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Abstract

Tropical peatlands are among the most carbon-dense ecosystems on Earth, and their 
water storage dynamics strongly control these carbon stocks. The hydrological functioning of 
tropical peatlands differs from that of northern peatlands, which has not yet been accounted 
for in global land surface models (LSMs). Here, we integrated tropical peat-specific hydrol-
ogy modules into a global LSM for the first time, by utilizing the peatland-specific model 
structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM). 
We developed literature-based parameter sets for natural (PEATCLSMTrop,Nat) and drained 
(PEATCLSMTrop,Drain) tropical peatlands. Simulations with PEATCLSMTrop,Nat were com-
pared against those with the default CLSM version and the northern version of PEATCLSM 
(PEATCLSMNorth,Nat) with tropical vegetation input. All simulations were forced with 
global meteorological reanalysis input data for the major tropical peatland regions in Central 
and South America, the Congo Basin, and Southeast Asia. The evaluation against a unique 
and extensive data set of in situ water level and eddy covariance-derived evapotranspiration 
showed an overall improvement in bias and correlation compared to the default CLSM ver-
sion. Over Southeast Asia, an additional simulation with PEATCLSMTrop,Drain was run to 
address the large fraction of drained tropical peatlands in this region. PEATCLSMTrop,Drain 
outperformed CLSM, PEATCLSMNorth,Nat and PEATCLSMTrop,Nat over drained sites. De-
spite the overall improvements of PEATCLSMTrop,Nat over CLSM, there are strong differ-
ences in performance between the three study regions. We attribute these performance 
differences to regional differences in accuracy of meteorological forcing data, and differences 
in peatland hydrologic response that are not yet captured by our model.

Plain Language Summary

Tropical peatlands are wetlands in which plant material accumulates under waterlogged 
conditions and develops into a dense organic soil layer. Disturbance of their self-regulating 
hydrology by external factors such as artificial drainage, land use change, and climate change 
can quickly convert these immense carbon stocks into strong sources of greenhouse gases. 
Including the hydrology of tropical peatlands into global Earth system models allows us 
to understand the impact of such external disturbances. We developed the first hydrology 
modules for natural and drained tropical peatlands to plug into the NASA Goddard Earth 
Observing System modeling framework. Our results display strong regional differences, 
and indicate that the accuracy of our model is limited by rainfall data quality and by our 
understanding of how peatland hydrology differs across the three regions that contain the 
major tropical peatland areas (Central and South America, the Congo Basin, and Southeast 
Asia). Nonetheless, simulations with both of our modules correlate better than the default 
model to field observations of water level and evapotranspiration over all three regions.

1 Introduction

Peatlands are wetlands with an organic soil surface layer, i.e., peat. Their waterlogged, 
anoxic environment greatly reduces the decomposition of plant litter, facilitating the accu-
mulation of a carbon-rich layer that can be up to several meters deep. Peatlands cover about 
3% of the Earth’s land surface (Yu et al., 2010; Leifeld & Menichetti, 2018; Xu et al., 2018), 
but make up about 25% of the global soil carbon (C) pool (Yu et al., 2010; Scharlemann et 
al., 2014). External disturbances such as climate change, land use change or drainage put 
these immense, long-term C stocks at risk of becoming strong greenhouse gas sources.

Despite long denial of their possible existence (Joosten, 2016), tropical peatlands are 
now estimated to constitute about 13% of the global peatland area (Leifeld & Menichetti, 
2018). They are predominantly located in low-altitude areas of Central and South America, 
Africa, and Southeast Asia, although some high-altitude peatlands occur in the mountain 
ranges of Africa, South America (Chimner et al., 2019) and Papua New Guinea (Page,85
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Rieley, & Banks, 2011). Despite many research efforts to map peatlands globally (Draper et 
al., 2014; Miettinen et al., 2016; Dargie et al., 2017; Gumbricht et al., 2017; Xu et al., 2018; 
Leifeld & Menichetti, 2018), uncertainties in the peatland extent remain. Data on tropical 
peatlands is limited and often of poor quality, and some peatlands like the Cuvette Centrale 
peatland complex in the Congo Basin (Dargie et al., 2017) were only recently described. 
Comparison of the estimated C storage in various biomes suggests that tropical peatlands 
are among the most C-dense terrestrial ecosystems on Earth (Joosten & Couwenberg, 2008): 
upland forests in the Amazon Basin store about 250-300 Mg C ha-1 (split about equally 
above- and belowground; Draper et al., 2014; Coronado et al., 2021), boreal peatlands store 
about 1350 Mg C ha-1 (Yu et al., 2010), and, depending on the peatland type, tropical 
peatlands store between 685 (41 aboveground: 644 belowground) Mg C ha-1 and 1752 (108 
aboveground: 1644 belowground) Mg C ha-1 (Murdiyarso et al., 2009; Draper et al., 2014; 
Saragi-Sasmito et al., 2019; Coronado et al., 2021).

Most well-studied tropical peatlands are raised bogs (Page et al., 2006), i.e., mostly rain-
fed, ombrotrophic (nutrient-poor), and dome-shaped peatlands (Anderson, 1983). The water 
level of those peatlands conforms to the general dome morphology of the bog and therefore 
is relatively uniform to the surface (Dommain et al., 2010; Cobb et al., 2017). Lähteenoja 
et al. (2009) demonstrated the occurrence of both ombrotrophic and minerotrophic swamps 
in the Peruvian Amazon. Although the peatland types in the Congo Basin are poorly 
mapped (Dargie et al., 2017), the diverse vegetation and flooding dynamics indicate that 
ombrotrophic and minerotrophic peatlands likely exist together. Periodic flooding with 
nutrient-rich water from rivers or lakes, and/or lateral surface water discharge is typical for 
minerotrophic peatlands but may also occur in largely-ombrotrophic peatlands.

The seasonal dynamics of the water level (negative below the surface) are mainly de-
termined by the balance between precipitation (P), as main water input in ombrotrophic 
peatlands, and five major water loss pathways: evaporation from canopy interception, evap-
oration from soil and free-standing water, plant stomatal transpiration, overland flow, and 
water flow through the peat soil (Mezbahuddin et al., 2015; Baird et al., 2017). During the 
wet season, P often exceeds evapotranspiration (ET) and leads to high (=shallow) water 
levels that can reach above the peatland surface. This ground surface is characterized by 
microforms - elevated surface areas or hummocks and depressions or hollows - that affect 
the lateral discharge (Q). Lateral hydraulic gradients are generally low over the scale of 
the peat dome, but surface inundation results in large lateral water flow rates across the 
flooded fraction of the peatland surface (overland flow) and through the top layer of the 
peat (subsurface runoff) simultaneously. In periods with low P, the water level recedes, 
flooding diminishes and the Q decreases, eventually limiting further water level drawdown 
(Dommain et al., 2010; Mezbahuddin et al., 2015).

The improved understanding of tropical peatland hydrology and the peat-specific fea-
tures that regulate it has led to the development of small-scale hydrology models for both 
natural (Wösten et al., 2008; Baird et al., 2017; Cobb et al., 2017) and drained (Wösten et 
al., 2008; Mezbahuddin et al., 2015; Baird et al., 2017) tropical peatlands. The seasonal and 
interannual water level variations of and differences between natural and drained tropical 
peatlands has been studied over a range of small scales, i.e., from the hummock-hollow scale 
(Mezbahuddin et al., 2015) to regional groundwater flow (Wösten et al., 2008; Ishii et al., 
2016).

Artificial drainage consistently lowers the water level throughout the year (Hirano et 
al., 2015; Taufik et al., 2020) and can result in very low (=deep) water levels of up to two 
meters below the surface in the dry season. Inadequate vertical water recharge exposes 
the peat soil to drying, leading to irreversible lowering of peat layers through subsidence 
(Hooijer et al., 2012; Mezbahuddin et al., 2015; Young et al., 2017; Evans et al., 2019), 
large C losses through rapid biological oxidation, increased peat bulk density (Hooijer et 
al., 2012), and an increased vulnerability to wildfires (Page et al., 2002; Turetsky et al., 
2015; Taufik et al., 2017). Hoyt et al. (2020) estimated that over 90% of Southeast Asian138
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peatlands are subsiding at an average rate of 2.24 cm yr-1, which translates into an annual 
C loss of 155 Mt C yr-1. All (northern, temperate and tropical) drained peatlands together 
emit nearly 5% of the global anthropogenic CO2 emissions, even though they cover only 
0.4% of the Earth’s land area (Joosten, 2015). Recent studies by Leifeld and Menichetti 
(2018), Leifeld et al. (2019), and Günther et al. (2020) illustrated that peatland restoration, 
of tropical peatlands in particular, is possibly one of the most efficient ways of global climate 
change mitigation. However, the success of restoring or rehabilitating degraded peatlands 
and conserving intact peatlands strongly depends on a proper understanding of peatland 
hydrology and water regimes (Murdiyarso et al., 2019; Evans et al., 2021).

State-of-the-art Earth system models, which are used for future climate projections, 
currently do not include peatland ecosystems (Loisel et al., 2021). However, the need to 
more accurately monitor and predict greenhouse gas emissions has pushed the development 
of complex biogeochemical modules for simulating carbon and nitrogen cycling in ecosystem 
and Earth system models. These biogeochemical modules depend on a proper representation 
of peat-specific hydrology, which is difficult to parameterize at large scales (Limpens et al., 
2008) and therefore often inadequately accounted for in global Earth system models.

Land Surface Models (LSMs) can provide land energy and water fluxes for these Earth 
system models, and recently some peat-specific hydrology modules have been developed 
for different LSMs such as the Canadian Land Surface Scheme (CLASS; Wu et al., 2016), 
the Lund-Potsdam-Jena (LPJ) model (Wania et al., 2009), the Community Land Model 
(CLM; Shi et al., 2015), the Organizing Carbon and Hydrology In Dynamic Ecosystems 
(ORCHIDEE; Qiu et al., 2018) LSM, and the Catchment Land Surface Model (CLSM; 
Bechtold et al., 2019). The CLASS and LPJ models modified their soil layering to better 
represent the depth-specific peat properties. Next to the humification-based soil layering 
that was already included in CLASS, Wu et al. (2016) added a moss layer that buffers 
the soil water and energy exchange, whereas Wania et al. (2009) integrated an acrotelm-
catotelm structure to the layering of the LPJ model. Both models did not consider the 
influence of peatland microtopography on the hydrology of peatlands, in contrast to Shi et 
al. (2015) who integrated the effect of microtopography to simulate a dynamic water level 
in CLM. In the peat-specific hydrology module in ORCHIDEE, all surface runoff from the 
non-peatland fraction of a grid cell was used as additional water input into the peatland 
fraction of that grid cell, mimicking the hydrological situation of groundwater and surface 
water influence in minerotrophic (fens) and not of ombrotrophic (bogs) peatlands (Qiu et 
al., 2018). CLSM (Koster et al., 2000) is the land model component of the NASA Goddard 
Earth Observing System (GEOS) modeling framework and is used for operational purposes. 
CLSM is one of the few global LSMs that simulates a dynamic water level, and Bechtold 
et al. (2019) used the CLSM framework to model the effect of microtopography on the 
water level, among other peat-specific parameterizations, to represent bogs in their peat-
specific module (PEATCLSM). However, the above peat modules focus on natural northern 
peatlands only. Despite many similarities between tropical and northern peatlands, distinct 
structural and physical characteristics result in different hydrological dynamics.

