
Fault Detection and Diagnosis in Spacecraft Electrical
Power Systems

Marc A. Carbone∗

NASA Glenn Research Center, Cleveland, Ohio 44135

and

Kenneth A. Loparo†

Case Western Reserve University, Cleveland, Ohio 44106

https://doi.org/10.2514/1.I011136

The ability to accurately identify and isolate failures in the electrical power system (EPS) is critical to ensure the

reliability of spacecraft. This paper proposes a novel solution to the problem of fault detection and diagnosis in direct

current (DC) electric power systems for spacecraft. Autonomous operation becomes essential during deep space

missions that lack the ability to monitor and control the spacecraft from ground locations. The current state of EPS

fault supervision is insufficient to guarantee highly reliable operation. To solve this issue, a combination of model-

based and knowledge-based techniques are used in a hierarchical framework to improve the diagnostic performance

of the system. Noise, disturbances, and modeling errors are considered in the design of the fault detection system.

Practical considerations related to spacecraft flight hardware and software are accounted for in the system design for

flight applications. To assess the functionality of the design, a wide array of failures are simulated in a series of

experiments. The experiments showed that the technique improved the capability of the autonomous system by

increasing the number of fault types diagnosed. The significance of this study is to provide a framework capable of

advanced diagnostics of an EPS with little to no interaction from human operators.

Nomenclature

F = set of possible faults, f, in a given system
G = input distribution matrix
H = output matrix
K = Kalman gain matrix
P = error covariance matrix
u = vector of control variables
v = vector of random measurement errors
w = vector of random variables
x = vector of state variables
Y = admittance matrix
z = vector of output variables (measurements)
Γ = noise distribution matrix
η = standardized innovation sequence
ν = innovation sequence
ρ = density
Φ = state transition matrix

Subscript

k = discrete time step

I. Introduction

S PACE agencies around the world, including NASA, along with
domestic and international partners, are working to solve the

challenges of deep space exploration [1]. The increased distance
between Earth-based mission control and the spacecraft will signifi-
cantly increase communication delays and hamper ground-based
communications and control. For example, communications from
Earth to a Mars-based spacecraft are expected to take between 6 and

44 min round trip [2]. Further, even for crewed missions, the crew
would not be able to carry out all of the necessary functions per-
formed by mission control today due to the increasing complexity of
the spacecraft. To solve these problems, higher levels of vehicle
autonomy will be required to carry out the functions of deep space
vehicles that have previously been done from the ground.
The electrical power system (EPS) of a spacecraft is one of the

spacecraft systems that require improved automation to function
in the deep space environment. The primary function of an electric
power system is the reliable generation, transmission, and distri-
bution of electric power to meet a randomly variable demand [3].
The same requirements are amplified for the electric power systems
onboard spacecraft due to the increased risks associated with human
space travel. A critical component of power system control is the
ability to detect and diagnose faults quickly and accurately to serve
critical loads and to prevent catastrophic blackouts on the spacecraft.
Current efforts in fault detection and diagnosis (FDD) for spacecraft
EPS relies on automatic protection and closemonitoring fromground
support personnel to diagnose any anomaly in the system. To make
supervision a part of the autonomous control system several enhance-
ments have to be made to the existing approaches. The current me-
thods of supervision can be improved significantly by considering
the information hidden in all measurements and automatic control
actions that keep the system operational [4]. Current efforts in ad-
vanced direct current power system control includeNASA’sGateway
[5,6] and the lunar surface [7]. While DC microgrids present new
opportunities for the future grid, the standards for control and man-
agement of DC microgrids require further development [8].
The core principle of power system operation is to maximize its

reliability inmeeting the load demand atminimumcost. The enabling
technology to assure a high degree of reliability is fault detection,
isolation, and recovery. A fault can be defined as an unintended
deviation of at least one characteristic property or parameter of the
system from the acceptable/usual/standard operating condition [9].
The process of fault supervision takes place in two steps. First, fault
detection is defined as the binary decision to recognize that a fault
occurred. Second, fault diagnosis is the task of finding the cause and
location of the fault [4]. This paper addresses the FDD challenge
within the context of DC microgrids on spacecraft. The goal of FDD
is to achieve a quick and accurate diagnosis of the faulty components,
facilitate decision making for corrective actions, and ensure timely
responses to faults that can prevent component deterioration and
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performance degradation. The ability to make optimal reconfigura-
tion decisions is largely dependent on the speed and accuracy of the
detection and diagnosis. The task of fault diagnosis is made more
challenging due to the wide variety of fault types that can lead to the
degradation and failure of the power system. Faults in the sensors,
actuators, communications, or controller can be obscured or ampli-
fied by closed-loop control, leading to inability to detect and diagnose
the fault or damage to the system creating a dangerous environment
for nearby humans. Therefore, there is a demand for more advanced
supervisory functions responsible for identifying faults and taking
action to maintain operation and avoid further damage [10].
Historically, research in FDD for aerospace EPS systems has uti-

