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The ICAROUS System

® /CAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)'

1 Consiglio, Marfa and Mufioz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee. ICAROUS: Integrated configurable algorithms for reliable operations of
unmanned systems. In: 2076 /. vionics Systems Conf nce (DASC). |EEE. 2016, pp. 1-5.
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The ICAROUS System

® /CAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)'

¢ Includes several software modules for high assurance operation and collision
avoidance

® Has a distributed algorithm for merging a set of aircraft through an intersection in a
decentralized fashion

1 Consiglio, Maria and Mufioz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee, “ICAROUS: Integrated configurable algorithms for reliable operations of
unmanned systems”.
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Overview of the ICAROUS Merging Protocol

Set of n aircraft {ai,. .., a, } that want to merge through a designated intersection,
specified by a point in the airspace

e Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

Each aircraft has an earliest and latest arrival time, R; € Rt and D; € R™, respectively
® Must compute schedule of arrival times T' = (T4, ..., T,,) such that

VZE{l,,n}RzSTZSDZ—P

for some separation time P.
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Overview of the ICAROUS Merging Protocol

® Newest version of the protocol uses a simplified consensus mechanism coordinating
the merging and schedule computation

® Designated radial zones expanding outward from the intersection point for aircraft to
execute various behaviors needed to achieve the necessary goals

Coordination

Schedule

section point
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Formalizing the ICAROUS Merging Protocol

® The merging protocol is a real-time system with both continuous and discrete
dynamics, and its behavior depends on several environmental parameters



Formalizing the ICAROUS Merging Protocol

® The merging protocol is a real-time system with both continuous and discrete
dynamics, and its behavior depends on several environmental parameters

¢ Goal: formalize an abstract model of the protocol that allows us to understand under
what environmental parameters the system satisfies some given property.
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® The protocol can be viewed as a hybrid automata?®

2 Thomas A Henzinger. The theory of hybrid automata. In: Verification of digital and hybrid systems. Springer, 2000, pp. 265-292.
3 Rajeev Alur and David L Dill. A theory of timed automata. In: Theoretical computer science 126.2 (1994), pp. 183-235.
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Formalizing the Merging Protocol

* The protocol can be viewed as a hybrid automata®

e With some simplifying assumptions about aircraft speeds, however, we can consider
it more similar to a timed automata®, a special case of the former

¢ Avoids the need to model dynamics using differential equations

2 Henzinger, “The theory of hybrid automata”.
3 Alur and Dill, “A theory of timed automata”.
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e TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

4 Leslie Lamport. Real time is really simple. In: Microsoft Research (2005), pp. 2005-30.
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Modeling the Merging Protocol in TLA+

e TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

® Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks*

® Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

® Choice of TLA+ primarily influenced by its high degree of expressivity, our familiarity
with it, and its automated verification tools.

4 Lamport, “Real time is really simple”.
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Modeling the Protocol in TLA+

® Defining a system in TLA+ requires the definition of an initial state predicate and next
state relation

e For example:

VARIABLE z
Init & z € {0,1,2}
Neat = Jinc € {1,2} : 2’ =z + inc
Spec £ Init A O[Next],
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Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones

2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines
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Aircraft Dynamics
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coordEntryTime € Node — N : coordination zone entry time
coordLeaveAt € Node — N : coordination zone exit time
schedLeaveAt € Node — N : schedule zone exit time
entryLeaveAt € Node — N : entry zone exit time

zoneStatus € Node — Zone : currentzone



State Variables

Aircraft Dynamics

speed € Node — N : aircraft’s initial speed

coordEntryTime € Node — N : coordination zone entry time
coordLeaveAt € Node — N : coordination zone exit time
schedLeaveAt € Node — N : schedule zone exit time
entryLeaveAt € Node — N : entry zone exit time

zoneStatus € Node — Zone : currentzone

Consensus Mechanism

leader € Node — { True, False} : leader status

term € Node — N : term number

arrivalTimes € Node — (Node — N) : arrival time info known by each aircraft
zoneStatusInfo € Node — (Node — Zone) : zone status info known by each aircraft
hbTimeout € Node — (N U {None}) : when next heartbeat from leader should occur
leader Timeout € Node — (N U {None}) : when next election should occur