Figure 1 shows some of the main differences between natural northern, natural trop-
ical, and drained tropical peatlands from a land surface modeling perspective. Northern 
peatlands are often dominated by bryophytes (such as Sphagnum mosses) with sparse vas-
cular vegetation (such as coniferous trees, shrubs, and sedges), whereas natural tropical peat 
swamp forests often have a multilayered, dense canopy with a variety of trees (hardwood 
or palm), and drained tropical peatlands are often covered with industrial plantations of 
oil palm (Elaeis guineensis; the source of palm oil) or Acacia species (source of pulpwood), 
small-holder agriculture, and shrubs and ferns (Miettinen et al., 2016). Northern peatlands 
often have a regular and perpendicular oriented microtopographic pattern that reduces lat-
eral water flow, this pattern has not yet been observed in tropical peatlands (Lampela et al., 
2016). Peat drainage strongly reduces the original surface microtopography (Lampela et al., 
2017), consistently lowers the water level by increased lateral water flow through drainage191
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canals that incise deeply in the peat, and results in shrinkage (in addition to mechanical192

compaction) of (mainly) the top 0.5 m of peat (Hooijer et al., 2012).193

Figure 1. The structural and physical differences (discussed in the text) between (a) natural
northern, (b) natural tropical, and (c) drained tropical peatlands that are relevant from a land
surface modeling perspective, and result in distinct hydrological dynamics. The magnifying glasses
depict a close-up of a (a) natural northern peat soil, (b) natural tropical peat soil with woody
remains, and (c) drained and compacted tropical peat soil.

To our knowledge, there is no global LSM in the peer-reviewed literature that has been194

parameterized and evaluated for either natural or drained tropical peatlands. Here, we195

developed the first, large-scale hydrological modules for both natural and drained tropical196

peatlands for use in a global LSM, by utilizing the recent, northern peatland-specific adap-197

tations of CLSM, i.e., PEATCLSM (Bechtold et al., 2019). We collected the limited data198

on tropical peatlands available in the literature to construct a set of hydrological model199

parameters, and a unique data set of water level and eddy covariance-derived ET for model200

evaluation over tropical peatlands in Central and South America, the Congo Basin and201

Southeast Asia.202

In Section 2 we describe the CLSM and PEATCLSM model structures, and how we de-203

veloped a tropical PEATCLSM module (PEATCLSMTrop) for natural (PEATCLSMTrop,Nat)204

and drained (PEATCLSMTrop,Drain) tropical peatlands using separate literature-based pa-205

rameter sets. Our experimental design and the evaluation methods, including the devel-206

opment of an extensive evaluation data set of water level and ET observations, are also207

described in Section 2. In Section 3 we show our results and compare them to our evalua-208

tion data set. The results are discussed in Section 4, and conclusions on model performance209

and shortcomings, relevant findings, and future possibilities are presented in Section 5.210

2 Materials and Methods211

2.1 Global Land Surface Modeling212

2.1.1 Catchment Land Surface Model213

CLSM (Ducharne et al., 2000; Koster et al., 2000) is a state-of-the-art LSM that is214

part of the NASA GEOS global modeling framework. GEOS is used to generate operational215

global forecast and analysis products (https://gmao.gsfc.nasa.gov/products/), such as216

the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-217
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2; Bosilovich et al., 2016). The analysis and forecasts serve as background to various satellite 
retrievals and are also used in the generation of the operational Soil Moisture Active Passive 
(SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data assimilation 
product (Reichle et al., 2019). Here, we used the version of CLSM that is used for version 3 
of the L4_SM algorithm (Reichle et al., 2019) and includes peat as a soil class following a 
soil parametrization update by De Lannoy et al. (2014). Vereecken et al. (2019) compares 
the different components of CLSM to other LSMs, and Bechtold et al. (2019) gives a more 
detailed description of the CLSM components that were used for the development of northern 
peatland hydrology in PEATCLSM.

CLSM uses the distribution of the topographic index (TOPMODEL approach; Beven 
& Kirkby, 1979) within the computational land surface element to estimate the spatial 
distribution of surface (0-5 cm) soil moisture (θ5cm), root-zone (0-100 cm) soil moisture, 
and dynamic water level (z̄WL; negative downwards). CLSM is one of the few global LSMs 
that simulates a z̄WL  (Vereecken et al., 2019), with the overbar implying that it is a grid 
cell average of the subgrid variability in water level. These diagnostic soil moisture and 
groundwater variables are computed from three model prognostic variables (Figure 2):233

1. catchment deficit (surface to bedrock): is defined as the amount of water per unit234

area that would be needed to saturate the soil of the entire catchment for a given235

z̄WL, assuming an initial hydrostatic equilibrium profile;236

2. root-zone excess (0-100 cm): the moisture disequilibrium (due to input or extraction237

of water) from the assumed hydrostatic equilibrium profile in the top 100 cm;238

3. surface excess (0-5 cm): the moisture disequilibrium in the top 5 cm from the equi-239

librium moisture profile as modified by the root-zone excess.240

Vertical water flow between the surface and root-zone excess, and between the root-zone
excess and the catchment deficit is controlled by two timescale parameters. The empirical
equations for these timescale parameters (Ducharne et al., 2000) were fitted (prior to LSM
simulation) to offline Richards equation simulations. To solve the Richards equation, sets
of prognostic variables were combined with a soil-specific Campbell parameterization (see
Section 2.2.3; Campbell, 1974) over a high-resolution, vertical soil column:

h

hS
=

(
θ

θS

)−b

(1)

K = KS

(
θ

θS

)2b+3

(2)

where h is the pressure head (cm H2O), hS is the air entry pressure (cm H2O), θ is the241

volumetric soil moisture content (m3 m-3), θS is the volumetric soil moisture content at242

saturation (m3 m-3), b is an empirical shape parameter (-), K is the unsaturated hydraulic243

conductivity (m s-1), and KS is the saturated hydraulic conductivity (m s-1).244

At each model timestep, the spatial land surface element is partitioned into three245

areal fractions (F) with distinct hydrological regimes: the saturated region (Fsat), the246

unsaturated-but-transpiring fraction (Ftra), and the wilting fraction (Fwilt), with Fsat +247

Ftra + Fwilt = 1 (Koster et al., 2000; Bechtold et al., 2019). These fractions are obtained by248

shifting the distribution of equilibrium root-zone moisture (i.e., that is tied to the catchment249

deficit and the associated distribution of z̄WL) toward drier or wetter conditions based on250

the root-zone excess.251

2.1.2 Original PEATCLSM Module252

The TOPMODEL approach used in CLSM is not optimal for peatlands because most253

of them are virtually flat on a macrotopographic scale of kilometers, and bogs (and to a254

lesser extent fens) appear hydraulically decoupled from the groundwater hydrology of the255
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rest of the catchment (Bechtold et al., 2019, 2020). This decoupling is either due to imper-
meable sediments at the peat base or due to accumulated peat that lifted the peat surface 
(and water level) above the range of the groundwater fluctuations in the underlying aquifer. 
Bechtold et al. (2019) replaced the TOPMODEL approach with a peatland-specific module 
for natural northern peatlands, from here onwards referred to as PEATCLSMNorth,Nat, of  
which the fundamental adaptations are shown in Figure 2. Instead of computing the effect of 
catchment-scale topography on subsurface hydrology, Figure 2 shows that the microtopog-
raphy was used to (i) modulate water storage dynamics through regulation of the spatially 
variable thickness of the unsaturated zone (Dettmann & Bechtold, 2016), and to (ii) allow 
water ponding in hollows, above the saturated soil. (iii) The large fraction of macropores in 
the peat surface layers was represented with a very high saturated hydraulic conductivity 
(KS,macro) that resulted in (iv) a Q function that non-linearly declines over the first tens of 
centimeters of the peat soil. These model changes turned off both the Hortonian (P rate > 
maximum infiltration capacity) and Dunne (saturation excess) overland flow mechanisms. 
The macropore fraction allowed any P on the unsaturated surfaces to infiltrate, while P on 
the flooded hollows (saturated soil) was retained by the unsaturated hummocks and was 
thus not removed as overland flow. In short, all P throughfall eventually leads to water 
level changes that in turn controls Q via the non-linear discharge function. Furthermore, a 
peat-specific revision of (v) the peat matrix hydraulic properties and (vi) a stress function 
that linked the ET reduction during droughts to the variable water level were also included. 
In general, PEATCLSMNorth,Nat simulated higher and spatially less variable water levels, 
and less ET compared to CLSM, resulting in a significantly better agreement with in situ 
observations (Bechtold et al., 2019).278

Figure 2. Schematic illustration of the six (i-vi, discussed in the text) peatland-specific adap-
tations and parameter updates implemented in PEATCLSM (adapted from Bechtold et al., 2020).
z̄WL is the grid cell mean water level.
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280

281

All functions and parameters of PEATCLSMNorth,Nat were constrained with literature 
data, without any parameter tuning. The same approach was kept in the development of 
the tropical versions of PEATCLSM, i.e., PEATCLSMTrop,Nat and PEATCLSMTrop,Drain, to  
allow a possible integration of PEATCLSMTrop in GEOS for operational global applications.282

2.2 Tropical Version of the PEATCLSM Module283

2.2.1 Natural and Drained Tropical PEATCLSM Modules284

The spatial distribution of tropical peatlands is shown in Figure 3. Most well-studied285

tropical peatlands are natural ombrotrophic lowland peatlands (Page et al., 2006) but other286

tropical peatland types (e.g., minerotrophic or highland) occur too. Because of insuffi-287

cient information to differentiate between tropical peatland types, an ‘average’ parame-288

ter set for tropical ombrotrophic lowland peatlands was derived from literature for the289

PEATCLSMTrop,Nat and PEATCLSMTrop,Drain modules.290

Artificial drainage of tropical peatlands, often associated with land cover and land use291

change, strongly affects the hydrophysical properties of peat soils. Drained peatlands have292

lower water levels, and the oxic conditions and nitrogen from peat mineralization limits293

their C accumulation (Leifeld et al., 2020), leading to: reduction of macropores, increased294

bulk density, reduced saturated hydraulic conductivity, lower soil moisture content, and peat295

subsidence (Anshari et al., 2010; Tonks et al., 2017; Ghimire et al., 2018; Kurnain, 2018).296

Therefore, two PEATCLSMTrop modules were developed by constructing separate literature-297

based ‘average’ parameter sets, one for natural tropical peatlands (i.e., PEATCLSMTrop,Nat)298

and one for drained tropical peatlands (i.e., PEATCLSMTrop,Drain). In the following sections,299

we present the differences in parameter sets and the limited literature data they were derived300

from. Table 1 summarizes some parameter settings for the different model versions.301

2.2.2 Peatland Microtopography302

In both PEATCLSMTrop modules, the TOPMODEL approach from CLSM was re-303

placed by a microtopographic distribution to modulate water level dynamics, similar as in304

PEATCLSMNorth,Nat for northern peatlands (Bechtold et al., 2019). The microtopography305

and soil hydraulic properties (see Section 2.2.3) are crucial in determining the specific yields306

of shallow groundwater systems, both at high water levels (including surface inundation)307

and low water levels. The effect of the microtopography on the specific yield depends on308

its interaction with the soil water retention function and can lead to lower as well as higher309

soil specific yield at certain water levels (Dettmann & Bechtold, 2016).310

For natural peatlands, Lampela et al. (2016) reported the only available extensively311

measured surface elevations (3389 measurements) along a transect in the Sebangau forest312