lized several approaches, including theBayesian approach [11,12], the
interacting multiple-model technique [13,14], optimization-based
methods [15], the constraint suspension approach [16], and Kalman-
filter-based methods [17]. More recent efforts in identifying faults
in other aerospace subsystems include Ref. [18], which uses ma-
chine learning, a Kalman observer, and a decision tree to detect sensor
failures; Ref. [19], which uses machine learning techniques to detect
errors in aircraft actuation systems; and Ref. [20], which compares
knowledge-based, model-based, and machine-learning-based appro-
aches to identify multicopter rotor failures. Photovoltaic (PV) and
power converter FDD is performed inRef. [21] using an autoregressive
modeling technique and in Ref. [22] using a model-based digital twin
technique. Recursive least squares and an adaptive Kalman filtering
(AKF) method are developed in [23] to detect series arc faults in DC
distribution lines. DC arc faults are also diagnosed in [24], where an
unknown input observer (UIO) method is used to diagnose the faulted
line. System-level protection in DC microgrids for short-circuit faults
and power electronic switches is achieved in [25] using a bank of
H-infinity observers. Active-model-based fault diagnosis is applied
to reconfigurable battery systems using the sigma point Kalman filter
(SPKF) in [26]. Another Kalman-filter-based method is used to detect
sensor faults in battery packs in [27]. This approach worked well
for single faults of various types within a battery system consisting of
battery cells, switches, and bus bars. In Ref. [28] a data-driven method
using fuzzy Bayes risk and support vector machine is applied to the
problem of satellite EPS fault diagnosis rather than model-based meth-
ods due to the unnecessary computational complexity of the current
state-of-the-art. Interactingmultiple-model estimation is applied to sin-
gle and double faults in [29]. The current literature does not address
some of the critical features needed for spacecraft EPS fault detection.
The current gaps in the literature necessitate that enhanced methods
shouldbe capable of 1) diagnosing awide array of fault types (including
the components, sensors, and communication system), 2) diagnosing
multiple faults in series, and3)operatingat realistic spacecraft telemetry
update rates. These gaps serve as the motivation for this paper. Table 1
summarizes the performance characteristics of this paper with the
previous works in the literature.
The unique contributions of this paper are as follows. First, the

diagnostic engine can diagnose a wide range of fault types, including
faults in the lines, switches, sensors, and communication system. The
existing approaches are designed to support a very limited number of
fault types,making them inflexible and limited in their applications in

real-world scenarios. Rather than having several algorithms running
to detect the wide array of possible faults, a single, comprehensive

method is derived to distinguish between similar fault types. Second,
the application is tailored for spacecraft EPS where only low telem-
etry update rates (1–10 Hz sampling frequency) are available. Many

of the existing techniques rely on high-frequency data (>1 kHz). The
proposed method addresses this issue through a hierarchical design
that detects and isolates harmful faults quickly at the lower level of the

controller, and diagnoses small and subtle faults at the higher level.
Third, the proposedmethod provides the ability to adapt as the system
evolves or degrades, especially in the context of cascading faults and

failure events. This work demonstrates the ability to adapt the system
model to continue monitoring for faults during 1) known changes to
the system structure (e.g., changes in the distribution system top-
ology), and 2) changes to the state of the system (e.g., existing faults

in the system). Thus, allowing the controller to continue diagnosis
after one or more faults have occurred. Fourth, due to the stringent
computational requirements of spacecraft flight computers, super-

visory algorithms have limited processing capability. In the classi-
cal multiple-model formulation for FDD, each fault model is tested
in parallel when a fault is detected. The technique presented in this

paper differs from other model-based approaches by reducing the
number of parallel filters needed for testing using the lower-level
algorithms. Information from the local devices provides informa-

tion to the central controller, allowing it to limit the number of
models passed through to the hypothesis testing function. This is
accomplished through the unique integration of limit-checking
and multiple-model-based techniques. The model generation, fault

hypothesis, and decision-making functions developed in this paper
are responsible for coordinating the two techniques and improving
the overall diagnostic capability of the FDD system. The advantages

of the technique proposed in this paper to the existing body of
research for the application of spacecraft EPS are as follows:
1) The ability to detect and diagnose a wide variety of EPS faults,

including sensors, actuators, communications, and power electronics
2) Dynamic model generation to adapt to changes in the system

structure or parameters
3) The ability to detect and diagnose multiple faults in sequence
4) Reduction in computational complexity compared to existing

model-based techniques
The proposed solution in this paper is based on the fundamental

concept of hierarchical control that decomposes the control system

functions into primary (local), secondary (supervisory), and tertiary
(adaptive) layers.Local control requires the fastest time response as it is
responsible for maintaining stability and dynamically managing dis-
turbances, Supervisory control coordinates systemwide interactions to

achieve optimal performance objectives, and adaptive control provides
fault-tolerant behavior by modifying system control and performance
objectives to respond to changes in operating conditions, such as those

caused by faults and large disturbances. The proposed solution inte-
grates knowledge-based systemswith advancedmultiple-model-based
techniques in a way that increases the ability to detect and diagnose

many fault types, while reducing overall computational complexity.
The main features of this design are 1) direct layer algorithms that use

Table 1 Performance comparison of FDD approaches

Work Application Approach Telemetry frequency
FDD of

components
FDD of
sensors

FDD of communication
system

Maximum sequential
faults diagnosed

[22] PV systems Digital Twin 500 kHz, 0.1 Hz Yes Yes No 1
[23] DC cables RKF, AKF 100 kHz Yes No No 1
[24] DC cables UIOs 200 kHz Yes No No 1
[25] DC microgrids H-inf observers 1 MHz Yes No No 1
[26] Battery systems Model based 25 Hz Yes Yes No 1
[27] Battery systems Model based — — No Yes No 1
[28] Satellite EPS Data driven cont. Yes No No 1
[29] F/A-18 aircraft Multiple model 10 Hz Yes Yes No 2
This work Spacecraft EPS Hybrid 1 Hz, 5 Hz Yes Yes Yes 34

AKF, adaptive Kalman filtering; DC, direct current; EPS, electrical power system; FDD, fault detection and diagnosis; PV, photovoltaic ; RLS, recursive least squares; UIOs,

unknown input observers.
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local measurements to facilitate time requirements to isolate harmful
faults, 2) supervisory layer algorithms that use systemwide data and
contain the advanced diagnostic techniques that are needed to reliably
diagnose low-magnitude faults of all types, and 3) an adaptive model
generation approach that lowers the computational complexity needed
at the supervisory level while maintaining diagnostic accuracy. Lim-
itations on the spacecraft communications and computation equipment
result in reduced measurement update rates to the controller. For
example, the system proposed in this work relies on 5 Hz communi-
cations in the direct layer, and 1 Hz updates in the supervisory layer,
which is typical of space flight communications hardware. Although
this paper focuses on the application of FDD to space-based DC
microgrids, the system can be adapted to a wide range of industrial
applications that require high reliability, including terrestrial power
systems, naval shipboard power systems, and autonomous vehicles.
Machine learning techniqueswere not used in thiswork as they present
new challenges related to validation and verification for flight-rated
systems; however, they could be added to this framework as an area of
future research.
The remainder of this paper is organized as follows: Section II

formulates the problem of FDD. Section III outlines the algorithms
and structure of the supervisory tool. Section IV discusses the
strategy to diagnose faults in sequence. Lastly, Sec. V provides
conclusions and remarks about the strengths andweaknesses of the
approach.

