range of numeric parameter values (k1, . . . , kn) ∈ K1 × · · · ×Kn for finite

domains Ki ⊆ N.
• Initially focused on examining 2D parameter spaces, with bounded time

• For all parameters k1, . . . , kn , vary two distinct parameters i and j and fix the rest
• Place an upper bound on the clock value now

19/35 schultz.w@northeastern.edu

Methodology

• Consider the system as a parameterized specification S (k1, . . . , kn) for parameters
ki ∈ N

• For a given property P , check

S (k1, . . . , kn) � P

over a range of numeric parameter values (k1, . . . , kn) ∈ K1 × · · · ×Kn for finite

domains Ki ⊆ N.
• Initially focused on examining 2D parameter spaces, with bounded time

• For all parameters k1, . . . , kn , vary two distinct parameters i and j and fix the rest

• Place an upper bound on the clock value now

19/35 schultz.w@northeastern.edu

Methodology

• Consider the system as a parameterized specification S (k1, . . . , kn) for parameters
ki ∈ N

• For a given property P , check

S (k1, . . . , kn) � P

over a range of numeric parameter values (k1, . . . , kn) ∈ K1 × · · · ×Kn for finite

domains Ki ⊆ N.
• Initially focused on examining 2D parameter spaces, with bounded time

• For all parameters k1, . . . , kn , vary two distinct parameters i and j and fix the rest
• Place an upper bound on the clock value now

19/35 schultz.w@northeastern.edu

Preliminary Verification Results

• Focused on checking LeaderTimeout vs. HBInterval parameter region:

• LeaderTimeout : [200, 1200], step = 20
• HBInterval : [200, 900], step = 20

• coordDist : 1000
• schedDist : 1000
• entryDist : 1000
• CoordEntrySepTime: 0
• MaxNow : 4000
• Node: {a1, a2, a3}

• Invariant checked:

NoCollisions ,∀i , j ∈ Node :

¬(∧ zoneStatus[i] = “Entry”
∧ zoneStatus[j] = “Entry”
∧ entryLeaveAt [i] = entryLeaveAt [j]
∧ i 6= j)

20/35 schultz.w@northeastern.edu

Preliminary Verification Results

• Focused on checking LeaderTimeout vs. HBInterval parameter region:
• LeaderTimeout : [200, 1200], step = 20
• HBInterval : [200, 900], step = 20

• coordDist : 1000
• schedDist : 1000
• entryDist : 1000
• CoordEntrySepTime: 0
• MaxNow : 4000
• Node: {a1, a2, a3}

• Invariant checked:

NoCollisions ,∀i , j ∈ Node :

¬(∧ zoneStatus[i] = “Entry”
∧ zoneStatus[j] = “Entry”
∧ entryLeaveAt [i] = entryLeaveAt [j]
∧ i 6= j)

20/35 schultz.w@northeastern.edu

Preliminary Verification Results

• Focused on checking LeaderTimeout vs. HBInterval parameter region:
• LeaderTimeout : [200, 1200], step = 20
• HBInterval : [200, 900], step = 20
• coordDist : 1000
• schedDist : 1000
• entryDist : 1000
• CoordEntrySepTime: 0
• MaxNow : 4000
• Node: {a1, a2, a3}

• Invariant checked:

NoCollisions ,∀i , j ∈ Node :

¬(∧ zoneStatus[i] = “Entry”
∧ zoneStatus[j] = “Entry”
∧ entryLeaveAt [i] = entryLeaveAt [j]
∧ i 6= j)

20/35 schultz.w@northeastern.edu

Preliminary Verification Results

• Focused on checking LeaderTimeout vs. HBInterval parameter region:
• LeaderTimeout : [200, 1200], step = 20
• HBInterval : [200, 900], step = 20
• coordDist : 1000
• schedDist : 1000
• entryDist : 1000
• CoordEntrySepTime: 0
• MaxNow : 4000
• Node: {a1, a2, a3}

• Invariant checked:

NoCollisions ,∀i , j ∈ Node :

¬(∧ zoneStatus[i] = “Entry”
∧ zoneStatus[j] = “Entry”
∧ entryLeaveAt [i] = entryLeaveAt [j]
∧ i 6= j)

20/35 schultz.w@northeastern.edu

Preliminary Verification Results

200 400 600 800 1000 1200
LeaderTimeout

200

300

400

500

600

700

800

900

HB
In

te
rv

al

CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
MaxNow=4000
MaxSpeed=2
MinInitSpeed=1
MinSpeed=1
Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

Invariant: NoCollisions

Figure: Verification results for LeaderTimeout vs. HBInterval
21/35 schultz.w@northeastern.edu

Preliminary Verification Results

200 400 600 800 1000 1200
LeaderTimeout

200

300

400

500

600

700

800

900

HB
In

te
rv

al

CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
MaxNow=4000
MaxSpeed=2
MinInitSpeed=1
MinSpeed=1
Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

Invariant: NoCollisions

• How to understand this plot?