(2◦32’S, 113◦90’E). These surface elevation data were used to construct the microtopo-313

graphic distribution for PEATCLSMTrop,Nat, shown in Figure 4a. The surface reference of314

the original data was shifted to the mean surface elevation (Figure 2), so that the surface315

elevation measurements could be approximated by a zero-mean normal distribution with a316

standard deviation of 0.16 m (neglecting the minor skewness; Figure 4a), which is larger317

than the 0.11 m standard deviation used by Bechtold et al. (2019) for PEATCLSMNorth,Nat.318

Despite the limited geographical area and specific land cover of the surface elevation mea-319

surements, the distribution in Figure 4a is consistent with sporadically measured surface320

elevations in natural tropical peatlands in Southeast Asia or South America (Shimamura &321

Momose, 2007; Dommain et al., 2010; Page, Morrison, et al., 2011; Kelly et al., 2014; Swin-322

dles et al., 2014; Freund et al., 2018). Quantitative data on microtopography from natural323

tropical peatlands in the Congo Basin remain unavailable, but a few in-field descriptions324

indicate that the microtopographic distribution in Figure 4a is likely a good approximation325

for that region.326
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Figure 3. (Top) Distribution of tropical peatlands based on the fusion of PEATMAP (Xu et
al., 2018) and the peat distribution used for SMAP L4_SM (De Lannoy et al., 2014). The (brown)
peat pixels are projected on the Equal Area Scalable (EASE) grid, version 2.0 (Brodzik et al., 2012)
at a spatial resolution of 9 km. (Middle and bottom) Three zooms into the major tropical peatland
regions of Central and South America, the Congo Basin, and Southeast Asia; also shown are the
locations of sites with in situ water level data in (green) natural and (pink) drained peatlands. Sites
with in situ eddy covariance data are marked with a blue edge.

Drainage, or degradation more generally, of natural tropical peatlands strongly reduces327

the original surface microtopography that was developed through a dynamic interaction328

between vegetation and peat hydrology (Jauhiainen et al., 2008; Dommain et al., 2010;329

Lampela et al., 2016). The reduction in the microtopography range is often due to the330

loss of the highest hummock formations. However, some characteristic microforms remain331

because of uneven subsidence and small burn scars (Ballhorn et al., 2009; Dommain et al.,332

2010; Lampela et al., 2016). Lampela et al. (2017) observed a flat surface topography with333

sparse depressions and measured 3720 surface elevations that were used to derive a micro-334

topographic distribution for PEATCLSMTrop,Drain, shown in Figure 4b. The mean surface335

elevation was calculated and used as the surface reference, in a similar way to that used for336

PEATCLSMTrop,Nat. Figure 4b shows that the measurements could be approximated by a337

zero-mean normal distribution with a standard deviation of 0.13 m. This microtopographic338

distribution is in line with the range of 0.3 to 0.5 m between the hummocks and hollows339
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observed by Jauhiainen et al. (2008) in two degraded (logged, burned, and drained) tropical340

peatlands.341

Figure 4. (a) Histogram of the 3389 surface elevations measured by Lampela et al. (2016) in
a natural tropical peatland, together with the derived zero-mean normal distribution (solid line)
and corresponding standard deviation (σ = 0.16 m; dashed lines), and (b) histogram of the 3720
surface elevations measured by Lampela et al. (2017) in a drained tropical peatland, together with
the derived zero-mean normal distribution (solid line) and corresponding standard deviation (σ =
0.13 m; dashed lines).

2.2.3 Peat Hydraulic Properties: Matrix and Macropores342

The soil hydraulic properties of peatlands vary with depth, and are affected by the343

degree of humification that is strongly determined by the long-term water level conditions344

(Kurnain, 2018). Soil hydraulic input parameters of the peat matrix for PEATCLSMTrop345

(Table 1) were derived by simultaneously fitting the ‘average’ soil moisture retention and346

unsaturated hydraulic conductivity functions (Equations 1 and 2) for both natural and347

drained tropical peatlands, shown in Figure 5. A humification-based separation (fibric,348

hemic, and sapric) of the soil hydraulic input parameters was not possible because of a too349

large within-class variability.350

As opposed to northern peatlands, there is no generally established parameterization351

of hydraulic functions for the peat matrix of tropical peatlands (Kurnianto et al., 2019;352

Taufik et al., 2019). Instead, we collected measurements from six literature sources to353

determine the ‘average’ hydraulic functions for natural tropical peatlands. Five literature354

sources (Lambert, 1995; Kurnain et al., 2006; Katimon & Melling, 2007; Sayok et al.,355

2007; Taufik et al., 2019) measured θ against h, and one (Kolay & Shafiee, 2007) measured356

K against θ. The θS of 0.88 cm3 cm-3 (Table 1) was based on measurements by Lambert357

(1995), Kurnain et al. (2006), and Sayok et al. (2007). Figure 5a shows that the ‘average’ soil358

moisture retention function of PEATCLSMTrop,Nat was fitted to data with a large variability,359

and that the ‘average’ unsaturated hydraulic conductivity function of PEATCLSMTrop,Nat360

was fitted against θ measurements (Kolay & Shafiee, 2007) because no literature data of K361

against h was available. The resulting soil hydraulic input parameters of the peat matrix for362

PEATCLSMTrop,Nat are shown in Table 1 and were applied in the offline Richards equation363

simulations (see Section 2.1.1) to obtain the timescale parameters for vertical moisture364

transfer under unsaturated conditions. The KS of 6 x 10-5 m s-1 for PEATCLSMTrop,Nat365

(Table 1) was based on the KS (at a water level of -0.29 m) that Cobb and Harvey (2019)366

derived from their water level rise and recession curves.367
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Northern natural peatlands are often described as a two-layered soil profile that con-
sists of a highly porous, weakly decomposed acrotelm and a more compact catotelm layer 
(Dimitrov et al., 2010; Dettmann et al., 2014). This structural transition results in a steep 
gradient in KS from the acrotelm to the catotelm (Hogan et al., 2006; Morris et al., 2015). 
The structure of peat in natural tropical peatlands is not well characterized; however, a 
very large KS for the upper peat layers and a much smaller one for the deeper peat layers 
is established (Kelly et al., 2014; Baird et al., 2017; Cobb & Harvey, 2019).

Artificial drainage results in reduced KS and lower θS due to altered peat properties 
(Tonks et al., 2017; Ghimire et al., 2018; Kurnain, 2018; Taufik et al., 2019), especially in the 
top layers. To determine the ‘average’ hydraulic functions for drained tropical peatlands, five 
literature sources were used (Kurnain et al., 2006; Iiyama et al., 2012; Mezbahuddin et al., 
2015; Kurnain, 2018; Setiawan et al., 2020). All sources presented θ against h (Figure 5c), 
but only Iiyama et al. (2012) measured K against h (Figure 5d). Table 1 shows the soil 
hydraulic input parameters of the peat matrix for PEATCLSMTrop,Drain, the θS of 0.68 cm3 

cm-3 was based on values from Iiyama et al. (2012), Mezbahuddin et al. (2015), Ghimire et 
al. (2018), and Kurnianto et al. (2019). The KS of 2 x 10-6 m s-1 for PEATCLSMTrop,Drain 
was based on the measurements by Iiyama et al. (2012) (Figure 5d), and is in the range of 
KS values mentioned by Kurnianto et al. (2019).

385

Furthermore, the timescale parameter that regulates the moisture transfer between386

catchment deficit and root-zone excess (upwards and downwards) was adjusted for PEATCLSMTrop,Drain.387

The initial timescale parameter guess, derived from the offline Richards equation simula-388

tions, was representative for the compacted, upper layers of drained tropical peatlands389

(upper ± 0.5 m), but not for the deeper, less compacted catotelm (Hooijer et al., 2012).390

Preliminary simulations with this initial guess showed a too long lag in the water level rise391

at the end of the dry season. Insufficient upward moisture transfer from the catchment392

deficit during the dry season led to a strong disequilibrium in the unsaturated soil profile,393

or more specifically, it led to the accumulation of a large negative root-zone excess (see394

Section 2.1.1). By contrast, the in situ observed data did show an instant rise of the water395

level with P at the end of the dry season, suggesting no such disequilibrium but a strong396

vertical coupling between the water level and root zone for deeper peat layers. Therefore,397

the timescale parameter was given an arbitrary large value that allows a strong coupling of398

the catchment deficit and the root-zone excess.399

2.2.4 Peatland Discharge400

The Q in natural tropical peatlands is low for lower water levels and increases non-
linearly following a power law function with rising water levels (Equation 3), becoming
very large when water breaches the surface in hollows because this generates surface and
subsurface runoff simultaneously. Bechtold et al. (2019) used the empirical, single power
function by K. E. Ivanov (given in Romanov, 1968) to describe the Q in natural northern
peatlands. Since natural tropical peatlands behave similarly, this function was also used to
describe the Q(z̄WL) relation for PEATCLSMTrop,Nat:

Ta (z̄WL) =
KS,macro,z=0 (1− 100z̄WL)

1−α

100 (α− 1)
, for α > 1, z̄WL ≤ 0 (3)

Q (z̄WL) = cTa (z̄WL) (4)

where Ta is the transmissivity (m2 s-1), z̄WL is the mean grid cell water level (m),401

KS,macro,z=0 is KS,macro at the mean surface elevation (m s-1), α is an empirical param-402

eter that describes the rate of KS,macro decrease with depth (-), Q(z̄WL) is the water level-403

dependent discharge (m s-1), and c is the average hydraulic gradient divided by the average404

length of the peatland acrotelm in horizontal flow direction (m-1).405

CLSM poorly represents the dual hydraulic dynamics of a peat soil (acrotelm and406

catotelm), and therefore Bechtold et al. (2019) included a KS,macro (m s-1) parameter for407
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Figure 5. ‘Average’ hydraulic functions for tropical peatlands fitted to multiple literature sources
(color-coded). Retention curve for (a) natural and (c) drained tropical peatlands, and the corre-
sponding unsaturated hydraulic conductivity curve for (b) natural and (d) drained tropical peat-
lands. Comparison of the (e) soil moisture retention and (f) unsaturated hydraulic conductivity
functions for PEATCLSMTrop,Nat (green) and PEATCLSMTrop,Drain (pink) to those from CLSM (
;macro:;
;macro:;
gray; De Lannoy et al., 2014) and PEATCLSMNorth,Nat (
;macro:;
;macro:;
orange; Bechtold et al., 2019). Note the different axes for (b) because no K(h) data was available
for natural tropical peatlands.

the high macropore flow rates in the acrotelm for PEATCLSMNorth,Nat, alongside the KS408

(Section 2.2.3) that represents flow in the catotelm. Despite the absence of a clear acrotelm-409

catotelm structure in tropical peatlands, similar high macropore flow rates are observed410

in the upper soil layers of tropical peatlands. The KS,macro parameter is a peat property411

but also includes overland flow in hollows, which makes it a property of the entire peatland412

system rather than just a peat soil property. Cobb and Harvey (2019) reported an estimated413

KS,macro of 73 m s-1 (6.3 x 106 m day-1) at 0.17 m above the base of the hollows, which,414

based on our microtopographic standard deviation for natural peatlands (see Section 2.2.2),415

almost corresponds to our surface reference (z = 0) and thus makes this the KS,macro,z=0.416

However, to fit the Ivanov Q function (Equations 3 and 4) to the Q function of Cobb and417

Harvey (2019), a much lower KS,macro,z=0 of 7.3 m s-1 for PEATCLSMTrop,Nat was used.418
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The Q function of Cobb and Harvey (2019) was derived from the specific yield, based on 
the main rising and recession curves (response of water level to P rate), using the Laplacian 
of the peat surface elevation of a peat dome in Brunei. In PEATCLSMTrop,Nat, the Ivanov 
Q function was kept for consistency with PEATCLSMNorth,Nat, but the parameters of the 
function were fitted to the field-based Q function of Cobb and Harvey (2019). Figure 6a 
shows both the Q function of Cobb and Harvey (2019) and the fitted PEATCLSMTrop,Nat 
Q function (m parameter value of 3), which are almost indistinguishable.