II. Fault Detection andDiagnosis: ProblemFormulation

The objective of FDD is to identify the (normal or faulted) state of
an engineering system or process. More formally, fault or anomaly
detection can be defined as a hypothesis testing problem [30], where
the normal operation of the system is regarded as the null hypothesis.
Data from the actual system are tested against the null hypothesis at a
certain statistical significance threshold. The results of the tests can
be used to determine the operational (normal or faulted) behavior of
the system. After the occurrence of a fault is detected, the next step is
then fault diagnosis. Together, these define FDD.
Consider a process with measurable input u�t� and output z�t�

vectors. At any point of operation, a fault f�t� can occur. Faults may
occur due to a number of external factors, such as changes in environ-
mental conditions (e.g., humidity, temperature, electromagnetic radi-
ation), or internal causes like worn components, short circuits, leaks,
andoverheating, amongothers.The faults cause changes in the process

operating conditions that can be modeled as changes in parameters
Φ�t� by ΔΦ�t� and/or internal state variables x�t� by Δx�t�. These
changes lead to a change in the output z�t� by Δz�t�. It can be in-
creasingly difficult in closed-loop systems to detect and diagnose
faults, as changes in the output (Δz�t�) can quickly be masked due
to the feedback; however, permanent changes in Δu�t� can be ob-
served. System noise, disturbances, and modeling errors can corrupt
z�t�, making FDD more challenging.
Due to the wide variety of potential fault types, more robust

techniques are necessary to correctly diagnose and react to faults in
a timely manner. A fault may be classified into one of the following
three categories based on the way it has appeared in the system:
1) Abrupt (sudden) faults
2) Incipient (slowly developing) faults, i.e., drift faults
3) Intermittent faults
Abrupt faults appear when a significant change in a parameter or

behavior has occurred rapidly. Often abrupt faults occur in systems
where failures need to be detected early enough to prevent cata-
strophic damage or collapse of the entire system by fast corrective
action. Incipient faults, however, are commonly associated with
maintenance problems where early detection of worn equipment is
required. In this situation faults are not catastrophic and typically
difficult to detect, but the detection time is of less importance. Lastly,
intermittent faults appear and disappear over time, making detection
and diagnosis additionally challenging. A controlled process can be
decomposed into three parts: actuators, system dynamics, and sen-
sors (as shown in Fig. 1). Faults in these three parts of the system can
occur, causing different behavior in the output or measurements z�t�.
Examples of actuator faults include lock-in-place faults, hard-over
faults, and float faults. Sensor faults can occur inmany forms, such as
bias faults, drift faults, hard-over faults, noise faults, stuck faults,
calibration faults, and spike faults. Component faults are specific to
the physics of the process, and therefore it is difficult to define
common types. More details on fault type definitions can be found
in [31].

III. Proposed FDD Methodology

The proposed hierarchical approach consists of two layers. The
primary layer represents the device level of the EPS, where local data
for components (i.e., switch-gear, power electronics, etc.) are col-
lected and analyzed. In the primary layer, a bank of physics-based
limit checks are used to quickly and accurately isolate harmful faults
and faults easily detected by local data. The secondary layer of the
controller resides at the global level of the controller, where telemetry
from each of the spacecraft EPS components is collected. Here, a
multiple-model dynamic state estimation approach is used to detect
low-magnitude faults and sensor faults, and provide additional con-
firmation of faults detected at the device level based on the global
behavior of the system. A block diagram of the hierarchical FDD
method is shown in Fig. 2. The primary control FDD is used to help
reduce complexity at the adaptive level of the system by providing

Actuators System 
Dynamics Sensors

Actuator 
Faults

Component 
Faults

Sensor 
Faults

Control, u(t) Output, z(t)

Fig. 1 Fault types based on process category: actuators, system dynam-
ics, and sensors.

Fig. 2 Architecture of the hierarchical FDD method.
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additional information to the fault hypothesis function responsible

for generating the fault models. The novel feature of this method
is the combination and coordination of the two methods within the

hierarchy through the decision-making engine and fault hypothesis
functions. This produces a diagnostic engine capable of detailed

diagnostic performance using the multiple-model-based approach,
while reducing the overall complexity of the implementation by

using limit checking techniques in the direct layer. This practical
solution is designed to solve the challenges related to spacecraft

EPS fault diagnosis within the constraints of a spacecraft flight
control architecture. The remainder of this section describes the

decision-making process and objectives of the proposed control
system.

A. Physics-Based Limit Checking

Knowledge-based rules for FDD are the most common tech-
niques found in industry due to their simplicity and reliability

[32]. Limit checking is a method often found in practice where
measurements are compared to preset thresholds. Given a scalar

measurement zi�t� from sensor i we can detect faults using the
absolute value check

zi;min < zi�t� < zi;max (1)

where zi;min and zi;max are predetermined fault thresholds for sensor i.
Figure 3 shows an example signal triggering upper and lower alarm

thresholds. Many systems have two levels of alarms, one to indicate
awarning and one for emergency reaction. A limit check can also be

applied to the trend _zi�t� of the measurement zi�t� for sensor i. If the
limit values are set appropriately, the fault alarm can take place

earlier than the absolute value check because the trend provides an
indication of the temporal progression of the signal.
As a general rule, limit checking methods should be based on

the first principles physics of the system. This enables intuitive and

reliable fault detection. Other methods of rule generation based on
“expert knowledge” of the system can also be used but may cause

conflict if the system structure changes. Traditionally, limit check-
ing methods for monitoring and automatic protection are sufficient

for the overall protection of the process; however, to set the correct
tolerances for decision making, compromises must be made to

obtain fast FDD. These methods may also trigger false alarms due
to normal fluctuations in the variables, noise, or disturbances.
In this paper physics-based limit checking is used to simplify

the computational power needed to diagnose faults. The direct layer

of the control system receives measurements at the highest fre-
quency. With high-resolution data, limit checking can be used to

quickly detect faults where systemwide data are not required. This
feature can relieve the computational burden of the supervisory

layer, while supporting the time-critical actions needed in the direct
layer.

