erification of the
ol for Autonomous

ym Schultz?, Swee Balachandran?,

Formal Methods Group
Northeastern University
schultz.w@northeastern.edu

2 National Institute of Aerospace
NASA Langley

sweewarman.balachandran@nasa.gov

Aug 2021 @ NASA Langley
Intern exit presentation

Outline

ICAROUS Distributed Merging Protocol

Formally Specifying the Merging Protocol

Parametric Verification

Limitations and Future Directions

Related Work

Outline

ICAROUS Distributed Merging Protocol

The ICAROUS System

® /CAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)'

1 Consiglio, Marfa and Mufioz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee. ICAROUS: Integrated configurable algorithms for reliable operations of
unmanned systems. In: 2076 /. vionics Systems Conf nce (DASC). |EEE. 2016, pp. 1-5.

The ICAROUS System

® /CAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)'

¢ Includes several software modules for high assurance operation and collision
avoidance

1 Consiglio, Maria and Mufioz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee, “ICAROUS: Integrated configurable algorithms for reliable operations of
unmanned systems”.

The ICAROUS System

® /CAROUS (Independent Configurable Architecture for Reliable Operations of Unmanned
Systems) is a software architecture for unmanned aircraft systems (UAS)'

¢ Includes several software modules for high assurance operation and collision
avoidance

® Has a distributed algorithm for merging a set of aircraft through an intersection in a
decentralized fashion

1 Consiglio, Maria and Mufioz, César and Hagen, George and Narkawicz, Anthony and Balachandran, Swee, “ICAROUS: Integrated configurable algorithms for reliable operations of
unmanned systems”.

Overview of the ICAROUS Merging Protocol

e Set of n aircraft {ay, ..., a,} that want to merge through a designated intersection,
specified by a point in the airspace

Overview of the ICAROUS Merging Protocol

e Set of n aircraft {ay, ..., a,} that want to merge through a designated intersection,
specified by a point in the airspace

e Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

Overview of the ICAROUS Merging Protocol

e Set of n aircraft {ay, ..., a,} that want to merge through a designated intersection,
specified by a point in the airspace

e Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

e Each aircraft has an earliest and latest arrival time, R; € R* and D; € R, respectively

Overview of the ICAROUS Merging Protocol

Set of n aircraft {ai,. .., a, } that want to merge through a designated intersection,
specified by a point in the airspace

e Coordination occurs between the aircraft so that a schedule for when aircraft leave
the intersection can be computed

Each aircraft has an earliest and latest arrival time, R; € Rt and D; € R™, respectively
® Must compute schedule of arrival times T' = (T4, ..., T,,) such that

VZE{l,,n}RzSTZSDZ—P

for some separation time P.

Overview of the ICAROUS Merging Protocol

® Newest version of the protocol uses a simplified consensus mechanism coordinating
the merging and schedule computation

Overview of the ICAROUS Merging Protocol

® Newest version of the protocol uses a simplified consensus mechanism coordinating
the merging and schedule computation

® Designated radial zones expanding outward from the intersection point for aircraft to
execute various behaviors needed to achieve the necessary goals

Coordination

Schedule

section point

Outline

Formally Specifying the Merging Protocol

Formalizing the ICAROUS Merging Protocol

® The merging protocol is a real-time system with both continuous and discrete
dynamics, and its behavior depends on several environmental parameters

Formalizing the ICAROUS Merging Protocol

® The merging protocol is a real-time system with both continuous and discrete
dynamics, and its behavior depends on several environmental parameters

¢ Goal: formalize an abstract model of the protocol that allows us to understand under
what environmental parameters the system satisfies some given property.

Formalizing the Merging Protocol

® The protocol can be viewed as a hybrid automata?®

2 Thomas A Henzinger. The theory of hybrid automata. In: Verification of digital and hybrid systems. Springer, 2000, pp. 265-292.
3 Rajeev Alur and David L Dill. A theory of timed automata. In: Theoretical computer science 126.2 (1994), pp. 183-235.