For drained peatlands, the Q function of Ivanov is not suitable. In case of drainage, 
Q is strongly influenced by the ditch depth and density (Gong et al., 2012). A water level 
rise above the bottom of the ditch generates saturated subsurface flow perpendicular to the 
ditch, where it is efficiently removed by open-channel flow (Guertin et al., 1987; Gong et al., 
2012). Therefore, the Dupuit-Forchheimer Q function for an unconfined aquifer (Guertin et 
al., 1987; Gong et al., 2012) was used for PEATCLSMTrop,Drain as follows:

Q(z̄WL) = 0, if z̄WL ≤ zditch

= 4KS,hrz (zditch − z̄WL)
2 Lditch

wstrip
, if 0m > z̄WL > zditch

= 4KS,hrz (zditch)
2 Lditch

wstrip
−
( z̄WL

dt

)
, if z̄WL ≥ 0m

(5)

where Q(z̄WL) is the water level-dependent discharge (m day-1), z̄WL is the mean grid426

cell water level (m), zditch is the ditch depth (m), KS,hrz is the mean saturated horizontal427

hydraulic conductivity (m day-1), Lditch is the total ditch length per drained area (m m-2),428

wstrip is the ditch interval length (m), and dt is the time step (day). The Dupuit-Forchheimer429

Q function (Equation 5) is well established to describe the discharge of drained peatlands,430

and its four drainage-related parameters were set to median values based on literature.431

KS,hrz was set at 52 m day-1 based on Katimon (2002), Firdaus et al. (2010), Firdaus et al.432

(2012), Ghimire et al. (2018), and Kurnianto et al. (2019). The median parameter value433

for Lditch (= 0.0318 m m-2) was based on Dadap et al. (2021), and the mean wstrip (=434

31.4 m) was based on its inverse relationship to Lditch. The mean zditch (= -0.68 m) was435

obtained from measurements in acacia, rubber and oil palm plantations, and intensively436

logged forests (Ritzema et al., 1998; Hooijer et al., 2006; Wösten et al., 2008; Biancalani et437

al., 2014; Carlson et al., 2015; Evans et al., 2019). The average model drainage parameters438

result in a constant drainage efficiency as is observed in the field, because of regular and439

sporadic ditch maintenance and deepening by plantation companies and local farmers that440

keeps pace with peat subsidence.441

To quantify the impact of the parameter variability on Q, a Monte Carlo analysis (105
442

simulations) was performed using distributions for three out of four parameters, as dis-443

cussed in Appendix A1. Figure 6b shows that the median Monte Carlo simulation (dashed444

line) closely corresponds to the simulation with the median parameter values (solid line).445

The PEATCLSMTrop,Drain Q function (mm day-1) is also compared to measurements re-446

ported by Katimon (2002). The comparison data are daily Q and water level measure-447

ments (1986-1994) that were quality checked and, to mitigate measurement noise, averaged448

with a 3-day moving window. Most of the comparison data lies within the 95% CI of the449

PEATCLSMTrop,Drain Q function, although the reported drainage level of -1.60 m allows for450

much larger Q rates at lower water levels (Figure 6b).451

2.2.5 Evapotranspiration: Plant Drought and Waterlogging Stress452

The nonvascular plants (Sphagnum mosses) that often dominate northern peatlands453

show abrupt drying for a small water level drawdown. The vascular vegetation of tropical454

peatlands is much less sensitive to a water level drop, and only experiences drought stress455

at lower water levels. The PEATCLSMTrop,Nat and PEATCLSMTrop,Drain drought stress456

functions were revised. A waterlogging stress function was added to PEATCLSMTrop,Nat to457

represent reduced transpiration at high water levels in natural tropical peatlands (Hirano et458
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Figure 6. (a) The PEATCLSMTrop,Nat discharge function (green; mm day-1) obtained by fit-
ting the function of K. E. Ivanov (given in Romanov, 1968) to the discharge function of Cobb
et al. (2017) (blue; indistinguishable from fit). (b) The PEATCLSMTrop,Drain discharge function
(solid line; mm day-1) and its 95% CI obtained by a Monte Carlo simulation with distributions of
the Dupuit-Forchheimer parameters. The PEATCLSMTrop,Drain discharge function was compared
against the median Monte Carlo simulation (dashed line), and 3-day averaged in situ Q(z̄WL) data
from (Katimon, 2002).

al., 2015). Since artificial drainage consistently lowers the water level to an ideal, vegetation-459

dependent level, we did not implement a waterlogging stress function for PEATCLSMTrop,Drain.460

The PEATCLSMTrop plant drought and waterlogging stress functions are shown in461

Figure 7, and are based on the eddy covariance-derived ET and water level data (2004-2007)462

from undrained (Figure 7a) and drained (Figure 7b) peat swamp forests (Hirano et al., 2015),463

for PEATCLSMTrop,Nat and PEATCLSMTrop,Drain, respectively. The net radiation (Rnet)464

data showed a steep, consistent drop during part of the dry season of 2006, probably due465

to large amounts of haze from peatland fires (Hirano et al., 2015). Therefore, the period466

covering September 25 through October 11, 2006, was filtered from both ET data sets467

(drained and undrained peat swamp forest). To limit the seasonal effects of the potential468

ET (ETpot), the in situ ET was rescaled (ET/ETpot). The ETpot was calculated with469

MERRA-2 data using the method of Priestley and Taylor (1972) as described by Maes et470

al. (2019). A biome-specific multiplicative factor (αPT) of 1.09 (suggested for evergreen471

broadleaf forests by Maes et al., 2019) was chosen and is in line with temporal αPT values472

found by Hirano et al. (2015).473

For PEATCLSMTrop,Nat (Figure 7a), the plant drought and waterlogging stress func-474

tion, and the two water level breakpoints were fitted as a piecewise (segmented) linear475

regression, dividing the data into two stress zones, and one no stress zone. Plant drought476

stress occurs at water levels lower than -0.70 m, which is turned off with rising water levels477

and shifts into a plant waterlogging stress function for water levels higher than -0.29 m. For478

PEATCLSMTrop,Drain, the fitted plant drought stress function was obtained through piece-479

wise (segmented) linear regression, with a breakpoint at -1.54 m, dividing the data into a480

plant drought stress zone at water levels lower than the breakpoint, and a no stress zone481

for higher water levels (Figure 7b). Despite being the best estimate available, depending482

on the drained peatland vegetation cover this plant drought stress breakpoint might vary.483

Comparison of Figures 7a and 7b shows that the mean ET/ETpot in the no stress zone484

is about 0.1 lower for the drained than the undrained peat swamp forest of Hirano et al.485

(2015).486

In CLSM, the areal fraction for which plant transpiration is shut off (i.e., Fwilt), is
defined by the fraction of the spatial root-zone soil moisture distribution that is at the
wilting point. This is not appropriate for peatlands because most water level fluctuations
occur in (or close to) the 1-m root zone of CLSM and a 1-m root zone is too deep for shallow-
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Figure 7. Plant stress functions for both PEATCLSMTrop modules. (a) Derivation of the plant
drought and waterlogging stress functions for PEATCLSMTrop,Nat from rescaled daily in situ ET
data (ET/ETpot; from Hirano et al. (2015) for the period 2004-2007). Plant waterlogging stress
occurs at a water level higher than -0.29 m and plant drought stress occurs at water levels lower
than -0.70 m. (b) Derivation of the plant drought stress function for PEATCLSMTrop,Drain from
ET/ETpot (drained peat swamp forest from Hirano et al. (2015) for the period 2004-2007). Plant
drought stress occurs for water levels lower than -1.54 m. ET/ETpot values larger than one are the
combined result of ET measurement errors and the imperfect MERRA-2 derived ETpot.

rooted trees in peatlands (Hirano et al., 2015). However, for operational applications of the
current CLSM version, making the root-zone thickness spatially variable would be a too
invasive structural change. Therefore, similar to Bechtold et al. (2019), we calculated the
Fwilt using plant drought stress functions that depend on bz̄WL for PEATCLSMTrop. The
breakpoints in the PEATCLSMTrop,Nat plant drought stress function (Figure 7a) were used
to link Fwilt and z̄WL as follows:

Fwilt = 0, if z̄WL > −0.70m

= −0.89z̄WL − 0.63, if − 0.70m ≥ z̄WL > −1.82m

= 1, if z̄WL ≤ −1.82m

(6)

and for PEATCLSMTrop,Drain the plant drought stress function was implemented as:

Fwilt = 0, if z̄WL > −1.54m

= −0.76z̄WL − 1.18, if − 1.54m ≥ z̄WL > −2.85m

= 1. if z̄WL ≤ −2.85m

(7)

The PEATCLSMTrop,Nat waterlogging stress function was implemented as an addi-
tional environmental stress term in the canopy resistance (rc) calculation (Equation 8;
Koster & Suarez, 1996). The unstressed canopy resistance (rc−unstressed) is the resistance
to plant transpiration in optimal environmental conditions (Koster & Suarez, 1996). The
rc−unstressed is a function of land cover-type dependent parameters and photosynthetically
active radiation. In non-optimal conditions, environmental stress terms are smaller than
one and increase the rc, reducing the vegetation transpiration. Adding the waterlogging
stress term resulted in the following equation for the rc calculation:

rc = rc−unstressedF
−1
temperatureF

−1
waterlogging, (8)
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where Ftemperature is the environmental stress related to temperature, and Fwaterlogging is
the waterlogging stress function that was implemented as:

Fwaterlogging = 1, if z̄WL ≤ −0.29m

= 1− (0.29 + z̄WL)

0.64
, if − 0.29m < z̄WL ≤ 0.35m

= 0, if z̄WL > 0.35m

(9)

showing that waterlogging stress initiates at a water level of -0.29 m and linearly changes487

to zero (note the use of Fwaterlogging in the calculation of rc) when the water level reaches488

0.35 m.489

The slope and range of the waterlogging stress function in Equation 9 and Figure 7a are490

different, because the waterlogging stress function applied in the rc calculation (Equation 9)491

only accounts for a plant transpiration reduction, whereas the waterlogging stress function492

in Figure 7a shows a plant transpiration reduction that is partially compensated by an in-493

creased soil evaporation. The soil evaporation increase only partially compensates the plant494

transpiration reduction because this evaporation does not occur from a free-standing water495

surface but underneath a (dense) canopy layer, and is therefore smaller than the plant tran-496

spiration reduction. Because of this difference between the waterlogging stress function in497

Figure 7a and in Equation 9, the latter was adjusted. The breakpoint at which waterlogging498

stress initiates (-0.29 m) was kept but the range over which the waterlogging stress occurred499

was set to 0.64 m, which is four times the microtopographic standard deviation used in500

PEATCLSMTrop,Nat (0.16 m), because a water level of 0.35 m corresponds to waterlogging501

of almost all hummocks (Figure 4a).502

2.3 Study Region and Model Setup503

The three study regions of this research cover the major tropical peatland regions in504

