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Why Linear Algebra?

1. Dynamical Systems and Stability
Let xk ∈ Rn and f : Rn → Rn. Given a safety-critical dynamical system with initial
condition α:
i) discrete: {

xk+1 = f(xk)

x0 = α

ii) continuous: {
x′(t) = f(x(t))

x(0) = α

Reasoning about dynamics (either discrete or continuous) often reduces to reasoning
about linear algebra.

2. Eigenvalues & Eigenvectors
Stability analysis of such a dynamical system often reduces to an eigenvalue problem.
That is, finding a non-zero x ∈ Rn and λ ∈ R such that Ax = λx.
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Motivating Example
Consider an example of a discrete dynamical system from safety "vehicle" control1. The
dynamics of such a system are modeled in the following animation (show animation):

1 Mahyar R. Malekpour: Achieving Equilibrium for Dense, Integrated Vehicle Navigation, AIAA SciTech
2021, Virtual, pp. 8, January 2021.
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Motivating Example
The example considered on the last slide can be formulated as a discrete-time dynamical
system. We want to be able to find (approximately) the eigenvalues and eigenvectors to
study stability: {

xk+1 = Axk

x0 = α

In this example, we define:
• x ∈ Rn+1 gives position of vehicles, where n is number of vehicles

• p =
1

m
is the % of distance traveled to the front vehicle, wherem ≥ 1

• b = (1− p)e1 + pen and B is the circulant matrix specified by b
• A (i.e. the dynamics matrix) has structure: B

1
...
0

0 . . . 0 1
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Motivating Example
{
xk+1 = Axk

x0 = α

Challenges presented in this example:
• A has complex eigenvalues/eigenvectors =⇒ need multivariate complex reasoning
in PVS

• A is arbitrarily large =⇒ challenging to find roots of characteristic polynomial
• A is not diagonalizable =⇒ not easy to reason about dynamics or repeated
multiplication by A

A =

 B

1
...
0

0 . . . 0 1



Goal: Develop multivariate complex library to reason about
eigenvalues and eigenvectors, and provide rigorous

approximations in PVS
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Outline

• Elements of complex 2 x 2 matrices
• Stability in higher dimensions
• Power Method for approximating eigenvalues and eigenvectors
• Future directions and further work
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Formalization of complex 2 x 2 matrices

Formalized in PVS:

• Basic operations on complex 2 x 2
complex matrices

• Scalar invariants (i.e. trace, determinant)
• Characteristic polynomial in terms of
trace and determinant

• Matrix inverse
• Inverse using Cayley-Hamilton theorem
(specified, not verified)

• Eigenvalues and eigenvectors
• Stability criterion for discrete-time
dynamical systems
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Formalization of complex 2 x 2 matrices

Formalized in PVS:

• Basic operations on complex 2 x 2
complex matrices

• Scalar invariants (i.e. trace,
determinant)

• Characteristic polynomial in terms of
trace and determinant

• Matrix inverse
• Inverse using Cayley-Hamilton theorem
(to be proven)

• Eigenvalues and eigenvectors
• Stability criterion for discrete-time
dynamical systems
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A simple example of a discrete dynamical system

Fibonacci’s rabbit population

A population of rabbits can be modeled by the second order difference equation
xn+1 = xn + xn−1 with initial values x0 = 0, x1 = 1 and yn = xn−1. It can be
rewritten as:

[
xn+1

yn+1

]
=

(
1 1
1 0

) [
xn
yn

]
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In PVS, it is possible to:

• Find the scalar invariants
• Find the characteristic polynomial
• Find the eigenvalues and eigenvectors
• Determine stability of equilibrium points
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A simple example of a discrete dynamical system

Fibonacci’s rabbit population

A population of rabbits can be modeled by the second order difference equation
xn+1 = xn + xn−1 with initial values x0 = 0, x1 = 1 and yn = xn−1. It can be
rewritten as:

[
xn+1

yn+1

]
=

(
1 1
1 0

) [
xn
yn

]