B. Estimation-Based Method

Processmodels, estimators, and decisionmethodsmake it possible
to estimate nonmeasurable variables such as process states and
parameters, as well as predicting signals. This technique can be used
to detect faults earlier and locate them more accurately than conven-
tional limit and trend checks [33]. Inmodel-based FDD amathemati-
cal representation of the system is developed based on physical and
statistical information. The model can be categorized in many ways,
such as static or dynamic, linear or nonlinear, continuous or discrete,
and deterministic or stochastic [34].
Most model-based FDD methods rely on analytical redundancy

to determine the probability of faults [35,36] as shown in Fig. 4.
Analytical redundancy is achieved using an explicit mathematical
model as well as sensor measurements from the system. The appeal
of analytical redundancy lies in the fact that additional information
can be extracted from the existing information without adding
physical equipment to the system. The difference between mea-
sured outputs z�t� and the estimated model outputs ẑ�t� define the
estimation error otherwise known as residuals, which may be used
to indicate that a fault has occurred in the system [37]:

e�t� � z�t� − ẑ�t� (2)

Early approaches for FDD using mathematical models were
developed in the mid-20th century (see [10,37–41] for a review).
Among these methods are the fault detection filter [42], the inno-
vation test using a single Kalman filter [34,43], banks of Kalman
filters (or Luenberger observers) [44,45], the parity space method
[46], and the parameter estimation approach [47].
The method in this paper relies on a multiple-model framework to

diagnose low-magnitude faults and sensor faults. This technique is
well suited for reconfigurable systems and also provides better
diagnostic resolution by using several fault detection filters operating
in parallel, each tailored to represent a particular event. The multiple-
model approach is applied to sensor and actuator failures on the F-16
aircraft in [48]. Real-time monitoring and diagnostics for rotating
machinery using a bank of stochastic nonlinear observers is devel-
oped in [49]. A nonlinear multiple-model filtering algorithm was
used to detect leaks in a laboratory heat exchange process in [50].
This paper expands upon theseworks by considering awider range of
fault types and dynamically generating the systemmodel, allowing it
to adapt to changes in the system states and parameters.

1. Model Generation

Complex behavior of physical systems drives the need for effec-
tive models. Systems never truly operate in the steady state, and
stochastic variations in the process can introduce significant uncer-
tainties in the dynamic behavior of the state and output. The tradi-
tional techniques of steady-state estimation are often unable to
accurately capture the dynamic behavior of the operational envi-
ronment. Newer approaches, such as dynamic state estimation
(DSE), are capable of accurately modeling and tracking changes
in the system states over time [51].
To track the dynamic states of the system, the innovations-based

framework proposed by [34] is used. The mathematical model de-
veloped for the process is based on physical and statistical data.

1
0

1
0

max

min

t

t

t

Upper Alarm 
Threshold

Lower Alarm 
Threshold

z

z

z(t)

Fig. 3 Limit checking of signal z�t�.

Physical 
System

Model

Noise Disturbances
Faults

Outputs

Primary 
Residuals

Inputs

Fig. 4 Analytical redundancy of a physical system.
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All inputs, outputs, and system parameters should be clearly defined.
The nominal model should capture the behavior of the system under
normal operation. To construct the model of the system, consider the
discrete-time linear multi-input–multi-output (MIMO) process

xk�1 � Φxk � Guk � Γwk (3)

zk � Hxk � vk (4)

where xk is an n × 1vector of state variables (subscript k indicates the
time instant), uk is a p × 1 vector of control (input) variables,wk is a
q × 1 vector of random variables, zk is an m × 1 vector of output
variables (measurements or observations), Φ is an n × n state tran-
sition matrix, G is an n × p input distribution matrix, and H is an
m × n output matrix. Γ is an n × q noise distribution matrix, which
modifies theq × 1vector of randomvariableswk and adds to the state
vector, and vk is an m × 1 vector of random measurement errors that
add directly to the output measurements zk. The random vectors wk

and vk are assumed to be independent Gaussian white noise sequen-
ces with known mean and covariance matrices.
The Kalman filter is the best linear mean-square estimator of the

state vector xk given the input variables uk and the measured output
variables zk. If it is assumed that all system parameters and statistics
are known exactly, the innovation sequence of the Kalman filter can
be generated in the following form:

�xk�1jk � Φ� �xkjk−1 � Kkνk� � Gkuk � Γk �wk (5)

x̂0j−1 � x0 (6)

νk � zk −Hkx̂kjk−1 − �vk (7)

Kk � Pkjk−1HT
k �HkPkj−1HT

k � Rk�−1 (8)

Pk�1jk � ΦkPkΦT
k � ΓkQkΓT

k (9)

Pkjk � �I −KkHk�Pkjk−1 (10)

where Pkjj is the error covariance matrix of x̂kjj such that Pkjj �
Ef�xk − x̂kjj��xk − x̂xjj�Tg, and Kk is the n ×m Kalman gain matrix

[52]. The innovation sequence νk is a vector representation of the
difference between the system output measurements and model out-
put estimates.
To support the dynamic generation of the system models, a model

generator function receives real-time data about the system structure
and hypothesized fault information to produce a model of the system
under a particular operating condition. Information about a potential
fault, including the type, location, and magnitude, can all be used to
automatically populate the model. To determine which faults should
be generated, a fault hypothesis function receives fault indications
from the distributed limit-checking method and the output of the
multiple-model-based method. More information about modeling
faults can be found in [4,31]. Themodel generation function is critical
in enabling highly adaptive FDD. This function creates a mapping
between the EPS components and the mathematical model of the
power system, so that changes in the power system (including faults)
can be dynamically added into the model for fault testing. Multiple
faults can be added into the model at once, for diagnosing a power
system with multiple failures.