Central and South America, the Congo Basin, and Southeast Asia, shown in Figure 3.505

For each of the three study regions, simulations with CLSM and PEATCLSMTrop,Nat were506

conducted. Over Southeast Asia, an additional simulation with PEATCLSMTrop,Drain was507

performed to account for the large fraction of drained tropical peatlands there. An additional508

simulation with the PEATCLSMNorth,Nat model setup from Bechtold et al. (2019) was con-509

ducted, but with vegetation input parameters that pertain to the three tropical regions, i.e.,510

including the mean seasonal cycle of satellite-based LAI (vegetation input parameter) and511

the broadleaf evergreen land cover type (instead of needleleaf trees and grassland input used512

in Bechtold et al. (2019)). Table 1 shows an overview of the model configurations, relevant513

parameters, and boundary conditions for CLSM and the three PEATCLSM modules.514

All simulations were separately spun up for ten years (from 1 January 1990 through 31515

December 1999), which is sufficient to reach equilibrium for tropical peatland regions (data516

not shown). The subsequent daily output from 1 January 2000 through 31 October 2020 was517

used for evaluation. All simulations were run at a spatial resolution of 9-km on the Equal518

Area Scalable (EASE) grid, version 2.0 (Brodzik et al., 2012). To determine whether a grid519

cell was peat or not, we used a peatland distribution that is a combination of the PEATMAP520

distribution from Xu et al. (2018) and peat distribution of De Lannoy et al. (2014) that,521

over tropical latitudes, corresponds to the Harmonized World Soil Database version 1.21522

(HWSD1.21). A 9-km pixel was entirely treated as peat when the combined peat fraction,523

for that pixel, was greater or equal to 0.5. Meteorological forcing was taken from the524

hourly 0.5◦ x 0.625◦ (latitude-by-longitude) resolution MERRA-2 reanalysis product with525

gauge-based P corrections (Reichle, Liu, et al., 2017). Over tropical regions, the MERRA-2526

meteorological forcing data, P in particular, are prone to larger errors than in other regions527

(Reichle, Draper, et al., 2017; Reichle, Liu, et al., 2017), and this will inevitably affect the528

accuracy of our simulations.529
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2.4 Model Evaluation530

2.4.1 In Situ Observations531

An extensive data set with in situ observations from all three study regions (Figure 3;532

and Table B1) was compiled to evaluate water level and ET estimates from the CLSM,533

PEATCLSMNorth,Nat and PEATCLSMTrop simulations. The evaluation data sets consist of534

the following sites in natural peatlands: 5 sites (1 with eddy covariance data) in Central535

and South America, 4 sites in the Congo Basin, and 30 (1 with eddy covariance data) in536

Southeast Asia. Furthermore, 57 sites (1 with eddy covariance data) were available for537

drained peatlands in Southeast Asia. The five sites in Central and South America and the538

four sites in the Congo Basin are the result of averaging water level data from multiple sites539

within local clusters of highly-correlated water level time series. The local averaging ensured540

that over the data-sparse regions (Central and South America, and the Congo Basin) the541

model evaluation is regionally more balanced. The eddy covariance-derived ET data of the542

two Southeast Asian sites (the undrained and drained peat swamp forests from Hirano et543

al. (2015)) was used to derive the plant drought and waterlogging stress functions in Section544

2.2.5. It was also used (same period but including the haze period of 2006, see Section 2.2.5)545

to evaluate model ET improvements for these sites.546

The evaluation data set was established from peer-reviewed literature data, either ob-547

tained through direct contact with the authors or manual digitization from the literature548

source, or from publicly available databases. The “Wild Fire and Carbon Management in549

Peat-Forest in Indonesia" project from the Science and Technology Research Partnership for550

Sustainable Development (SATREPS) provides publicly available, frequently updated wa-551

ter level data (http://kalimantan88.sakura.ne.jp/fire2015/fire2015home.html) that552

was manually digitized. Real-time (at daily, hourly, or sub-hourly temporal resolution) water553

level data for peatlands in Indonesia are available from the “Sistem Pemantauan Air Lahan554

Gambut" (SIPALAGA) project (https://sipalaga.brg.go.id/), and were obtained daily555

since February 4, 2019. The eddy covariance-derived ET data from the Quistococha palm556

swamp forest reserve in Peru (73◦19’8"W, 3◦50’4"S) were obtained from the AmeriFlux557

network (https://ameriflux.lbl.gov/sites/siteinfo/PE-QFR).558

The various external data sources provide data of different quality. Data from peer-559

reviewed literature, the SATREPS project, and AmeriFlux were assumed to be quality560

checked. The water level data from each monitoring site of the SIPALAGA project were561

manually quality checked, discarding clearly unreliable sites or periods of data. The retained562

SIPALAGA sites were classified as natural or drained based on Google Earth images, and563

uncertain sites were left out. If the surface reference height (hollow, hummock, or somewhere564

in between) of the water level measurements was available, it was, if necessary, shifted to565

the model surface reference height (mean between hummocks and hollows) using the micro-566

topographic standard deviation for natural and drained peatlands from Section 2.2.2. If no567

information on the surface reference height of the water level measurements was available,568

the model surface reference was assumed. The temporal frequency of the water level data569

ranged from consistent sub-daily to irregular weekly measurements. Sub-daily measure-570

ments were averaged to daily data and all water level data were compared to daily averaged571

model output. All eddy covariance-derived ET data were half-hourly measurements. The572

half-hourly latent heat measurements (W m-2) were converted to ET measurements (mm573

(30min)-1) using a latent heat of water vaporization of 2.43 MJ kg-1 and aggregated to daily574

values. Model evaluation against soil moisture data was not performed due to a lack of575

sufficient sites with in situ soil moisture time series.576

2.4.2 Spatial and Temporal Evaluation577

The CLSM and PEATCLSMTrop models were spatially evaluated and compared us-578

ing 20-year average (1 January 2000 through 31 December 2019) estimates of hydrological579

variables for the peat area of all three study regions (Figure 3). Over Southeast Asia,580
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581

582

583

PEATCLSMTrop,Nat and PEATCLSMTrop,Drain were spatially evaluated assuming all peat 
soil pixels to be natural or drained, respectively. Developing a map that would enable a 
spatio-temporal separation of natural and drained peatlands over our 20-year period was 
beyond the scope of this paper.584

A temporal evaluation was performed for CLSM, PEATCLSMNorth,Nat and both PEATCLSMTrop585

versions against in situ observations time series ranged from 2000 to 2020, with different586

lengths and periods within the time range for various sites. In line with Bechtold et al.587

(2019), we considered the same five skill metrics:588

1. Bias: difference between simulated and observed temporal means (model-minus-589

observation)590

2. RMSD: root-mean-squared difference between simulated and observed time series591

3. ubRMSD: unbiased RMSD, i.e., after removing the bias from the simulated time series592

4. R: temporal Pearson correlation coefficient between simulated and observed time se-593

ries594

5. anomR: temporal anomaly Pearson correlation coefficient between simulated and ob-595

served data, calculated after removing the mean climatology from the simulated and596

observed time series. The mean climatology is the multiyear (3-year minimum) aver-597

age of 31-day smoothed time series of daily values. This removal of seasonal correla-598

tion due to meteorological forcing allowed us to evaluate the model’s interannual and599

short-term dynamics.600

The requirement of a three-year minimum of data to calculate the anomR reduced601

the number of sites in the water level evaluation to zero in Central and South America,602

two natural sites in the Congo Basin, and seven natural and four drained sites in Southeast603

Asia. The anomR was not calculated for ET data. Each skill metric is provided with its 95%604

confidence interval (CI) that takes temporal autocorrelation into account (as in De Lannoy605

& Reichle, 2016). Skill metrics and CIs were averaged for all sites within a study region,606

and for Southeast Asia an average of natural and drained sites was calculated separately.607

The CI averages were divided by the square root of the number of sites per study region,608

assuming that each site added independent information.609

3 Results610

3.1 Spatial Patterns of Hydrological State Variables and Fluxes611

3.1.1 Water level and Soil Moisture612

Figure 8 shows the 20-year mean and standard deviation of z̄WL and θ5cm for CLSM and613

PEATCLSMTrop for the peatlands of all three study regions. Figure 8a shows that CLSM614

simulates lower mean z̄WL (〈z̄WL〉) with a larger spatial variation than PEATCLSMTrop,Nat615

for each region. It also shows that the Congo Basin has the lowest 〈z̄WL〉 and Southeast Asia616

the highest 〈z̄WL〉 in both simulations. PEATCLSMTrop,Drain simulates a 〈z̄WL〉 of -0.8 m617

over Southeast Asia. In South America the tropical highland peatlands of the Andes moun-618

tains are much drier than surrounding tropical lowland peatlands. Figure 8b illustrates that619

the temporal standard deviation of z̄WL (σz̄WL
) over Central and South America decreases620

from 1.09 m for CLSM to 0.31 m for PEATCLSMTrop,Nat. The σz̄WL
reduction over the621

Congo Basin is less than over Central and South America, and Southeast Asia, turning the622

Congo Basin from the region with the lowest σz̄WL
value (0.95 m) for CLSM to the region623

with the largest σz̄WL
value (0.44 m) for PEATCLSMTrop,Nat.624

The 20-year mean and standard deviation of θ5cm, i.e., 〈θ5cm〉 and σθ5cm are shown in625

Figures 8c and 8d, respectively. The 〈θ5cm〉 was larger and had smaller spatial variability in626

PEATCLSMTrop,Nat simulations than in CLSM simulations for every region (Figure 8c), with627

a 28% increase in 〈θ5cm〉 over the Congo Basin. For PEATCLSMTrop,Drain, the 22% decrease628
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in 〈θ5cm〉 over Southeast Asia stands out. Figure 8d shows that σθ5cm slightly decreases over629

each region from CLSM to PEATCLSMTrop,Nat. The σθ5cm of PEATCLSMTrop,Drain over630

Southeast Asia is much lower than the σθ5cm of PEATCLSMTrop,Nat in all three regions.631

3.1.2 Runoff Efficiency, Evapotranspiration Efficiency and Bowen Ratio632

Tropical ombrotrophic lowland peatlands mostly receive water and nutrient input through633

P. Because the change in water storage becomes negligible compared to ET and total runoff634

(Q; both surface and subsurface runoff) over long time scales, the long-term partitioning635

of P into ET and Q determines the water balance, and thus the local hydrologic behavior.636

The link between long-term ET and Q is essential in LSMs (Koster & Milly, 1997; Koster637

& Mahanama, 2012; Koster, 2015). Therefore, Figure 9 shows the spatial patterns of 20-638

year mean runoff efficiency (〈Q〉/〈P〉; Figure 9a), evapotranspiration efficiency (〈λE〉/〈Rnet〉;639

Figure 9b), and Bowen ratio (〈H〉/〈λE〉; Figure 9c). Despite substantial changes in z̄WL,640