In PVS, it is possible to:

• Find the scalar invariants
• Find the characteristic polynomial
• Find the eigenvalues and eigenvectors
• Determine stability of equilibrium points

• tr(A) = 1 + 0 = 1 and
det(A) = 0(−1)− 1(1) = −1
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A simple example of a discrete dynamical system

Fibonacci’s rabbit population

A population of rabbits can be modeled by the second order difference equation
xn+1 = xn + xn−1 with initial values x0 = 0, x1 = 1 and yn = xn−1. It can be
rewritten as:

[
xn+1

yn+1

]
=

(
1 1
1 0

) [
xn
yn

]

In PVS, it is possible to:

• Find the scalar invariants
• Find the characteristic polynomial
• Find the eigenvalues and eigenvectors
• Determine stability of equilibrium points

• p(λ) = λ2− tr(A)λ+det(A) = λ2−λ− 1
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A simple example of a discrete dynamical system

Fibonacci’s rabbit population

A population of rabbits can be modeled by the second order difference equation
xn+1 = xn + xn−1 with initial values x0 = 0, x1 = 1 and yn = xn−1. It can be
rewritten as:

[
xn+1

yn+1

]
=

(
1 1
1 0

) [
xn
yn

]

In PVS, it is possible to:

• Find the scalar invariants
• Find the characteristic polynomial
• Find the eigenvalues and
eigenvectors

• Determine stability of equilibrium points

• λ2 − λ− 1 = 0 =⇒ λ1,2 =
1±
√

5

2
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A simple example of a discrete dynamical system

Fibonacci’s rabbit population

A population of rabbits can be modeled by the second order difference equation
xn+1 = xn + xn−1 with initial values x0 = 0, x1 = 1 and yn = xn−1. It can be
rewritten as:

[
xn+1

yn+1

]
=

(
1 1
1 0

) [
xn
yn

]

In PVS, it is possible to:

• Find the scalar invariants
• Find the characteristic polynomial
• Find the eigenvalues and eigenvectors
• Determine stability of equilibrium
points

• Equilibrium point is the origin, and is a
saddle point (unstable). That is,
whenever one of the eigenvalues lies in
the complex unit disk, i.e. |λ1|2 < 1 and
the other outside, i.e. |λ2|2 > 1
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Outline

• Elements of complex 2 x 2 matrices
• Stability in higher dimensions
• Power Method for approximating eigenvalues and eigenvectors
• Future directions and further work
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Challenges of determining stability in higher dimensions

Stability of fixed points in n-dimensions

If x∗ ∈ Rn is a fixed point of f , then x∗ is stable whenever all of the eigenvalues of
Df(x∗) (matrix of partial derivatives) all lie inside the unit disk, i.e. |λi|2 < 1 for all
i = 1, · · · , n

• In practice, it is quite difficult to find eigenvalues of systems which are 5-dimensional
or higher. Why?
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Challenges of determining stability in higher dimensions

Stability of fixed points in n-dimensions

If x∗ ∈ Rn is a fixed point of f , then x∗ is stable whenever all of the eigenvalues of
Df(x∗) (matrix of partial derivatives) all lie inside the unit disk, i.e. |λi|2 < 1 for all
i = 1, · · · , n

• In practice, it is quite difficult to find eigenvalues of systems which are 5-dimensional
or higher. Why?

• This is because the characteristic polynomial will be of degree 5 or higher. Polynomial
equations of degree 5 or higher are unsolvable (leads to Galois theory).

• Modeling dynamics is often equivalent to repeated matrix-vector multiplication,
which is in essence the power method.