2. Residual Signal Hypothesis Testing

One of the reasons the Kalman filter is a convenient choice for
FDD is that if the process and model parameter matrices match, then
the statistics of the innovation sequence are well known; that is, the
innovation sequence νk (which can be used as the residuals) is a zero
mean Gaussian white noise sequence with covariance equal to

cov�νk� �
�
HkPkj−1HT

k � Rk

�
(11)

For fault isolation, it is more useful to consider the standardized
innovation sequence

ηk �
�
HkPkj−1HT

k � Rk

�−1∕2νk (12)

where �⋅�−1∕2 represents the square root of the inverse of a matrix so
that

E
�
ηk η

T
j

� � Iδk;j (13)

where I denotes the identity matrix and δk;j denotes the Kro-

necker delta.
The known statistics of the standardized innovation sequence

simplifies the fault hypothesis testing for detecting faults such as
sensor bias, noisy measurements, changes in the level of noise, and
changes in the system parameters. These faults can be identified
using the tests for whiteness, mean, and covariance described in [34].

C. Fault Hypothesis

In the classical multiple-model formulation each known fault
model is tested in parallel when a fault is detected. This approach
is burdensome for large systems with many measurements and fault
types, where the controller must process the many additional com-
putations required by eachmodel added. This additional computation
is impractical for spacecraft flight systems where processing resour-
ces are highly limited. This paper proposes a fault hypothesis func-
tion that is designed to determine the fewest number of faults that
should be analyzed by a fault detection filter. This is achieved using
information from the direct layer algorithms and the residuals of the
normal model filter. To determine the set of fault detection filters, let
F represent the set of possible faults f1; f2; : : : ; fn for a given
system. Then define the setFv to be the set of faults that have already
been verified by the FDD method. The set Fh represents the set of
fault hypotheses that are to be analyzed by the estimator. The objec-
tive of the FDDengine is to 1) use the bank of rules and innovations to
determine which faults should be added to Fh, and 2) verify which
fault(s) from Fh belong in Fv.
When a fault hypothesis f is generated by the direct or adaptive

layers, an asynchronous message is sent to the fault hypothesis
generator that determines which fault models should be generated
and analyzed. The condition for a fault fi to be added to the set Fh is

fi ∈= Fv ∪ Fh (14)

This straightforward but unique feature ensures that the detected fault
has not already been diagnosed and added to the list of verified faults.
It also checks that the fault is not already under analysis and has
previously been added to the list of fault hypotheses. Using the
collection of information of both knowledge-based and model-based
methods, the fault hypothesis function can improve the complete-
ness, resolution, and efficiency of the multiple-model approach.

D. Decision-Making Engine

The decision-making engine is a novel function added to the
adaptive layer that is designed to take the results from the bank of
fault models and decide if 1) a new fault has been detected, or 2) a
fault hypothesis has been verified. The results of the normal model
innovations are used to generate the new fault hypotheses. Tests of
whiteness, mean, and covariance on the innovations are used to
decide which fault type may have occurred [53]. For dynamic state
estimators (filter systems) that do not producewhite noise residuals, a
whitening filter can be used to preprocess the data as shown in [54].
The first objective of the decision-making engine is to determine

if any new fault hypotheses should be generated. System-specific
faults, such as excessive vibration or anomalies in sensor data, may
also cause changes in the mean or covariance. If tests for mean and
covariance fail, a new fault hypothesis is generated that corresponds
to the results of the statistical tests. In addition, a bank of known faults
based on a known direction of the innovation vector, η, are analyzed
in the event of a fault detection. If η̂ (the conditional mean of η) points
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in the direction of one of the known faults, a new fault hypothesis is
generated and added to the set of fault hypotheses,Fh. Faults detected
at this level may require system-wide data that are not available at the
direct layer, such as sensor faults or subtle current leaks in distribution
lines. This unique feature of the FDD method helps reduce the
number of fault models that need to be analyzed and increases the
accuracy of the method through the statistical analysis of the inno-
vations.
The second responsibility of the decision-making engine is to

validate the current state of the system, that is, to determine which
faults (if any) have been validated by the FDD method. To do this,
tests on the mean and covariance of the innovations are applied to
each of the fault detection filters. The fault filter that passes all of the
statistical tests is determined to correspond to a valid fault and is
added to the set of verified faults Fv. Similarly, if faults are removed
from the system, the corresponding systemmodel should be analyzed
and tested to validate the updated fault state of the system.
A challenge in this approach is developingmodels that capture the

unique dynamic behaviors of the system and the qualities of each
fault type to reduce the risk of having multiple fault detection filters
simultaneously pass the innovations tests. Careful considerations
should be taken into account for the design of the fault models to
increase isolability. For many systems, certain faults may appear
indistinguishable depending on available sensor (measurement) data.
In caseswheremore than onemodel passes all of the statistical tests, a
number of actions may be taken. If human operators have direct
access to the system, the remaining fault hypotheses can be sent for
further manual diagnostics. Alternatively, autonomous systems can
use a bank of rules to prioritize certain faults based on operator
experience, historical/reliability data, or fault severity, or by using
an active fault diagnostic approach [55] to probe the system to
generate additional data that can be used to separate the overlapping
fault hypotheses.