PEATCLSMTrop only marginally changes the three flux ratios over Central and South Amer-641

ica, and Southeast Asia. The Congo Basin already had the smallest 〈Q〉/〈P〉 for CLSM, and642

the value further decreases by 19% in PEATCLSMTrop,Nat (Figure 9). This decrease is in643

line with the other ratios for the Congo Basin indicating a smaller Q and complementary644

larger ET.645
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Figure 9. The 20-year (1 January 2000 through 31 December 2019) mean (a) runoff efficiency
(〈Q〉/〈P〉), (b) evapotranspiration efficiency (〈λE〉/〈Rnet〉), and (c) Bowen ratio (〈H〉/〈λE〉) for
CLSM and PEATCLSMTrop simulations over the 3 study regions: (left) Central and South America,
(middle) the Congo Basin, (right) Southeast Asia. For Southeast Asia, both PEATCLSMTrop,Nat

and PEATCLSMTrop,Drain are shown. The titles provide the spatial mean (m) and standard devi-
ation (sd). Note the inverse color bar in (c).
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3.2 Evaluation With Field Observations646

3.2.1 Water level647

Figure 10 presents the average model skill metrics at evaluation sites with water level648

data (Figure 3; Appendix B1). Data from 39 sites in natural peatlands are used to eval-649

uate CLSM, PEATCLSMNorth,Nat, and PEATCLSMTrop,Nat, whereas data from 57 sites in650

drained peatlands are used to evaluate CLSM, PEATCLSMNorth,Nat, and PEATCLSMTrop,Drain.651

The skill metrics for the CLSM and PEATCLSMTrop simulations for each of the 96 sites652

with water level data are provided in Appendix B2.653

A large bias, RMSD and ubRMSD for CLSM (Figure 10) confirm that CLSM simulates654

an average z̄WL that is too low in Central and South America, and the Congo Basin, and655

fluctuations in z̄WL that are too large in all three regions. PEATCLSMTrop, as well as656

PEATCLSMNorth,Nat, drastically reduces the average bias, ubRMSD and RMSD, and their657

corresponding CIs for all regions. CLSM has an extremely large average bias and RMSD658

over the Congo Basin that is strongly improved by PEATCLSMTrop, but the model skill of659

PEATCLSMTrop,Nat for the Congo Basin remains considerably worse than for the other re-660

gions. PEATCLSMNorth,Nat slightly outperforms PEATCLSMTrop,Nat over the Congo Basin661

with a smaller absolute bias, RMSD, and ubRMSD. However, over Southeast Asia, the662

absolute bias was smaller compared to PEATCLSMNorth,Nat. PEATCLSMNorth,Nat and663

PEATCLSMTrop,Drain had similarly improved the simulations over CLSM for the drained664

sites in Southeast Asia, but PEATCLSMTrop,Drain did additionally reduce the absolute bias665

by 0.37 m compared to PEATCLSMNorth,Nat. In terms of R, PEATCLSMTrop improves the666

skill compared to CLSM over Central and South America, the Congo Basin, natural sites667

in Southeast Asia, and drained sites in Southeast Asia, resulting in a R improvement of668

0.02, 0.07, 0.07 and 0.13, respectively (Figure 10d). Figure 10e shows that PEATCLSMTrop669

significantly improves the anomR for natural (0.73) and drained (0.68) sites in Southeast670

Asia, though the average anomR over the Congo Basin remained low (0.04), which is likely671

due to the poor meteorological forcings over this region.672
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Figure 10. The water level (a) bias, (b) root-mean-squared difference (RMSD), (c) unbiased
root-mean-squared difference (ubRMSD), (d) time series correlation coefficient (R), and (e) anomaly
time series correlation coefficient (anomR) with the 95% CI for CLSM, PEATCLSMNorth,Nat and
PEATCLSMTrop simulations (PEATCLSMTrop,Nat (green) and PEATCLSMTrop,Drain (pink) over
natural and drained sites, respectively), evaluated separately for each study region: Central and
South America (CSA), the Congo Basin (CO), and natural (SEAN) and drained (SEAD) peatlands
in Southeast Asia. The evaluation sites and their skill metrics are shown in Appendices B1 and B2,
respectively.

To illustrate model and regional differences in simulated z̄WL dynamics, a compari-673

son against water level timeseries from a representative evaluation site for each region (for674

Southeast Asia both a natural and drained site) is shown in Figure 11. The sites had to675
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span at least one year of data and be in line with the average model skill metrics for that 
region. Once again, the unrealistic z̄WL  fluctuations (both positive and negative) of CLSM 
stand out for each site. Figures 11e and 11g show that CLSM simulates long periods of 
z̄WL  > 0 m. In CLSM, values of z̄WL  > 0 m do not represent real flooding as CLSM does 
not allow water to pond at the surface, but instead it indicates that a large fraction of the 
soil in the pixel is saturated. In situ data shows flooding only for the site in Figure 11a. By 
contrast, PEATCLSMTrop does not simulate z̄WL  > 0 m, but only ponding in hollows up 
to the mean surface elevation (z̄WL  = 0 m). PEATCLSMTrop still simulates too low z̄WL  
during the dry season (timing differs across regions), especially PEATCLSMTrop,Nat over 
Central and South America, and the Congo Basin, and PEATCLSMTrop,Drain over South-
east Asia. PEATCLSMNorth,Nat reduces these too deep z̄WL  during the dry season over 
Central and South America, and the Congo Basin but simulates too shallow z̄WL  during the 
dry season for a natural site in Southeast Asia. Figure 11h shows that PEATCLSMNorth,Nat 

consistently overestimates z̄WL, and is outperformed by PEATCLSMTrop,Drain.

3.2.2 Daytime Evapotranspiration

Only three sites with eddy covariance measurements over tropical peatlands were avail-
able to evaluate the ET simulation skill of CLSM, PEATCLSMNorth,Nat and PEATCLSMTrop. 
Figure 12 compares the daily modeled and observed ET time series for one site in Peru, 
and a natural and drained site in Indonesia. The ET data of the two sites in Indonesia 
were also used to derive the PEATCLSMTrop plant stress functions (Section 2.2.5), which 
should be considered when evaluating model results. For all three sites, PEATCLSMTrop in-
creases the correlation coefficient compared to CLSM, especially at the natural (Figure 12d) 
and the drained (Figure 12f) sites in Indonesia. PEATCLSMTrop,Nat slightly improved 
the correlation coefficient for both natural sites compared to PEATCLSMNorth,Nat (not 
shown), whereas for the drained site PEATCLSMTrop,Drain and PEATCLSMNorth,Nat per-
formed equally well. Both CLSM and PEATCLSMTrop simulate too large ET, except for 
the natural site in Indonesia, where CLSM has a small positive bias of 0.06 mm day-1 (Fig-
ure 12c), and PEATCLSMTrop,Nat underestimates ET by 0.22 mm day-1 (Figure 12d). For 
the natural and drained site in Indonesia, PEATCLSMTrop,Nat and PEATCLSMTrop,Drain 
show major improvements in the late dry season of dry (El Niño) years, better following the 
steep drop of in situ observed ET for the natural and drained site in Indonesia, respectively. 
PEATCLSMTrop,Nat improves the absolute bias in ET over PEATCLSMNorth,Nat from 0.82 
mm day-1 to 0.70 mm day-1 and from -0.24 mm day-1 to -0.22 mm day-1 for the natural 
peatland sites in Peru and Indonesia, respectively. PEATCLSMNorth,Nat did reduce the ab-
solute bias over PEATCLSMTrop,Drain from 0.51 mm day-1 to 0.60 mm day-1 for the drained 
site.

4 Discussion

4.1 Regional Differences in Model Performance

The Congo Basin appears as the driest simulated region with the largest σz̄WL  for both 
CLSM and PEATCLSMTrop,Nat (Figure 8), and with the largest negative water level bias 
(too dry simulations) compared to in situ data (Figure 10). The area is relatively drier, 
because the mean annual P in the Congo Basin is ±1700 mm yr-1 (Samba & Nganga, 
2012), which is considerably lower than other tropical peatland regions (Iquitos, Peru,
±3000 mm yr-1 (Marengo, 1998); Central Kalimantan, Indonesia, ±2900 mm yr-1 (Susilo 
et al., 2013)). Furthermore, Figure 11d illustrates that the main dry bias in water level 
by PEATCLSMTrop,Nat occurs during the dry season. This possibly excludes that the sim-
ulations would be too dry due to missed lateral water input from river flooding. Dargie 
et al. (2017) also indicates that the Congo Basin is mostly fed by P, whereas flooding by 
rivers is only of secondary importance. Davenport et al. (2020) support the presumption 
of shallowly domed peatlands in the Congo Basin, making it even more likely to mainly be725
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a rainfed peatland complex. They assume a doming gradient of ± 3 m per 40 km, which 
is a very gentle slope compared to gradients of 20 m per 40 km (Page et al., 1999) or 7 m 
per 14 km (Cobb et al., 2017) in Southeast Asian peatlands. Assuming similar microtopog-
raphy and peat properties, a gentler sloped peat dome reduces water flow compared to a 
peat dome with a steeper gradient, which means that a natural Congolese peat dome has 
much smaller discharge at high water levels than the PEATCLSMTrop,Nat discharge function 
derived from an Indonesian peat dome. A separate discharge function could be obtained 
from new field research or by tuning the current PEATCLSMTrop,Nat discharge function 
to the water level data. The very low simulated 〈Q〉/〈P〉 for the Congo Basin (Figure 9a) 
illustrates that compared to Southeast Asia or Central and South America (apart from the 
peatlands in the Andes mountain range) the relative simulated Q in the Congo Basin is even 
smaller than expected from the lower P. Burnett et al. (2020) estimated the 〈Q〉/〈P〉 based 
on a water balance model and obtained a slightly higher average (from 2003 through 2015) 
value of 0.22 for the entire Congo Basin (including peatlands). Accurate representation of 
the regional peatland hydrology over the Congo Basin is necessary, especially because the 
Congolese rainforest is, on average, much drier than the tropical rainforests in Central and 
South America, and Southeast Asia, making it more water-limited during the dry season 
and even more vulnerable to changes in rainfall patterns (Jiang et al., 2019). Besides im-
proved parameterization, more accurate simulations in the Congo Basin will also require an 
improvement in the meteorological forcing data for this region (see Section 4.4).