• We shall use the power method to rigorously approximate eigenvalues in PVS.
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Outline

• Elements of complex 2 x 2 matrices
• Stability in higher dimensions
• Power Method for approximating eigenvalues and eigenvectors
• Future directions and further work
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Power Method for approximating eigenvalues and eigenvectors

The Power Method

Assume A is a complex n × n matrix with its eigenvalues ordered as
|λ1| ≥ |λ2| ≥ · · · ≥ |λn| and that A has a complete set of eigenvectors. Let
z0 be an initial guess for the eigenvector. An approximation for the (dominant)
eigenpair is given by:

(zk, λk) = (
Azk−1

‖Azk−1‖
,
z̄k

TAzk

z̄kT zk
)

• Note that this method also applies to real matrices with a full set of eigenvectors.
• By dominant, we mean the eigenvalue λ1, which is largest in modulus.
• In the approximation of the eigenvector, any norm will do, due to norm equivalency.

Goal: Specify in PVS a fully executable power method and prove
results about convergence
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Power Method for approximating eigenvalues and eigenvectors

To achieve our goal, we propose the following step-by-step approach:
1. Specify an executable power method in PVS for real, diagonalizable n× nmatrices.
2. Prove that the real power method is equivalent to the complex power method.
3. Convergence of the real power method will follow from convergence of the complex

version, by previous step.
Formalized in PVS (for complex n× nmatrices):

• Basic properties of
eigenvalues/eigenvectors

• Matrix integer powers and their
eigenvalues

• Complex norms (e.g. l1, l2, l∞)

• Real power method using l∞ norm for
eigenvector approximation

• "Lift" real power method to complex
matrices

• Result stating equivalence between
complex and real power methods

• Example of using the real or complex
power method
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Power Method for approximating eigenvalues and eigenvectors

Formalized in PVS (for complex n× nmatrices):

• Basic properties of
eigenvalues/eigenvectors

• Matrix integer powers and their
eigenvalues

• Complex norms (e.g. l1, l2, l∞)
• Convergence for complex sequences
• Matrix invertibility results
• Diagonal matrix and results

• Real power method using l∞ norm for
eigenvector approximation

• "Lift" real power method to complex
matrices

• Result stating equivalence between
complex and real power methods

• Example of using the real or complex
power method

• Definition of diagonalizability
• Circulant matrices

Question: Why do we want to use the l∞ norm to specify the real power method?

Answer: We want to have an executable norm in PVS, without any square roots!
Moreover, none of the complex norms are executable (because of modulus)-hence why
we insist on the real power method.
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Question: Why do we want to use the l∞ norm to specify the real power method?
Answer: We want to have an executable norm in PVS, without any square roots!
Moreover, none of the complex norms are executable (because of modulus)-hence why
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Power Method for approximating eigenvalues and eigenvectors
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Power Method for approximating eigenvalues and eigenvectors
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Power Method for approximating eigenvalues and eigenvectors
Recall our motivational example. Can we apply the power method directly?{

xk+1 = Axk := Ak+1x0

x0 = α

with:

A =

 B

1
...
0

0 . . . 0 1

 , B is a circulant matrix

• A is not diagonalizable, so the power method does not guarantee convergence to an
eigenvector

• However, there is still hope. Instead of considering position xk, we consider velocities
vk := xk+1 − xk.

• Indeed, vk := xk+1 − xk =: Ak+1x0 −Akx0 = Ak(A− I)x0 = Akv0

• To try: Apply our executable power method in PVS to velocities, with initial guess
v0 = (A− I)x026/28 josean.albelo@gmail.com



Outline

• Elements of complex 2 x 2 matrices
• Stability in higher dimensions
• Power Method for approximating eigenvalues and eigenvectors
• Future directions and further work
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Future directions and further work

1. Proof of convergence of the power method in PVS
2. Specify matrix exponential eAt and properties
3. Apply above to solve simple ODEs of the form x′(t) = Ax(t) + b(t)

4. Extend definition of trace, determinant, characteristic polynomial for n× n complex
matrices

5. Specify the inverse power method (for finding smallest eigenvalue in modulus)
6. Jordan canonical forms
7. Block power method using QR factorization for finding multiple eigenvalues

Summary:
1. Made contributions to the complex vectors and matrices libraries in PVS
2. Had fun while doing it!
3. Total Proofs: 275, Lines of Spec: 2,001, Number of Spec files: 17
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