22/35 schultz.w@northeastern.edu

Preliminary Verification Results

200 400 600 800 1000 1200
LeaderTimeout

200

300

400

500

600

700

800

900

HB
In

te
rv

al

CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
MaxNow=4000
MaxSpeed=2
MinInitSpeed=1
MinSpeed=1
Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

Invariant: NoCollisions

• Aircraft are only elected in the coordination zone, so they have a limited window for
election i.e. coordDist/initSpeed = 1000

22/35 schultz.w@northeastern.edu

Preliminary Verification Results

200 400 600 800 1000 1200
LeaderTimeout

200

300

400

500

600

700

800

900

HB
In

te
rv

al

CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
MaxNow=4000
MaxSpeed=2
MinInitSpeed=1
MinSpeed=1
Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

Invariant: NoCollisions

• Moreover, if more than one election occurs in the coordination zone, this leader
takeover pushes back when the first round of heartbeats are sent

• If a leader cannot complete two rounds of heartbeats before aircraft enter the entry

zone, may lead to inconsistent schedules

23/35 schultz.w@northeastern.edu

Preliminary Verification Results

200 400 600 800 1000 1200
LeaderTimeout

200

300

400

500

600

700

800

900

HB
In

te
rv

al

CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
MaxNow=4000
MaxSpeed=2
MinInitSpeed=1
MinSpeed=1
Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

Invariant: NoCollisions

• Moreover, if more than one election occurs in the coordination zone, this leader
takeover pushes back when the first round of heartbeats are sent

• If a leader cannot complete two rounds of heartbeats before aircraft enter the entry

zone, may lead to inconsistent schedules

23/35 schultz.w@northeastern.edu

Fitting a Model

Parametric inequality for avoiding collisions:

2 ·H + NL · L ≤
coordDist + schedDist

initSpeed

24/35 schultz.w@northeastern.edu

Fitting a Model

Parametric inequality for avoiding collisions:

2 ·H + NL · L ≤
coordDist + schedDist

initSpeed

where

L = LeaderTimeout
H = HBInterval

NL =

⌊
Tcoord

L

⌋
and

Tcoord =
coordDist
initSpeed

24/35 schultz.w@northeastern.edu

Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in)
2 ·H + NL · L ≤

coordDist + schedDist
initSpeed

where

L = LeaderTimeout
H = HBInterval

NL =

⌊
coordDist

initSpeed · L

⌋

24/35 schultz.w@northeastern.edu

Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in again)
2 ·H +

⌊
coordDist

initSpeed · L

⌋
· L ≤ coordDist + schedDist

initSpeed

where

L = LeaderTimeout
H = HBInterval

24/35 schultz.w@northeastern.edu

Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in again)
2 ·H +

⌊
coordDist

initSpeed · L

⌋
· L ≤ coordDist + schedDist

initSpeed

We can plot this function for some simple parameters.

24/35 schultz.w@northeastern.edu

Fitting a Model

2 ·H +

⌊
coordDist

initSpeed · L

⌋
· L ≤ coordDist + schedDist

initSpeed

0 200 400 600 800 1000

1000

1100

1200

1300

1400

1500

Figure: Sawtooth boundary function f (x) = 2000−
⌊
1000
x

⌋
· x

25/35 schultz.w@northeastern.edu

Fitting a Model

2 ·H +

⌊
coordDist

initSpeed · L

⌋
· L ≤ coordDist + schedDist

initSpeed

0 200 400 600 800 1000

1000

1100

1200

1300

1400

1500

Figure: Sawtooth boundary function f (x) = 2000−
⌊
1000
x

⌋
· x

25/35 schultz.w@northeastern.edu

Fitting a Model

• Overlaying a portion of this function onto the original plot, scaled appropriately:

200 400 600 800 1000 1200
LeaderTimeout

200

300

400

500

600

700

800

900

HB
In

te
rv

al

CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
MaxNow=4000
MaxSpeed=2
MinInitSpeed=1
MinSpeed=1
Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

Invariant: NoCollisions

Figure: Annotated verification results for LeaderTimeout vs. HBInterval

26/35 schultz.w@northeastern.edu

Fitting a Model

• Early demonstration that this approach can provide useful insights about system
behavior