The Central and South American peatlands display a lot of variability in the simulated 
wetness (Figures 8a and 8c), with wet peatlands around the Amazon River and in Central 
America, but drier peatlands in the northern Andes of Venezuela and Colombia, and at 
the coastlines of the Guianan moist forest. The tropical highland peatlands in the north-
ern Andes mountains have a very different, and altitude-dependent, climate, vegetation, 
and hydrology (Chimner et al., 2019; Benfield et al., 2021) compared to the ombrotrophic 
lowland peatlands that were used to derive PEATCLSMTrop,Nat parameters. The Andean 
peatlands have a much lower P and a near-zero Q, resulting in the extremely low 〈Q〉/〈P〉 in 
Figure 9a. The unrealistically low z̄WL  and θ5cm, and the mere fact that PEATCLSMTrop 
was developed to simulate the hydrology of tropical ombrotrophic lowland peatlands, indi-
cate that this module is not optimal to simulate the diverse hydrology of tropical highland 
peatlands. However, PEATCLSMTrop,Nat did simulate a high average z̄WL  that is close to 
the -0.2 m average measured by Benavides (2014) in 13 natural highland tropical peatlands 
at the Iguaque massif. The in situ water level of the Peruvian site shown in Figures 11a 
and 11b rises almost 1 m above the  surface during the wet season. The discharge function 
of PEATCLSMTrop,Nat (Figure 6a) limits the z̄WL  to rise above the mean surface elevation. 
But for some peatlands, intense rainfall events and river flooding can cause water levels 
above the mean surface elevation (Lawson et al., 2014). Removal of the flood period for 
two evaluation sites improved the overall PEATCLSMTrop,Nat skill over Central and South 
America, increasing R from 0.42 to 0.50 and reduced the bias from -0.14 m to -0.09 m. 
Lawson et al. (2014) and Kelly et al. (2014) did mention that flooding of such an extent is 
exceptional, and that these peatlands might flood up to 0.2 m above the surface during a 
normal wet season. Only 2 out of the 29 Southeast Asian evaluation sites over natural trop-
ical peatlands showed temporary surface inundation events that reached heights of about 
0.5 m, always at the end of the wet season. Lähteenoja et al. (2009) and Schulz et al. (2019) 
showed that peatlands in the Peruvian Amazon have a distinct and variable hydrology: 
some are almost purely rainfed (what we simulate with PEATCLSMTrop), others are sea-
sonally flooded for several months or occasionally flooded but mainly rainfed, which is not 
captured by our global model scheme. Although combining PEATCLSM with information 
on the surrounding landscape (e.g., river routing as done by (Getirana et al., 2012)) could 
partially overcome the difficulty of parametrizing the influence of external water input in 
minerotrophic peatlands, the diversity of Amazonian peatlands makes a spatial map that 
distinguishes between peatland types unlikely to be developed in the near future.
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PEATCLSMTrop,Drain decreased 〈z̄WL〉 and 〈θ5cm〉 compared to CLSM in Southeast 
Asia, whereas the PEATCLSMTrop,Nat increased the wetness in all regions. Both improve-
ments better correspond with water level data from evaluation sites. The decrease in 〈z̄WL〉 
for PEATCLSMTrop,Drain is partly due to a dry-season overestimation of Rnet (see Section 
4.4). A reduction in θ5cm for PEATCLSMTrop,Drain was also expected from the hydraulic 
properties and discharge function (Figure 6b), preventing the z̄WL  from reaching values 
much higher than -0.4 m (Table 1). This -0.4 m ‘limit’ results in much smaller θ5cm fluc-
tuations, which translates into a σθ5cm value for PEATCLSMTrop,Drain that is much lower 
than all other σθ5cm values. Hooijer et al. (2012) showed that peat drainage increases bulk 
density (i.e., decreases porosity) up to a depth of ± 0.5 m below the surface, but does not 
have a strong impact on the bulk density of deeper peat layers (shown in Figure 1c).

4.2 Model Structure and Parameter Limitations

The regional differences in model performance highlight that a better spatial differenti-
ation between ombrotrophic and minerotrophic peatlands, highland and lowland peatlands, 
and the inclusion of lateral water input from river flooding could improve the simulations. 
The well-studied peatlands in Southeast Asia are mostly ombrotrophic domes (Page et al., 
2006), but a great diversity of tropical peatland types in the less well-studied regions of 
Central and South America and Africa is likely (Lähteenoja et al., 2009; Dargie et al., 
2017).

Although the degree of artificial drainage varies spatially and in time, we approximated 
the effects of drainage using a single set of representative parameters, similar to how veg-
etation with different surface energy exchange characteristics is combined in a single LSM 
land cover type. The discharge function of PEATCLSMTrop,Drain (see Section 2.2.4, and 
Figure 6b) was developed using information on drainage canals in Southeast Asian peat-
lands (Dadap et al., 2021). This map of drainage canals could be used to develop a spatially 
varying discharge function for PEATCLSMTrop,Drain, but also to spatially distinguish be-
tween natural and drained peatlands using a threshold. However, the map only represents 
current drainage canals and doesn’t take local canal management into account. Although 
land use has been mapped over time (Miettinen et al., 2016), drainage is not always well-
coordinated with it (Dadap et al., 2021), making the drainage map’s usefulness for long 
simulation periods uncertain.

In addition to a better horizontal description of land surface processes, a more detailed 
vertical representation of the peat profile could improve local simulations. A proper de-
scription of the peat hydraulic properties in the acrotelm suffices, if water level fluctuations 
are mainly limited to the top meter (like in natural northern peatlands), but when water 
level fluctuations in deeper layers occur frequently, deep layer peat properties are needed 
to accurately describe the hydrological behavior. In natural tropical peatlands, most water 
level fluctuations occur in the upper 0.5 m of soil, but field data show that during dry sea-
sons the water level can decline to -1.5 m (Figure 11f). Similar and even larger fluctuations 
occur in drained peatlands and here the large differences in peat properties between upper 
and lower peat layers result in a different hydrology. Including depth-specific soil properties 
in PEATCLSMTrop could partially reduce the too low simulated z̄WL  during the dry sea-
son (Figures 11b, 11d, 11f, and 11h), and possibly improve the simulation dynamics (e.g., 
better timing of z̄WL  rise during dry season) even further. However, even if such a layering 
were included, our parameter sets consist of ‘average’ parameters derived from a handful of 
literature sources. Currently, data on peatland properties around the world are insufficient 
to develop vertically and horizontally differentiated parameter maps, similar to those used 
for mineral soils.
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4.3 The Need for a Tropical Peatland-Specific Model Structure and Parametriza-827

tion828

The additional simulation with PEATCLSMNorth,Nat allowed an evaluation of the possi-829

ble benefit of PEATCLSMTrop over PEATCLSMNorth,Nat for both natural and drained trop-830

ical peatlands. PEATCLSMNorth,Nat and PEATCLSMTrop,Nat similarly improve the skill831

over CLSM for natural tropical peatlands in all three regions and show similar differences832

in performance across regions (Figure 10). The differences in ubRMSD, R and anomR be-833

tween PEATCLSMNorth,Nat and PEATCLSMTrop were minor (Figure 10) because the same834

basic model structure, meteorological input, and the adoption of the same vegetation input835

parameters from tropical peatlands were applied in the PEATCLSMNorth,Nat simulations.836

The newly implemented structural changes (i.e., waterlogging stress in PEATCLSMTrop,Nat,837

and the Dupuit-Forchheimer discharge function in PEATCLSMTrop,Drain) and parameter up-838

dates of PEATCLSMTrop did not induce major improvements in the water level skill metrics839

compared to PEATCLSMNorth,Nat.840

Despite the fact that the overall improvements of PEATCLSMTrop over PEATCLSMNorth,Nat841

are minor, it can be argued that PEATCLSMTrop is more appropriate and has a more ro-842

bust structure in certain circumstances and for specific output variables. PEATCLSMTrop843

reduced absolute water level bias compared to PEATCLSMNorth,Nat over both natural and844

drained tropical peatlands in Southeast Asia (Figure 10). This reduction occurs in particular845

during dry periods (Figures 11f and 11h), when peatlands are most vulnerable and accurate846

water level simulations are crucial for fire risk and carbon modeling. Except for the bias of847

the drained site, PEATCLSMTrop outperformed PEATCLSMNorth,Nat in the ET evaluation848

(Section 3.2.2). The main improvements of PEATCLSMTrop,Nat over PEATCLSMNorth,Nat849

occurred at the beginning of the dry season due to the adapted Fwilt (Section 2.2.5); however,850

more eddy covariance data is needed to properly evaluate this. The simulated surface (and,851

to a lesser extent, root-zone) soil moisture dynamics differed between PEATCLSMNorth,Nat852

and PEATCLSMTrop (not shown) and are likely due to the different hydraulic properties853

(Figures 5e and 5f). Due to the lack of sufficient in situ measurements, an evaluation of854

surface or root-zone soil moisture content was not conducted.855

Furthermore, our results show that both PEATCLSMNorth,Nat and PEATCLSMTrop,Nat856

perform poorly over Central and South America, and the Congo Basin, whereas the avail-857

ability of data to parametrize PEATCLSMTrop in Southeast Asia led to a better model858

performance in this area. This suggests that peatland modules of Earth system models859

would ideally be specifically developed or tuned for each tropical peatland type or region -860

and that improvements of PEATCLSMTrop,Nat over PEATCLSMNorth,Nat in tropical regions861

outside of Southeast Asia would indeed be seen if adequate data for this regional tuning862

were available and the necessary structural model changes were made.863

4.4 Meteorological Forcing Data Uncertainties864

Some shortcomings of our simulations are not due to model structure limitations or lack865

of literature data to constrain parameters, but due to inaccurate meteorological forcing data.866

The MERRA-2 gauge-based corrected P is of poor quality over tropical regions, especially867

over the Congo Basin (Reichle, Draper, et al., 2017; Reichle, Liu, et al., 2017). The low868

NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Global Daily869

Precipitation (CPCU) gauge count over Africa, resulted in a MERRA-2 P correction with the870

coarse spatial scale CPC Merged Analysis of Precipitation (CMAP) product for the continent871

(Bosilovich et al., 2016; Reichle, Liu, et al., 2017). Reichle, Liu, et al. (2017) showed that the872

mean annual MERRA-2 observation corrected P followed the CPCU gauge count, i.e., low873

annual P in years with low CPCU gauge count, and vice versa. Despite the rather constant874

gauge count over time, the very low gauge density resulted in an average spacing of 400875

km between gauges in Central Africa, which is far from sufficient in a region dominated876

by convective (high spatial variation) rainfall (Reichle, Liu, et al., 2017). Comparison of877
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PEATCLSMTrop,Nat z̄WL  time series against in situ water level revealed that sometimes 
the simulated z̄WL  reaches the surface at the start of the wet season with a delay of about 
a month. This occurred when dry season simulated z̄WL  was too low, but also when the 
dry season simulated z̄WL  was reasonably accurate or even too high. The initiation and 
drawdown of the simulated z̄WL  is in line with, and at a similar pace as, that of the in 
situ water level data, and so is the initiation of the simulated z̄WL  rise. However, when 
large, local P events at the beginning of the water level rise are not well captured by the 
coarse resolution of MERRA-2, the pace of the simulated z̄WL  rise becomes too slow. An 
evaluation of uncertainties in PEATCLSMTrop model predictions caused by uncertainty in 
forcing data is left for future research.

Inaccurate meteorological variables that drive ET, resulted in additional uncertain-
ties for the PEATCLSMTrop,Drain simulation. Figure 11h displayed an underestimation by 
PEATCLSMTrop,Drain simulated z̄WL  during the dry season, for one specific site. However, 
this PEATCLSMTrop,Drain dry season underestimation occurs for most sites, and strongly 
contributes to the average negative bias of -0.15 m over 57 evaluation sites (Figure 10a) 
for PEATCLSMTrop,Drain. Comparison of PEATCLSMTrop,Drain simulated ET to eddy 
covariance-derived ET (Figure 12f) showed a slight model overestimation during the wet 
season, and despite the improvements compared to CLSM, PEATCLSMTrop,Drain strongly 
overestimated ET during the dry season. For the drained peat swamp forest site from 
Hirano et al. (2015) the model (MERRA-2) Rnet and vapor pressure deficit are on average 
(2004 through 2007) 7.79 W m-2 (5.2%) and 0.22 kPa (28.2%) lower than the in situ data, 
which should indicate lower model than eddy covariance-derived potential ET and does not 
explain the underestimation of z̄WL.

Further analysis of the meteorological variables that drive ET provided insight into this 
discrepancy. Figure 13 compares the in situ and model ETpot, and in situ and model Rnet 
against the in situ measured water level for the drained peat swamp forest from Hirano 
et al. (2015) for the period 2004 through 2007. We used the Priestley-Taylor method to 
estimate ETpot based on in situ and simulated temperature, as explained in Section 2.2.5. 
A locally weighted scatterplot smoothing (LOWESS) fit and corresponding 95% CI (using 
bootstrapping) were calculated for each subplot of Figure 13. The model Rnet and ETpot 
in the wet season (high water level) are slightly underestimated, but the strong decrease in 
observed Rnet and ETpot in the dry season (low water level) is not captured by the model 
forcing data, which reaches its highest Rnet and ETpot values in the late dry season. Hirano 
et al. (2015) concluded that the in situ observed Rnet (and resulting ETpot) decrease was 
due to smoke or haze. When comparing the haze-induced reduction of Rnet with MERRA-2, 
we can see that this reduction is not captured.