Formalizing the Merging Protocol

* The protocol can be viewed as a hybrid automata®

e With some simplifying assumptions about aircraft speeds, however, we can consider
it more similar to a timed automata®, a special case of the former

2 Henzinger, “The theory of hybrid automata”.
3 Alur and Dill, “A theory of timed automata”.

Formalizing the Merging Protocol

* The protocol can be viewed as a hybrid automata®

e With some simplifying assumptions about aircraft speeds, however, we can consider
it more similar to a timed automata®, a special case of the former

¢ Avoids the need to model dynamics using differential equations

2 Henzinger, “The theory of hybrid automata”.
3 Alur and Dill, “A theory of timed automata”.

Modeling the Merging Protocol in TLA+

e TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

4 Leslie Lamport. Real time is really simple. In: Microsoft Research (2005), pp. 2005-30.

Modeling the Merging Protocol in TLA+

e TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

® Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks*

4 Lamport, “Real time is really simple”.

Modeling the Merging Protocol in TLA+

e TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

® Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks*

® Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

4 Lamport, “Real time is really simple”.

Modeling the Merging Protocol in TLA+

e TLA+ (Temporal Logic of Actions) is a high level specification language built primarily
for specifying concurrent/distributed protocols, created by Leslie Lamport

® Not designed for real time verification, but can be extended in a straightforward
manner to model real time clocks*

® Has an associated explicit state model checker, TLC, for finite state verification of
temporal properties

® Choice of TLA+ primarily influenced by its high degree of expressivity, our familiarity
with it, and its automated verification tools.

4 Lamport, “Real time is really simple”.

Modeling the Protocol in TLA+

® Defining a system in TLA+ requires the definition of an initial state predicate and next
state relation

Modeling the Protocol in TLA+

® Defining a system in TLA+ requires the definition of an initial state predicate and next
state relation

e For example:

Modeling the Protocol in TLA+

® Defining a system in TLA+ requires the definition of an initial state predicate and next
state relation

e For example:

VARIABLE z
Init & z € {0,1,2}
Neat = Jinc € {1,2} : 2’ =z + inc
Spec £ Init A O[Next],

Components of the TLA+ Merging Specification

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones

2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones

2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

Components of the TLA+ Merging Specification

1. Aircraft dynamics: positions and velocities of aircraft, when they enter and exit zones

2. Consensus mechanism: logic for election of a leader aircraft and arrival time info
propagation

3. Schedule computation: Local computation of arrival schedules based on known
information

4. Real time clock: tracking current time and outstanding timers/deadlines

State Variables

Aircraft Dynamics

speed € Node — N : aircraft’s initial speed

coordEntryTime € Node — N : coordination zone entry time
coordLeaveAt € Node — N : coordination zone exit time
schedLeaveAt € Node — N : schedule zone exit time
entryLeaveAt € Node — N : entry zone exit time

zoneStatus € Node — Zone : currentzone

State Variables

Aircraft Dynamics

speed € Node — N : aircraft’s initial speed

coordEntryTime € Node — N : coordination zone entry time
coordLeaveAt € Node — N : coordination zone exit time
schedLeaveAt € Node — N : schedule zone exit time
entryLeaveAt € Node — N : entry zone exit time

zoneStatus € Node — Zone : currentzone

Consensus Mechanism

leader € Node — { True, False} : leader status

term € Node — N : term number

arrivalTimes € Node — (Node — N) : arrival time info known by each aircraft
zoneStatusInfo € Node — (Node — Zone) : zone status info known by each aircraft
hbTimeout € Node — (N U {None}) : when next heartbeat from leader should occur
leader Timeout € Node — (N U {None}) : when next election should occur

State Variables

Aircraft Dynamics

speed € Node — N : aircraft’s initial speed

coordEntryTime € Node — N : coordination zone entry time
coordLeaveAt € Node — N : coordination zone exit time
schedLeaveAt € Node — N : schedule zone exit time
entryLeaveAt € Node — N : entry zone exit time

zoneStatus € Node — Zone : currentzone

Consensus Mechanism

leader € Node — { True, False} : leader status

term € Node — N : term number

arrivalTimes € Node — (Node — N) : arrival time info known by each aircraft
zoneStatusInfo € Node — (Node — Zone) : zone status info known by each aircraft
hbTimeout € Node — (N U {None}) : when next heartbeat from leader should occur
leader Timeout € Node — (N U {None}) : when next election should occur