• e.g. derive symbolic constraints from the discretized verification data
• Further verification results for more parameter ranges were generated, but not yet
analyzed in depth

27/35 schultz.w@northeastern.edu

Fitting a Model

• Early demonstration that this approach can provide useful insights about system
behavior

• e.g. derive symbolic constraints from the discretized verification data

• Further verification results for more parameter ranges were generated, but not yet
analyzed in depth

27/35 schultz.w@northeastern.edu

Fitting a Model

• Early demonstration that this approach can provide useful insights about system
behavior

• e.g. derive symbolic constraints from the discretized verification data
• Further verification results for more parameter ranges were generated, but not yet
analyzed in depth

27/35 schultz.w@northeastern.edu

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

28/35 schultz.w@northeastern.edu

Limitations

• Current method is approximate

• Only provides hints at what the safe regions are
• Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

• Model checking can be expensive

• Several minutes, up to hours, to generate large, fine-grained parameter ranges
• To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz

Intel Core i7 Macbook Pro.

29/35 schultz.w@northeastern.edu

Limitations

• Current method is approximate
• Only provides hints at what the safe regions are

• Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

• Model checking can be expensive

• Several minutes, up to hours, to generate large, fine-grained parameter ranges
• To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz

Intel Core i7 Macbook Pro.

29/35 schultz.w@northeastern.edu

Limitations

• Current method is approximate
• Only provides hints at what the safe regions are
• Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

• Model checking can be expensive

• Several minutes, up to hours, to generate large, fine-grained parameter ranges
• To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz

Intel Core i7 Macbook Pro.

29/35 schultz.w@northeastern.edu

Limitations

• Current method is approximate
• Only provides hints at what the safe regions are
• Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

• Model checking can be expensive

• Several minutes, up to hours, to generate large, fine-grained parameter ranges
• To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz

Intel Core i7 Macbook Pro.

29/35 schultz.w@northeastern.edu

Limitations

• Current method is approximate
• Only provides hints at what the safe regions are
• Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

• Model checking can be expensive
• Several minutes, up to hours, to generate large, fine-grained parameter ranges

• To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz

Intel Core i7 Macbook Pro.

29/35 schultz.w@northeastern.edu

Limitations

• Current method is approximate
• Only provides hints at what the safe regions are
• Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

• Model checking can be expensive
• Several minutes, up to hours, to generate large, fine-grained parameter ranges
• To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz

Intel Core i7 Macbook Pro.

29/35 schultz.w@northeastern.edu

Future Directions

• Explore symbolic techniques implemented by tools like IMITATOR 35 (similar to
HyTech

6
)

• Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol

• Automatic inference of parameter constraints from verification data
• Model checking optimizations:

• Binary edge search
• Boundary refinement
• Improved TLC support for these specific types of parameterized verification tasks

5
Étienne André. IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability. In: International Conference on Computer Aided Verification. Springer. 2021, pp. 552–565.

6
Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for hybrid systems. In: International Journal on Software Tools for Technology Transfer 1.1-2

(1997), pp. 110–122.
30/35 schultz.w@northeastern.edu

Future Directions

• Explore symbolic techniques implemented by tools like IMITATOR 35 (similar to
HyTech

6
)

• Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol

• Automatic inference of parameter constraints from verification data
• Model checking optimizations:

• Binary edge search
• Boundary refinement
• Improved TLC support for these specific types of parameterized verification tasks

5
André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

6
Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems”.

30/35 schultz.w@northeastern.edu

Future Directions

• Explore symbolic techniques implemented by tools like IMITATOR 35 (similar to
HyTech

6
)

• Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol

• Automatic inference of parameter constraints from verification data

• Model checking optimizations:

• Binary edge search
• Boundary refinement
• Improved TLC support for these specific types of parameterized verification tasks

5
André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

6
Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems”.

30/35 schultz.w@northeastern.edu

Future Directions

• Explore symbolic techniques implemented by tools like IMITATOR 35 (similar to
HyTech

6
)

• Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol

• Automatic inference of parameter constraints from verification data
• Model checking optimizations:

• Binary edge search
• Boundary refinement
• Improved TLC support for these specific types of parameterized verification tasks

5
André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

6
Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems”.

30/35 schultz.w@northeastern.edu

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

31/35 schultz.w@northeastern.edu

Related Work

• Uppaal7 and Kronos8, tools for standard timed automata verification

• Verification techniques for parametric timed automata9
• HyTech model checker10, developed in 1997, but no longer maintained
• Extensions of Uppaal to do parameter synthesis11
• IMITATOR

12
is a more recent tool developed over the last decade or so

• Using SMT solvers to verify autonomous vehicle coordination protocols13

7
Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In: Formal methods for the design of real-time systems (2004), pp. 200–236.