IV. Application to Spacecraft DC Microgrid

In this section, the proposedFDDsolution is applied to a spacecraft
power system. The DC electrical system in this study is made up
of interconnected PV arrays controlled by maximum power point
tracking, batteries regulated by DC/DC converters under droop con-
trol, distribution lines and bus bars, and a combination of resistive,
constant power, and alternating current (AC) motor (M) loads. The
design goals for this system are to detect and diagnose awide range of
faults, including line-to-ground faults, distribution switch failures,
and sensor and communication system malfunctions. The level of
criticality of these faults varies; however, each fault type poses a risk
to the overall performance and reliability of themicrogrid. Therefore,
it is important for the diagnostic engine to identify each fault type so
that proper corrective actions can be taken. The FDD design for each
control layer is described below.

A. Direct Level

For the spacecraft application, limit-checking methods and auto-
matic protection are deployed at the direct control level, and switch
failures in the distribution system can easily be detected at this level.
This fault type differs from short-circuit protection, where a low-
impedance path to ground causes a current inrush and a relay to trip.
Instead, a failed switch occurs when the observed state (open or
closed) does not match the physical state of the switch. For example,
a distribution switch may become fused shut and may not respond
to commands to open it. This can lead to power outages and power
flow imbalances. Algorithm 1 is used to detect the failed switches
using physics-based limit checking. Measurements VIN; VOUT; IIN,
and IOUT refer to the input voltage, output voltage, input current, and
output current of each distribution switch, respectively. The state
variable refers to the binary status of the switch (open or closed).
Here, ΔVmax represents the maximum tolerable potential differ-

ence for a closed switch, and Imax represents the maximum tolerable
current that can be observed through an open switch. Both values are
predefined by the systemoperator andmust be set to tolerate the noise
in the measurements.

For highly critical faults that could interrupt EPSoperation, such as
line-to-ground faults, circuit breakers and relays are used to measure
the current and voltage of a particular location and isolate the fault. In
the case of a short to ground, a di/dt-based technique can be used to
detect the fault quickly and reliably. The critical nature of these faults
requires them to use high-frequency measurements at the device
level. Once the fault is detected, the fault information (location, type,
size, etc.) is captured in the device-level controller and sent to the
central controller so that further analysis and reconfiguration can be
performed.
To reduce the number of false alarms generated by the knowledge-

based system, a voting scheme is used to track the number of
consecutive times a fault is detected as shown in Algorithm 2. Any
fault status is checked to see if the fault has been observed r con-
secutive times before passing the fault message to the supervisory
controller. This reduces the occurrence of false fault alarms caused by
noise, disturbances, and modeling errors.

B. Adaptive Level

At the adaptive level of the control system, a linear time-invariant
(LTI) model of the spacecraft power system is generated using the
electrical topology of the distribution network. Modifying the sol-
ution for the AC power flow in [56] produces the nodal DC power
flow equations that are used to generate the admittance matrix Y of
the distribution system as follows:
1)Diagonal elementsYii � sum of admittances connected to bus i.
2) Off-diagonal elements Yin � − (sum of admittances connected

between bus i and n) for i ≠ n.
Then the nodal equations for the distribution system are

I � YV (15)

where I is the vector of currents injected into each bus, and V is the
vector of bus voltages. For bus i the corresponding nodal equation is

Ii �
XN
n�1

YinVj (16)

The real power at any bus i is

Algorithm 1: Switch failed open/
closed

for each switch do
ΔV � jVIN − VOUT j
Iavg � 1

2
�IIN � IOUT�

if ΔV > ΔVmax and state � closed then

FaultDetected(SwitchFailedOpen)
end if
if Iavg > Imax and state � open then

FaultDetected(SwitchFailedClosed)
end if

end for

Algorithm2: Fault detected

if faultTypen ∈ faultMap then

r � NumRepititions�faultTypen�
if r < maxRepititions then

r � r� 1

else

if r � maxRepititions then

PublishFaultToSecondaryControl�faultTypen�
end if

end if

else
faultMap → AddFault�faultTypen�

end if
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Pi � ViIi (17)

These equations are used to generate the output matrix H that
relates the measurements to the state variables. The state of each
distribution switch, Si, is monitored such that

Si �
(
1 if switch i reads closed

0 if switch i reads open
(18)

The admittance model can dynamically adapt to changes in the
distribution system by including the measured switch states into
the model such that

Ii �
XN
n�1

SiSnYinVn (19)

thus allowing the power flow model to represent both connected and
disconnected lines in the model.
Let the state vector xk be defined as the vector of bus voltages in the

power system, xT � �V1; V2; : : : Vn�. Measurement vector zk is the
set of current and voltage measurements in the distribution system at
time k. To make this model of the distribution system applicable to
any DC microgrid, no model of the controller is required. Therefore,
the input vector uk and the matrix Gk are not used in the model. The
state update matrixΦk is equal to an identity matrix.Rk is a diagonal
matrix of the sensor variances. Qk a matrix of zeros when the in-
novations pass the statistical tests. When the innovations fail one or
more of the tests, the process covarianceQk is an identity matrix. The
dynamic process covariance is used to filter out disturbances caused
by the Markovian jump states of the power system that model the
occurrences of faults in the system and also provides optimal data
smoothing in the steady state.