State Variables

Aircraft Dynamics

speed € Node — N : aircraft’s initial speed

coordEntryTime € Node — N : coordination zone entry time
coordLeaveAt € Node — N : coordination zone exit time
schedLeaveAt € Node — N : schedule zone exit time
entryLeaveAt € Node — N : entry zone exit time

zoneStatus € Node — Zone : currentzone

Consensus Mechanism

leader € Node — { True, False} : leader status

term € Node — N : term number

arrivalTimes € Node — (Node — N) : arrival time info known by each aircraft
zoneStatusInfo € Node — (Node — Zone) : zone status info known by each aircraft
hbTimeout € Node — (N U {None}) : when next heartbeat from leader should occur
leader Timeout € Node — (N U {None}) : when next election should occur

Real Time Clock

now € N: currenttime



Environmental Parameters of Interest

HBInterval € N : time between heartbeat messages sent by a primary
LeaderTimeout € N : time an aircraft waits before running an election
coordDist € N : coordination zone length

schedDist € N : schedule zone length

entryDist € N : entry zone length



Initial States

Init &

AzoneStatus = [n € Node — “None”]

AcoordLeaveAt = [n € Node — 0]

NschedLeaveAt = [n € Node — 0]

NentryLeaveAt = [n € Node +— 0]

Aspeed € [Node — MinInitSpeed.. MazInitSpeed]
AschedTime = [n € Node — 0]

NschedUpdate = [n € Node — FALSE]
AcoordEntryTime € [Node — 0, CoordEntrySep Time]

Aircraft Dynamics

Aleader = [n € Node — FALSE]

AarriwalTimes = [n € Node — [i € Node — None]]
NzoneStatusInfo = [n € Node — [i € Node — “None”]]
AhbTimeout = [n € Node — None]

AleaderTimeout = [n € Node — None]

Aterm = [n € Node — 0]

Consensus Mechanism

Real Time Clock{ Anow = 0



Transition Relation

Next &

Vv3i € Node : EnterCoordZone(t)
Vv3i € Node : EnterSchedZone(i)
V3i € Node : EnterEntryZone(1)
Vv3i € Node : Exit(i)

Aircraft Dynamics

Vv3i € Node : BecomeLeader(i)

Vv3i € Node : IncTerm(z)

Vv3i € Node, sub € SUBSET Node : BroadcastHB (i, sub)
v3i € Node : ComputeSchedule (1)

Consensus Mechanism

Real Time Clock { V Tick
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Modeling Real Time

e Current time is modeled with an explicit variable, now

The Tick action advances the clock by some discrete increment, subject to
preconditions

¢ The general form of the T'ick action is as follows:

Tick &
dd € DiscreteTime :
A TimerConds

A now’ = now + d

Discrete Time is the set of possible clock increment values the clock can take, and
TimerConds are preconditions that prevent the clock from ticking past a deadline e.g.

Vi € Node : (hbTimeout[i] # None) = (now + d < hbTimeout[i])
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® Goal: semi-automated way to discover parameter values for which protocol satisfies
some property
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Parametric Verification with the TLC Model Checker

® Goal: semi-automated way to discover parameter values for which protocol satisfies
some property
® |dea is to use the model checker to verify discretized parameter regions
® Visualize the safe and unsafe regions of the parameter space
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Methodology

e Consider the system as a parameterized specification S(ki, ..., k,) for parameters
ki € N
® For a given property P, check

S(ki,....kp) E P

over a range of numeric parameter values (ki,...,k,) € K; x --- x K, for finite
domains K; C N.
e |nitially focused on examining 2D parameter spaces, with bounded time

® For all parameters k;, ..., ky, vary two distinct parameters i and j and fix the rest
® Place an upper bound on the clock value now
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Preliminary Verification Results

® Focused on checking LeaderTimeout vs. HBInterval parameter region:
® LeaderTimeout: [200,1200], step = 20

HBInterval: [200,900], step = 20

coordDist: 1000

schedDist: 1000

entryDist: 1000

CoordEntrySep Time: 0

MaxNow: 4000

Node: {a1, az, a3}

® |nvariant checked:

NoCollisions 2Yi,j € Node :
—( A zoneStatus[i] = “Entry”
A zoneStatus[j] = “Entry”

A entryLeaveAt[i] = entryLeaveAt[]
Ni )



Preliminary Verification Results

Invariant: NoCollisions
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Figure: Verification results for LeaderTimeout vs. HBInterval
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Invariant: NoCollisions
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® How to understand this plot?