8
Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. Kronos: A model-checking tool for real-time systems. In: International Symposiumon Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer. 1998, pp. 298–302.

9
Alur and Dill, “A theory of timed automata”.

10
Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems”.

11
Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits Vaandrager. Linear parametric model checking of timed automata. In: The Journal of Logic and Algebraic Programming 52

(2002), pp. 183–220.

12
André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

13
Mikael Asplund. Automatically proving the correctness of vehicle coordination. In: ICT Express 4.1 (2018), pp. 51–54.

32/35 schultz.w@northeastern.edu

Related Work

• Uppaal7 and Kronos8, tools for standard timed automata verification
• Verification techniques for parametric timed automata9
• HyTech model checker10, developed in 1997, but no longer maintained
• Extensions of Uppaal to do parameter synthesis11
• IMITATOR

12
is a more recent tool developed over the last decade or so

• Using SMT solvers to verify autonomous vehicle coordination protocols13

7
Behrmann, David, and Larsen, “A tutorial on uppaal”.

8
Bozga, Daws, Maler, Olivero, Tripakis, and Yovine, “Kronos: A model-checking tool for real-time systems”.

9
Alur and Dill, “A theory of timed automata”.

10
Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems”.

11
Hune, Romijn, Stoelinga, and Vaandrager, “Linear parametric model checking of timed automata”.

12
André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

13
Asplund, “Automatically proving the correctness of vehicle coordination”.

32/35 schultz.w@northeastern.edu

Related Work

• Uppaal7 and Kronos8, tools for standard timed automata verification
• Verification techniques for parametric timed automata9
• HyTech model checker10, developed in 1997, but no longer maintained
• Extensions of Uppaal to do parameter synthesis11
• IMITATOR

12
is a more recent tool developed over the last decade or so

• Using SMT solvers to verify autonomous vehicle coordination protocols13

7
Behrmann, David, and Larsen, “A tutorial on uppaal”.

8
Bozga, Daws, Maler, Olivero, Tripakis, and Yovine, “Kronos: A model-checking tool for real-time systems”.

9
Alur and Dill, “A theory of timed automata”.

10
Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems”.

11
Hune, Romijn, Stoelinga, and Vaandrager, “Linear parametric model checking of timed automata”.

12
André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

13
Asplund, “Automatically proving the correctness of vehicle coordination”.

32/35 schultz.w@northeastern.edu

Questions?

33/35 schultz.w@northeastern.edu

References I

Alur, Rajeev and David L Dill. A theory of timed automata. In: Theoretical computer science
126.2 (1994), pp. 183–235.

André, Étienne. IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability. In:International Conference on Computer Aided Verification. Springer. 2021, pp. 552–565.
Asplund, Mikael. Automatically proving the correctness of vehicle coordination. In: ICTExpress 4.1 (2018), pp. 51–54.
Behrmann, Gerd, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In: Formalmethods for the design of real-time systems (2004), pp. 200–236.
Bozga, Marius, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and

Sergio Yovine. Kronos: A model-checking tool for real-time systems. In: InternationalSymposium on Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer. 1998,
pp. 298–302.

34/35 schultz.w@northeastern.edu

References II

Consiglio, María and Muñoz, César and Hagen, George and Narkawicz, Anthony and

Balachandran, Swee. ICAROUS: Integrated configurable algorithms for reliable

operations of unmanned systems. In: 2016 IEEE/AIAA 35th Digital Avionics SystemsConference (DASC). IEEE. 2016, pp. 1–5.
Henzinger, Thomas A. The theory of hybrid automata. In: Verification of digital and hybridsystems. Springer, 2000, pp. 265–292.
Henzinger, Thomas A, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for

hybrid systems. In: International Journal on Software Tools for Technology Transfer 1.1-2
(1997), pp. 110–122.

Hune, Thomas, Judi Romijn, Mariëlle Stoelinga, and Frits Vaandrager. Linear parametric

model checking of timed automata. In: The Journal of Logic and Algebraic Programming 52
(2002), pp. 183–220.

Lamport, Leslie. Real time is really simple. In: Microsoft Research (2005), pp. 2005–30.

35/35 schultz.w@northeastern.edu

	ICAROUS Distributed Merging Protocol
	Formally Specifying the Merging Protocol
	Parametric Verification
	Limitations and Future Directions
	Related Work
	Questions
	References
	References