Real Time Clock

now € N: currenttime

Environmental Parameters of Interest

HBInterval € N : time between heartbeat messages sent by a primary
LeaderTimeout € N : time an aircraft waits before running an election
coordDist € N : coordination zone length

schedDist € N : schedule zone length

entryDist € N : entry zone length

Initial States

Init &

AzoneStatus = [n € Node — “None”]

AcoordLeaveAt = [n € Node — 0]

NschedLeaveAt = [n € Node — 0]

NentryLeaveAt = [n € Node +— 0]

Aspeed € [Node — MinInitSpeed.. MazInitSpeed]
AschedTime = [n € Node — 0]

NschedUpdate = [n € Node — FALSE]
AcoordEntryTime € [Node — 0, CoordEntrySep Time]

Aircraft Dynamics

Aleader = [n € Node — FALSE]

AarriwalTimes = [n € Node — [i € Node — None]]
NzoneStatusInfo = [n € Node — [i € Node — “None”]]
AhbTimeout = [n € Node — None]

AleaderTimeout = [n € Node — None]

Aterm = [n € Node — 0]

Consensus Mechanism

Real Time Clock{ Anow = 0

Transition Relation

Next &

Vv3i € Node : EnterCoordZone(t)
Vv3i € Node : EnterSchedZone(i)
V3i € Node : EnterEntryZone(1)
Vv3i € Node : Exit(i)

Aircraft Dynamics

Vv3i € Node : BecomeLeader(i)

Vv3i € Node : IncTerm(z)

Vv3i € Node, sub € SUBSET Node : BroadcastHB (i, sub)
v3i € Node : ComputeSchedule (1)

Consensus Mechanism

Real Time Clock { V Tick

Modeling Real Time

e Current time is modeled with an explicit variable, now

Modeling Real Time

e Current time is modeled with an explicit variable, now

® The Tick action advances the clock by some discrete increment, subject to
preconditions

Modeling Real Time

e Current time is modeled with an explicit variable, now

® The Tick action advances the clock by some discrete increment, subject to
preconditions

¢ The general form of the T'ick action is as follows:

Tick &
dd € DiscreteTime :
A TimerConds

A now’ = now + d

Modeling Real Time

e Current time is modeled with an explicit variable, now

The Tick action advances the clock by some discrete increment, subject to
preconditions

¢ The general form of the T'ick action is as follows:

Tick &
dd € DiscreteTime :
A TimerConds

A now’ = now + d

Discrete Time is the set of possible clock increment values the clock can take, and
TimerConds are preconditions that prevent the clock from ticking past a deadline e.g.

Vi € Node : (hbTimeout[i] # None) = (now + d < hbTimeout[i])

Outline

Parametric Verification

Parametric Verification with the TLC Model Checker

® Goal: semi-automated way to discover parameter values for which protocol satisfies
some property

Parametric Verification with the TLC Model Checker

® Goal: semi-automated way to discover parameter values for which protocol satisfies
some property
® |dea is to use the model checker to verify discretized parameter regions

Parametric Verification with the TLC Model Checker

® Goal: semi-automated way to discover parameter values for which protocol satisfies
some property
® |dea is to use the model checker to verify discretized parameter regions
® Visualize the safe and unsafe regions of the parameter space

Methodology

e Consider the system as a parameterized specification S(ki, ..., k,) for parameters
ki € N

Methodology

e Consider the system as a parameterized specification S(ki, ..., k,) for parameters
ki € N
® For a given property P, check

S(ki,....kp) E P

over a range of numeric parameter values (ki,...,k,) € K; x --- x K, for finite
domains K; C N.

Methodology

e Consider the system as a parameterized specification S(ki, ..., k,) for parameters
ki € N

® For a given property P, check
S(ki,...,k,)EP

over a range of numeric parameter values (ki,...,k,) € K; x --- x K, for finite
domains K; C N.

e |nitially focused on examining 2D parameter spaces, with bounded time

Methodology

e Consider the system as a parameterized specification S(ki, ..., k,) for parameters
ki € N
® For a given property P, check

S(ki,....kp) E P

over a range of numeric parameter values (ki,...,k,) € K; x --- x K, for finite
domains K; C N.
e |nitially focused on examining 2D parameter spaces, with bounded time
® For all parameters k;, ..., ky, vary two distinct parameters i and j and fix the rest

Methodology

e Consider the system as a parameterized specification S(ki, ..., k,) for parameters
ki € N
® For a given property P, check