V. Computer Simulation and Results

To verify the performance of the solution, a series of fault tests are
conducted using a simulation of a 120VDC spacecraft electric power
system developed in Mathworks’ MATLAB/Simulink. A one-line
diagram of the system architecture is shown in Fig. 5. The simulation
is generated based on a library of Thevenin equivalent power system
component models and provides accurate, high-frequency character-
istics of the electric power system. Inputs to the simulation include
distribution switch states, battery charge/discharge unit (BCDU)
droop parameters, solar array, and energy storage parameters. The
key power system parameters are given in Table 2. The distribution
line parameters used to generate the FDD admittance matrix are
shown in Table 3. The simulation output consists of the line currents,
node voltages, distribution switch states, and the status of circuit
breakers. To emulate spacecraft telemetry, communications data are
sent to the local device controllers at 5 Hz, and the supervisory level

control receives data at 1 Hz. Note that 171 current and voltage
measurements are available to the controller to perform analysis.
The data are synchronized using a polling technique from an open-
source C++ messaging software. The data from the experiments are
captured from the C++ controller code and visualized using the
MATLAB.
It is important to note that themodels used in the EPS simulation are

not used in the development of the mathematical model for the FDD
system. Thisway, as therewill be in any physical application, there is a
mismatch between the actual microgrid process (simulation) and the
models used to develop the FDD system. Treating these models as
separate entities helps improve the usefulness of the simulation testing
because it treats the power system behavior with some unknowns and
uncertainty, similar to that of a hardware test bed.
The voltage and current measurements from the computer simu-

lation under normal operation are shown in Fig. 6, where measure-
ments (blue) and estimates from the DSE (red) are shown before and
after a disturbance caused by a change in load. The sample rate of the
data provided in the figures is at the 1 Hz supervisory control rate.
Notice that near the time of the disturbance, the process covarianceFig. 5 One-line diagram of the test spacecraft power system.

Table 2 Spacecraft EPS parameters

Description Value

Nominal SAR output voltage 123 V
Nominal BCDU voltage set point 120 V
Battery charging droop slope 100 V/A
Battery discharge droop slope during 21.25 V/A
Battery capacity 176.6 A ⋅ h
Nominal DDCU voltage set point 122.8 V
Load per PDU 0.96 kW
Measurement update rate of the device controllers 5 Hz
Measurement update rate of the central controller 1 Hz
Standard deviation of voltage measurement error 0.24
Standard deviation of current measurement error 0.12

BCDU, battery charge/discharge unit; DDCU, DC/DC converter unit; PDU,

power distribution unit; SAR, solar array regulator.

Table 3 Distribution line
parameters

From bus To bus R (Ω)
1 2 0.005
2 3 0.105
2 4 0.105
2 5 0.025
2 10 0.03
5 6 0.005
5 7 0.105
8 9 0.097
10 11 0.025
10 12 0.105
13 14 0.104
14 15 0.005
14 16 0.005
14 31 0.005
14 32 0.005
17 18 0.005
18 19 0.105
18 20 0.105
18 21 0.025
18 26 0.03
21 22 0.005
21 23 0.105
24 25 0.097
26 27 0.025
26 28 0.105
29 30 0.104
30 15 0.005
30 16 0.005
30 31 0.005
30 32 0.005
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adapts to provide rapid convergence. For this application, the inno-
vation sample window N is set equal to 5 (samples) to provide
quick FDD.
The simulation supports over 385 unique fault types that are

capable of being inserted and removed from the power system at
any time. First, a test of each fault was conducted, where each fault
was inserted individually. The results confirmed that the FDD me-
thod successfully identified each of the 385 faults. The following
subsections will demonstrate the behavior and response of the FDD
system for a few of these faults.

A. Distribution Switch Failure

The first fault type under consideration is a failed distribution
switch. In this case, a switch has failed open when commanded to
be closed at sample 317. This causes the current between nodes to
drop to zero, as seen in Fig. 7c. Note that the state estimator attempts
to track the disturbance; however, the discrepancies in the node
voltages provided by the model Figs. 7a and 7b fail the test of zero
mean while the fault is detected and diagnosed in samples 317
through 324.
The limit checking algorithm triggers a failed switch fault message

via Algorithm 1. The adaptive control layer generates a fault model
based on the current measurements and sets the corresponding stuck
switch to open due to the fault message. This model is then processed
and is successful inpassing all of the statistical tests.Once the tests have
passed, the fault is published and the switch fault model is redefined as
the updated operational model of the power system. At sample 328 the
fault is repaired, and the system returns to the normal state.

B. Incipient Sensor Offset

The previous case was an example of an abrupt fault. Next, we
examine the case of an incipient fault in the form of a sensor offset.

In this situation the sensor bias will increase slowly over time. These

faults are challenging to detect, as the impact of the fault on the

measurement will initially be small, and difficult to detect in the

presence of noise. However, it is important to detect such faults

quickly, so that impacts to other processes such as voltage regulation

will be minimized. Figure 8a shows the results of a node voltage

sensor during an incipient sensor fault. Measurements are displayed

in blue, and the estimate is in red. The fault is inserted at sample 50,

the fault is diagnosed, and themeasurement is removed from theDSE

at sample 86 because the measurement is no longer valid. The fault is

recovered at sample time 96, where the FDD service recognizes that

the sensor has returned to normal operation and adds the measure-

ment back into the model at sample 101.
Figure 8b displays the innovations of the signal in black against the

threshold for the test of zero mean in red. The fault is detected at

sample 80 when the mean of the residual crosses the threshold. A

fault model for the sensor fault is generated and passes all of the

innovations tests. At sample 86 the fault model residuals pass the

tests, and the fault is detected and diagnosed.

C. Communication Failure

A communication failure is one category of fault that may occur in

any system that uses a communication network for data transfer and

control. These faults are dependent on the physical attributes of the

network as well as the software implementation of the communica-

tion system. For this experiment, a communication fault is generated

where messages are blocked from a direct layer device to the super-

visory layer. A polling system is used to collect data from each of the

direct layer systems when a data request message is sent by the

supervisory controller. If the supervisory controller has not received

updated data from the direct layer, it will send its last set of data

cached in memory. On each iteration of the data acquisition process,

0 50 100 150
 Sample

122

122.5

123

123.5
 V

ol
ta

ge
 (V

)

0 50 100 150
 Sample

-0.5

0

0.5

1

1.5

2

2.5

 C
ur

re
nt

 (A
)

Fig. 6 Simulation data (blue) and Kalman estimates (red) during change in load.