Preliminary Verification Results

Invariant: NoCollisions
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LeaderTimeout

e Aircraft are only elected in the coordination zone, so they have a limited window for
election i.e. coordDist/initSpeed = 1000
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Preliminary Verification Results

Invariant: NoCollisions

HBInterval

CONSTANTS
CoordEntrySepTime=0
i 1

MinSpeed=1
Node={v1,v2,v3}

coordDist=1000
entryDist=1000
schedDist=1000

200 400 600 800 1000 1200
LeaderTimeout

® Moreover, if more than one election occurs in the coordination zone, this leader
takeover pushes back when the first round of heartbeats are sent

¢ |f a leader cannot complete two rounds of heartbeats before aircraft enter the entry
zone, may lead to inconsistent schedules
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Parametric inequality for avoiding collisions:

coordDist + schedDist

2-H+N;-L<
TR initSpeed

where

L = LeaderTimeout

H = HBInterval
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Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in)

coordDist + schedDist

2-H+ N, -L<
TR initSpeed

where

L = LeaderTimeout
H = HBInterval

B coordDist
| initSpeed - L



Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in again)

9. H 4+ coordD1ist coordDist + schedDist
initSpeed - L - imnitSpeed
where
L = LeaderTimeout

H = HBlInterval



Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in again)

coordD1ist coordDist + schedDist
2-H4+ | ——F|-L<

initSpeed - L imnitSpeed

We can plot this function for some simple parameters.
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Fitting a Model

2-H+

{ coordDist J - coordDist + schedDist

initSpeed - L initSpeed
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Figure: Sawtooth boundary function f(z) = 2000 — | 22| . z
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Fitting a Model

e Overlaying a portion of this function onto the original plot, scaled appropriately:

Invariant: NoCollisions
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Figure: Annotated verification results for LeaderTimeout vs. HBInterval
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Fitting a Model

e Early demonstration that this approach can provide useful insights about system
behavior
® e.g. derive symbolic constraints from the discretized verification data
e Further verification results for more parameter ranges were generated, but not yet
analyzed in depth
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Limitations

e Current method is approximate

® Only provides hints at what the safe regions are

® Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

® Model checking can be expensive

® Several minutes, up to hours, to generate large, fine-grained parameter ranges

® To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz
Intel Core i7 Macbook Pro.



Future Directions

* Explore symbolic techniques implemented by tools like IMITATOR 3° (similar to
HyTech®)

5 Etienne André. IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability. In: /nternational Conference on Computer Aided Verification. Springer. 2021, pp. 552-565.

6 Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for hybrid systems. In: International Journal on Software Tools for Technology Transfer 1.1-2
(1997), pp. 110-122.
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Future Directions

* Explore symbolic techniques implemented by tools like IMITATOR 3° (similar to
HyTech®)
® Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol
e Automatic inference of parameter constraints from verification data
® Model checking optimizations:

® Binary edge search
® Boundary refinement
® Improved TLC support for these specific types of parameterized verification tasks

5 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.
6 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".
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e Uppaal’ and Kronos?, tools for standard timed automata verification

7 Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In: Formal methods for the design of real-time systems (2004), pp. 200-236.

8 Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. Kronos: A model-checking tool for real-time systems. In: International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer. 1998, pp. 298-302.

9 Alur and Dill, “A theory of timed automata”.
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11 Thomas Hune, Judi Romijn, Mariélle Stoelinga, and Frits Vaandrager. Linear parametric model checking of timed automata. In: The Journal of Logic and Algebraic Programming 52
(2002), pp. 183-220.
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Related Work

e Uppaal’ and Kronos?, tools for standard timed automata verification
e Verification techniques for parametric timed automata®

® HyTech model checker'?, developed in 1997, but no longer maintained
e Extensions of Uppaal to do parameter synthesis'"
® IMITATOR'? is a more recent tool developed over the last decade or so

® Using SMT solvers to verify autonomous vehicle coordination protocols'3

7 Behrmann, David, and Larsen, “A tutorial on uppaal”.
8 Bozga, Daws, Maler, Olivero, Tripakis, and Yovine, “Kronos: A model-checking tool for real-time systems".
9 Alur and Dill, “A theory of timed automata”.

10 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

1 Hune, Romijn, Stoelinga, and Vaandrager, “Linear parametric model checking of timed automata”.

12 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

13 Asplund, “Automatically proving the correctness of vehicle coordination”.
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