S(ki,....kp) E P

over a range of numeric parameter values (ki,...,k,) € K; x --- x K, for finite
domains K; C N.
e |nitially focused on examining 2D parameter spaces, with bounded time

® For all parameters k;, ..., ky, vary two distinct parameters i and j and fix the rest
® Place an upper bound on the clock value now

Preliminary Verification Results

® Focused on checking LeaderTimeout vs. HBInterval parameter region:

Preliminary Verification Results

® Focused on checking LeaderTimeout vs. HBInterval parameter region:

® LeaderTimeout: [200,1200], step = 20
® [IBInterval: [200,900], step = 20

Preliminary Verification Results

® Focused on checking LeaderTimeout vs. HBInterval parameter region:
® LeaderTimeout: [200,1200], step = 20

HBInterval: [200,900], step = 20

coordDist: 1000

schedDist: 1000

entryDist: 1000

CoordEntrySep Time: 0

MaxNow: 4000

Node: {a1, az, a3}

Preliminary Verification Results

® Focused on checking LeaderTimeout vs. HBInterval parameter region:
® LeaderTimeout: [200,1200], step = 20

HBInterval: [200,900], step = 20

coordDist: 1000

schedDist: 1000

entryDist: 1000

CoordEntrySep Time: 0

MaxNow: 4000

Node: {a1, az, a3}

® |nvariant checked:

NoCollisions 2Yi,j € Node :
—(A zoneStatus[i] = “Entry”
A zoneStatus[j] = “Entry”

A entryLeaveAt[i] = entryLeaveAt[]
Ni)

Preliminary Verification Results

Invariant: NoCollisions

900 A
800 -
700 A
© i
B 600
7}
2
£
% 500 -
CONSTANTS
CoordEntrySepTime=0
MaxInitSpeed=1
400 - MaxNow=4000
MaxSpeed=2
MininitSpeed=1
MinSpeed=1
300 4 Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
200 1 schedDist=1000
. sepTime=1
200 400 600 800 1000 1200

LeaderTimeout

Figure: Verification results for LeaderTimeout vs. HBInterval

Preliminary Verification Results

Invariant: NoCollisions

900

800

700

HBInterval

CONSTANTS
Ce

MinSpeed=1
Node={v1,v2,v3}

coordDist=1000
entryDist=1000
schedDist=1000
sepTime=1

200 400 600 800 1000 1200
LeaderTimeout

® How to understand this plot?

Preliminary Verification Results

Invariant: NoCollisions

900
800
700
©
s 600
g
5
2 500
T CONSTANTS
% -
400
MinSpeed=1
300 Node={v1,v2,v3}
coordDist=1000
entryDist=1000
200 schedDist=1000
sepTime=1
200 400 600 800 1000 1200
LeaderTimeout

e Aircraft are only elected in the coordination zone, so they have a limited window for
election i.e. coordDist/initSpeed = 1000

Preliminary Verification Results

Invariant: NoCollisions

HBInterval

«
o
=3

CONSTANTS
CoordEntrySepTime=0

400
1
MinSpeed=1
300 Node={v1,v2,v3}
coordDist=1000
entryDist=1000
200 schedDist=1000
200 400 600 800 1000 1200
LeaderTimeout

* Moreover, if more than one election occurs in the coordination zone, this leader
takeover pushes back when the first round of heartbeats are sent

Preliminary Verification Results

Invariant: NoCollisions

HBInterval

CONSTANTS
CoordEntrySepTime=0
i 1

MinSpeed=1
Node={v1,v2,v3}

coordDist=1000
entryDist=1000
schedDist=1000

200 400 600 800 1000 1200
LeaderTimeout

® Moreover, if more than one election occurs in the coordination zone, this leader
takeover pushes back when the first round of heartbeats are sent

¢ |f a leader cannot complete two rounds of heartbeats before aircraft enter the entry
zone, may lead to inconsistent schedules

Fitting a Model

Parametric inequality for avoiding collisions:

coordDist + schedDist

2-H+ N, -L<
TR initSpeed

Fitting a Model

Parametric inequality for avoiding collisions:

coordDist + schedDist

2-H+N;-L<
TR initSpeed

where

L = LeaderTimeout

H = HBInterval

TCOOT

=[5
and

T)= coordDist

initSpeed

Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in)

coordDist + schedDist

2-H+ N, -L<
TR initSpeed

where

L = LeaderTimeout
H = HBInterval

B coordDist
| initSpeed - L

Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in again)

9. H 4+ coordD1ist coordDist + schedDist
initSpeed - L - imnitSpeed
where
L = LeaderTimeout

H = HBlInterval

Fitting a Model

Parametric inequality for avoiding collisions: (after plugging in again)

coordD1ist coordDist + schedDist
2-H4+ | ——F|-L<

initSpeed - L imnitSpeed

We can plot this function for some simple parameters.