300 305 310 315 320 325 330 335 340 345 350

 Sample

100

105

110

115

120

 V

a)
300 305 310 315 320 325 330 335 340 345 350

 Sample

0

50

100

 V

b)

300 305 310 315 320 325 330 335 340 345 350
 Sample

0

2

4

6

8

 A

c)

Fig. 7 Measurements (blue) and estimates (red) during the FDD response to a failed distribution switch: a) distribution switch input voltage,
b) distribution switch output voltage, and c) distribution switch current.
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the supervisory layer controller checks the range of timestamps for

stale data. If one or more data packets exceed the maximum time-

stamp lag, a stale data fault is generated.
Figure 9 shows measurements and data before, during, and after

the communication fault. A model is generated for this fault by

eliminating the corresponding rows in the output matrix. A test for

observably is used to ensure that the DSE can be performed with the

missing data. To validate the faulty behavior, the test for whiteness

must fail for the measurements. Once the fault is removed and data

begin to publish as normal, the nonfaultedmodel passes the statistical

tests, thus validating the removal of the communication fault as seen

from samples 290 through 310. The benefit of this approach is that

estimates for the missing data are still generated during the commu-

nication failure, which provides necessary information to the con-

troller while the device is unable to communicate.

D. Multiple Fault Diagnosis

The ability to troubleshoot failures, repair equipment, or perform

component maintenance for many systems is often limited due to the

availability of onsite maintenance crews. Therefore, it is critical to

have an adaptive diagnostic system that is capable of fault monitoring

even after there are changes (e.g., faults) to the system. For example,

if a faulty sensor is detected in the network, the FDD method should

be capable of reconciling the faulty data through state estimation,

then continue monitoring for additional faults that may occur before

the sensor fault can be resolved. Further, if a distribution switch fails

and is stuck open, the controller should reconfigure the network as

needed and continue monitoring the system. This process should

occur until the power system is fully degraded or there are insufficient

data to identify further faults. The limited ability to repair or replace

components in the space environment indicates the need for more

adaptable fault detection and diagnostic control methods.
To measure the adaptive capabilities of the proposed method,

several experiments are conducted where faults are injected into the

DC microgrid system simulation in sequence until the FDD engine

is no longer able to correctly diagnose the fault. Because the number

of possible fault combinations grows exponentially with time, a

Markov chain (MC)model is used to randomly generate faults in the

power system. One hundred randomly generated fault sequences

are used to determine the accuracy and performance of the FDD

method. During each sequence, a fault is randomly generated from

the MC and inserted into the simulation. If the fault is correctly

diagnosed within a set period of time, the automated test system

records the results, and a new fault is generated. If the fault is not
detected or diagnosed correctly, the incorrect result is recorded,
and the test sequence ends. Upon failure, all the faults are cleared
from the simulation and the method is reset to the normal condition,
and the next test sequence begins.
The results of the 100 MC tests are shown in Table 4. The

performance of the FDD engine can be characterized by the mean
number of faults that are detected and correctly diagnosed. In this
study, an average of 11 faults were diagnosed by the system in each
test. Figure 10 shows the number of faults correctly diagnosed in
series for each test. Depending on the combination of faults selected
at random, the number of identified faults ranged from 2 to 34.
Insufficient data from sensor and communication faults are the main
cause of failure to diagnose sequential faults. Furthermore, degrada-
tion caused bymultiple hard faults, such as line-to-ground faults, can
lead to missed detection or incorrect diagnosis as failures are masked
by the blackouts within the power system. Overall, the FDD method
proved to be successful in adapting to the changes in the system.
The proposed novel method improves upon the state-of-the-art by

increasing the diagnostic capability of the controller in the presence
of existing faults. Systems with extremely high reliability require-
ments such as deep space exploration stand to benefit from this work
as the enhanced diagnostic performance will increase the overall
system reliability.
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Fig. 8 a) Measurement (blue) and estimate (red) of the faulty voltage sensor. b) Innovations of the faulty sensor.
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Fig. 9 Dynamic state estimation during a communication failure.

Table 4 Markov chain experiment test results

Parameter Value

Number of tests 100
Total number of faults inserted 1200
Mean faults diagnosed 11
Standard deviation 6.75
Minimum sequential faults diagnosed 2
Maximum sequential faults diagnosed 34
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Fig. 10 Number of faults successfully diagnosed in each sequential fault
test.
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VI. Conclusions

In this paper, a novel method for FDD for a spacecraft EPS is
developed. The decision-making principles used in this technique are
hierarchical and structured as follows. Rules-based limit checking
provided quick detection for critical failures that can be detected
locally. This information is passed on to the central layer controller,
reducing the overall complexity by limiting the set of fault hypoth-
eses necessary to diagnose a fault. Also, the rules bank assisted in
the integration of heritage FDD schemes, which often rely heavily on
limit checking alarms. The multiple-model method in the central
layer detects low-magnitude faults and sensor faults using the con-
cept of analytical redundancy and provides the basis for isolating
faultmodes thatmay appear similar. The decision-making engine and
fault hypothesis methods determine the minimum set of fault models
needed for hypothesis testing. This solution can identify awide range
of fault types, including faulted sensors, actuators, cables, commu-
nication links, and power electronics. The fault models are generated
dynamically; thus faults can be diagnosed even after changes in the
system have occurred. This feature improves overall system auto-
nomy and furthers the state-of-the-art in spacecraft EPS diagnostics.
More robust FDD such as this can also benefit the controller by
providing greater detail about the magnitude, location, and type of
faults that may exist in the system.
Future work in this area may include integrating other methods

of FDD such as machine learning techniques into the reactive and
component layer controllers. Classifiers such as convolutional neural
networks can be used to identify faults from high-resolution data
based on known features of the transient signals. This capability
could help improve the coordination between transient and steady-
state FDD at the direct and adaptive layers. Further integration of
FDD methods may provide more robust diagnostic capabilities,
leading to more reliable system operation.
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