Aerosol emissions from biomass burning in MERRA-2 are derived from the Reanalysis 
of the Tropospheric Chemical Composition, version 2 (Schultz et al., 2008), the Global Fire 
Emissions Database, version 3.1 (van der Werf et al., 2006), and the Quick Fire Emission 
Dataset, version 2.4r6 (QFED-2.4.r6; Darmenov & da Silva, 2015). According to Darmenov 
and da Silva (2015), emissions from smoldering and peat fires with low thermal signature 
are not well captured, resulting in an underestimation of the QFED-2.4.r6 over Southeast 
Asia. They refer to the large-scale fires in the dry season of 2006 (also see Figures 11f and 
12), and the difficulty that QFED-2.4.r6 has with capturing the extent of such an extreme 
event in peatlands. This underestimation of aerosols in MERRA-2 for smoldering peat fires 
results in an overestimation of ETpot and thus adds to the z̄WL  dry-bias during the dry 
season.

PEATCLSMTrop improves the ET simulations for the three eddy covariance sites. An 
increase in R and a decrease in the high positive bias, except for a slightly larger negative 
bias in Figure 12d, clearly illustrates that for these three sites PEATCLSMTrop outperforms 
CLSM. However, no robust conclusions about ET dynamics can be drawn based on only 
three evaluation sites, that cover a limited time range, and given the fact that the data from929
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Figure 13. Comparison of the (a) in situ and (b) model ETpot, and (c) in situ and (d) model
net radiation (Rnet) to the in situ water level (m) for the drained peat swamp forest from Hirano
et al. (2015) (114◦2’10"E, 2◦20’46"S). Daily values for four years (from 1 January 2004 through 31
December 2007) are shown together with the locally weighted scatterplot smoothing (LOWESS) fit
(black line) and corresponding 95% CI (blue area).

the two sites over Southeast Asia were also used to derive the plant drought and waterlogging930

stress functions (Section 2.2.5).931

5 Conclusions932

The original PEATCLSM module (i.e., PEATCLSMNorth,Nat) was developed by Bechtold933

et al. (2019) to include the peat-specific land surface hydrology of ombrotrophic natural934

northern peatlands in the GEOS CLSM. In this research, we adapted and extended the935

PEATCLSMNorth,Nat module to better simulate the hydrology of natural (PEATCLSMTrop,Nat)936

and drained (PEATCLSMTrop,Drain) tropical peatlands. Literature-based parameter sets for937

both PEATCLSMTrop modules were developed without parameter tuning, and two struc-938

tural changes were realized. The PEATCLSMTrop,Nat module was extended with a plant939
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waterlogging stress function to describe reduced plant transpiration at very high water lev-
els, and the PEATCLSMTrop,Drain discharge was described using the Dupuit-Forchheimer 
function. PEATCLSMTrop is the first large-scale hydrological LSM scheme for tropical 
peatlands.

The development of model parameters and robust evaluation for tropical peatlands is 
restricted by the limited data availability. Nevertheless, PEATCLSMTrop parameter sets 
were developed with data from tropical ombrotrophic lowland peatlands in Southeast Asia, 
and an evaluation data set of water level and ET measurements in Central and South Amer-
ica, the Congo Basin and Southeast Asia was compiled. Recent global peatland mapping 
efforts (Gumbricht et al., 2017; Xu et al., 2018), the description of the Cuvette Centrale 
peatland complex in the Congo Basin (Dargie et al., 2017), and the recognition of the value 
and mitigation potential of tropical peatlands (Page, Rieley, & Banks, 2011; Wijedasa et al., 
2017; Leifeld & Menichetti, 2018; Loisel et al., 2021) might accelerate much-needed research 
and data collection over tropical peatlands, especially in Central and South America, and 
the Congo Basin, in the near future.

PEATCLSMTrop,Nat, PEATCLSMNorth,Nat and CLSM simulations were run from 2000 
through 2020 over three study regions, i.e., for peatlands in Central and South America, the 
Congo Basin and Southeast Asia, and supplemented with a PEATCLSMTrop,Drain simulation 
over Southeast Asia. A comparison of 20-year averaged spatial patterns of hydrological 
variables, and an evaluation against in situ water level and ET data over all three study 
regions showed that:960

1. CLSM simulated too low z̄WL with unrealistic fluctuations, which were strongly re-961

duced in PEATCLSMTrop simulations (Figures 8a and 8b);962

2. PEATCLSMTrop skill strongly differed between regions, although improvements rel-963

ative to CLSM were generally comparable for all regions;964

3. both CLSM and PEATCLSMTrop,Nat simulated the lowest z̄WL and θ5cm for the965

Congo Basin;966

4. the large variability of simulated hydrological variables within Central and South967

American peatlands mainly relate to spatial climate variability for the different re-968

gions; and969

5. PEATCLSMTrop,Drain improved dynamics of both z̄WL and θ5cm simulations, which970

results in a lower water level ubRMSD and RMSD, and higher R at drained sites than971

for CLSM. The bias is also strongly reduced compared to PEATCLSMNorth,Nat and972

PEATCLSMTrop,Nat.973

All PEATCLSMTrop parameter sets were derived from data collected in Southeast Asian974

ombrotrophic lowland peatlands and may not be representative for all tropical peatland re-975

gions. Some parameters might benefit from further global or local tuning as more data976

becomes available. A full sensitivity analysis is left for future research. Furthermore, rather977

than tuning parameter values, some peatland types or regions could benefit from the imple-978

mentation of more type- or region-specific functions. For example, the very gentle doming979

of peatlands in the Cuvette Centrale complex and the slower water level recession of the980

in situ data (Figure 11d), both suggest that a discharge function different from what is981

currently implemented in PEATCLSMTrop,Nat might improve model simulations over the982

Congo Basin. Furthermore, the elementary structure of CLSM and its input parameters983

was kept to allow possible integration of PEATCLSMTrop in the operational GEOS CLSM984

framework at full spatial coverage. Including a vertical layering of the root zone (0-100 cm)985

with depth-specific peat properties and a spatial diversification of the hydraulic parameters986

for various peatland types could, however, further improve our PEATCLSMTrop modules.987

PEATCLSMTrop,Nat and PEATCLSMNorth,Nat introduced a similar skill improvement988

compared to CLSM for natural tropical peatlands in all three regions. However, over South-989

east Asia, PEATCLSMTrop,Nat showed larger water level skill improvements during droughts990

–33–



991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

(i.e., when the peatlands are most vulnerable), owing to the availability of extensive data 
from this area to constrain the model parameterization. The poor performance of both 
PEATCLSMNorth,Nat and PEATCLSMTrop,Nat over Central and South America, and the 
Congo Basin shows that peatland modules can be further improved through parameter ad-
justments with literature data and the implementation of new model structural changes 
(e.g., coupling to river stage and the effect of flooding during the wet season).

Currently, Southeast Asian peatlands are simulated with PEATCLSMTrop as either 
all natural (PEATCLSMTrop,Nat) or all drained (PEATCLSMTrop,Drain). A drainage map 
that separates natural from drained peatlands over time (dynamic drainage map) would 
allow us to simulate only the drained peatlands with PEATCLSMTrop,Drain and the natural 
ones with PEATCLSMTrop,Nat. As Bechtold et al. (2019) already suggested, a module 
for drained northern peatlands (PEATCLSMNorth,Drain) is needed to accurately model the 
role of peatlands in the global water and carbon cycles. In this research, we showed that 
following the same approach as for natural peatlands, a PEATCLSMNorth,Drain module could 
be achieved by developing a separate parameter set for northern drained peatlands, though 
drainage and water management practices are very diverse (Bechtold et al., 2014).

Our spatially and temporally continuous 9-km simulations were evaluated against water 
level and not against θ5cm, because in situ soil moisture data were not sufficiently available. 
However, remote sensing allows estimation of θ5cm, which can be linked to the water level in 
systems with high water levels like peatlands, where the θ5cm and water level are strongly 
coupled (Dadap et al., 2019; Bechtold et al., 2020). Bechtold et al. (2020) recently showed 
that correlation between measured and estimated water level increased after data assimila-
tion of Soil Moisture and Ocean Salinity (SMOS) brightness temperature (Tb) over northern 
peatlands using PEATCLSMNorth,Nat. Data assimilation of Tb into PEATCLSMTrop could 
combine a specific hydrological scheme for tropical peatlands with microwave radiative trans-
fer modeling (De Lannoy et al., 2013; Schwank et al., 2018), allowing us to develop a new 
data assimilation product of soil moisture and water level conditions in tropical peatlands 
with an unprecedented accuracy, covering all tropical peatland areas.

With the development of PEATCLSMTrop, we integrated peat-specific hydrology mod-
ules for natural and drained tropical peatlands into a global LSM for the first time. These 
modules facilitate the integration of tropical peatland hydrology into Earth system mod-
els, possibly resulting in better understanding and projecting current and future global C 
fluxes (Loisel et al., 2021; Müller & Joos, 2021). Peatland hydrology and C dynamics are 
intrinsically linked, including in tropical peatlands where water level dynamics are the main 
force driving long-term peat C sequestration (Couwenberg et al., 2010; Cobb et al., 2017; 
Dargie et al., 2017). A survey of 44 peat experts conducted by Loisel et al. (2021) found 
that the increasing uncertainty in the peat C dynamics for the future is partly due to the 
lack of models that estimate the effect of (changing) critical drivers, such as the water level. 
These PEATCLSMTrop modules offer a first step towards reducing this uncertainty, and 
can establish a better understanding of how tropical peatlands might respond to a changing 
climate.1031
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Appendix A Propagation of parameter uncertainty in the Dupuit-Forchheimer1032

equation using Monte Carlo simulations1033

The PEATCLSMTrop,Drain Q function was derived from the Dupuit-Forchheimer func-1034

tion of Gong et al. (2012), and uses four drainage-related parameters. These parameters1035

have strong variability, impacting the Q, and therefore, a Monte Carlo analysis of 105 sim-1036

ulations was conducted with distributions for 3 of the 4 parameters. A normal distribution1037

(Figure A1a) was fitted to 73 zditch values (Ritzema et al., 1998; Hooijer et al., 2006; Wösten1038

et al., 2008; Biancalani et al., 2014; Carlson et al., 2015; Evans et al., 2019) obtained from1039

measurements in acacia plantations, rubber plantations, oil palm plantations, and inten-1040

sively logged forests. Figure A1b shows the Lditch Weibull distribution that was fitted to1041

162 Lditch measurements from regions that were manually labeled by Dadap et al. (2021).1042

The wstrip is inversely related to the Lditch, therefore in each simulation the value of wstrip1043

was directly derived from the Lditchvalue.1044

Figure A1. Distributions of two parameters of the Dupuit-Forchheimer function, (a) ditch depth
(zditch; in m), and (b) ditch length (Lditch; in m m-2), with their corresponding distribution fit.
The ditch interval length (wstrip; in m) is derived from the Lditch distribution fit.
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Appendix B Overview of the Evaluation Sites and Skill Metrics1045
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