Fitting a Model

9. H 4+ { coordDist J L< coordDist + schedDist

initSpeed - L initSpeed

Fitting a Model

2-H+

{ coordDist J - coordDist + schedDist

initSpeed - L initSpeed

1500
1400
1300 -
1200 A

11001

10001 M\N
0

Figure: Sawtooth boundary function f(z) = 2000 — | 22| . z

x

200 400 600 800 1000

Fitting a Model

e Overlaying a portion of this function onto the original plot, scaled appropriately:

Invariant: NoCollisions

900
800
700
© i
s 600
2
£
2 500
+ CONSTANTS
CoordEntrySepTime=0
MaxlnitSpeed=1
400 laxNow=4000
MaxSpeed=2
MininitSpeed=1
MinSpeed=
300 A Node={v1,v2,v3}
None=None
coordDist=1000
entryDist=1000
200 schedDist=1000
T T sepTime=1
200 400 600 800 1000 1200

LeaderTimeout

Figure: Annotated verification results for LeaderTimeout vs. HBInterval

Fitting a Model

e Early demonstration that this approach can provide useful insights about system
behavior

Fitting a Model

e Early demonstration that this approach can provide useful insights about system
behavior

® e.g. derive symbolic constraints from the discretized verification data

Fitting a Model

e Early demonstration that this approach can provide useful insights about system
behavior
® e.g. derive symbolic constraints from the discretized verification data
e Further verification results for more parameter ranges were generated, but not yet
analyzed in depth

Outline

Limitations and Future Directions

Limitations

e Current method is approximate

Limitations

e Current method is approximate
® Only provides hints at what the safe regions are

Limitations

e Current method is approximate
® Only provides hints at what the safe regions are
® Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

Limitations

e Current method is approximate

® Only provides hints at what the safe regions are
® Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

® Model checking can be expensive

Limitations

e Current method is approximate

® Only provides hints at what the safe regions are
® Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

® Model checking can be expensive
® Several minutes, up to hours, to generate large, fine-grained parameter ranges

Limitations

e Current method is approximate

® Only provides hints at what the safe regions are

® Could serve as an initial step before more complete verification attempts e.g.
using automated theorem prover

® Model checking can be expensive

® Several minutes, up to hours, to generate large, fine-grained parameter ranges

® To generate the results shown in Figure 21, checked 1836 parameter
configurations in 5 min. 42 seconds with 8 TLC worker threads on 6-core 2.6GHz
Intel Core i7 Macbook Pro.

Future Directions

* Explore symbolic techniques implemented by tools like IMITATOR 3° (similar to
HyTech®)

5 Etienne André. IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability. In: /nternational Conference on Computer Aided Verification. Springer. 2021, pp. 552-565.

6 Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for hybrid systems. In: International Journal on Software Tools for Technology Transfer 1.1-2
(1997), pp. 110-122.

Future Directions

* Explore symbolic techniques implemented by tools like IMITATOR 3° (similar to
HyTech®)
® Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol

5 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.
6 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

Future Directions

® Explore symbolic techniques implemented by tools like IMITATOR 3° (similar to
HyTech®)
® Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol

e Automatic inference of parameter constraints from verification data

5 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.
6 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

Future Directions

* Explore symbolic techniques implemented by tools like IMITATOR 3° (similar to
HyTech®)
® Unclear if they are able to infer the class of parameter constraints that arise in
the merging protocol
e Automatic inference of parameter constraints from verification data
® Model checking optimizations:

® Binary edge search
® Boundary refinement
® Improved TLC support for these specific types of parameterized verification tasks

5 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.
6 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

Outline

Related Work

Related Work

e Uppaal’ and Kronos?, tools for standard timed automata verification

7 Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In: Formal methods for the design of real-time systems (2004), pp. 200-236.

8 Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. Kronos: A model-checking tool for real-time systems. In: International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer. 1998, pp. 298-302.

9 Alur and Dill, “A theory of timed automata”.
10 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

11 Thomas Hune, Judi Romijn, Mariélle Stoelinga, and Frits Vaandrager. Linear parametric model checking of timed automata. In: The Journal of Logic and Algebraic Programming 52
(2002), pp. 183-220.

12 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.
13 Mikael Asplund. Automatically proving the correctness of vehicle coordination. In: /CT Express 4.1 (2018), pp. 51-54.

Related Work

e Uppaal’ and Kronos?, tools for standard timed automata verification
e Verification techniques for parametric timed automata®

® HyTech model checker'?, developed in 1997, but no longer maintained
e Extensions of Uppaal to do parameter synthesis'"
® IMITATOR'? is a more recent tool developed over the last decade or so

7 Behrmann, David, and Larsen, “A tutorial on uppaal”.
8 Bozga, Daws, Maler, Olivero, Tripakis, and Yovine, “Kronos: A model-checking tool for real-time systems".
9 Alur and Dill, “A theory of timed automata”.

10 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

1 Hune, Romijn, Stoelinga, and Vaandrager, “Linear parametric model checking of timed automata”.

12 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

13 Asplund, “Automatically proving the correctness of vehicle coordination”.

Related Work

e Uppaal’ and Kronos?, tools for standard timed automata verification
e Verification techniques for parametric timed automata®

® HyTech model checker'?, developed in 1997, but no longer maintained
e Extensions of Uppaal to do parameter synthesis'"
® IMITATOR'? is a more recent tool developed over the last decade or so

® Using SMT solvers to verify autonomous vehicle coordination protocols'3

7 Behrmann, David, and Larsen, “A tutorial on uppaal”.
8 Bozga, Daws, Maler, Olivero, Tripakis, and Yovine, “Kronos: A model-checking tool for real-time systems".
9 Alur and Dill, “A theory of timed automata”.

10 Henzinger, Ho, and Wong-Toi, “HyTech: A model checker for hybrid systems".

1 Hune, Romijn, Stoelinga, and Vaandrager, “Linear parametric model checking of timed automata”.

12 André, “IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability”.

13 Asplund, “Automatically proving the correctness of vehicle coordination”.

Questions?

References |

Alur, Rajeev and David L Dill. A theory of timed automata. In: Theoretical computer science
126.2 (1994), pp. 183-235.

André, Etienne. IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability. In:
International Conference on Computer Aided Verification. Springer. 2021, pp. 552-565.

Asplund, Mikael. Automatically proving the correctness of vehicle coordination. In: /CT
Express 4.1 (2018), pp. 51-54.

Behrmann, Gerd, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In: Formal
methods for the design of real-time systems (2004), pp. 200-236.

Bozga, Marius, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and
Sergio Yovine. Kronos: A model-checking tool for real-time systems. In: International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer. 1998,
pp. 298-302.

References Il

Consiglio, Maria and Mufioz, César and Hagen, George and Narkawicz, Anthony and
Balachandran, Swee. ICAROUS: Integrated configurable algorithms for reliable
operations of unmanned systems. In: 2076 |EEE/AIAA 35th Digital Avionics Systems
Conference (DASC). IEEE. 2016, pp. 1-5.

Henzinger, Thomas A. The theory of hybrid automata. In: Verification of digital and hybrid
systems. Springer, 2000, pp. 265-292.

Henzinger, Thomas A, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for
hybrid systems. In: International Journal on Software Tools for Technology Transfer 1.1-2
(1997), pp. 110-122.

Hune, Thomas, Judi Romijn, Mariélle Stoelinga, and Frits Vaandrager. Linear parametric
model checking of timed automata. In: The Journal of Logic and Algebraic Programming 52
(2002), pp. 183-220.

Lamport, Leslie. Real time is really simple. In: Microsoft Research (2005), pp. 2005-30.

	ICAROUS Distributed Merging Protocol
	Formally Specifying the Merging Protocol
	Parametric Verification
	Limitations and Future Directions
	Related Work
	Questions
	References
	References

