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Outline

• Additive Manufacturing (AM) Opportunity Space
• Engagement with the Community
• NASA’s Capability Development
• Concluding Remarks
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Increasing Complexity of AM Parts

Increasing Complexity

Fuel Injector
Image: General Electric

Topology Optimized Bracket
Image: AutoDesk

Pogo Z-Baffle
Image: NASA

Graded Materials
Image: Jet Propulsion Lab*

*Bobbio et al. (2018) J. Alloys 
and Compounds, 742 1031

Image: DARPA Transformative 
Design (TRADES)  Program



4

Dynamic X-Ray Radiography of L-PBF

Advanced Photon Source (APS) at 
Argonne National Laboratory

Laser - Powder Bed Fusion (L-PBF) Process

Image: *Argonne National Lab, **Tao Sun (APS) & Tony Rollett (CMU)

*

In-situ Thermal Image 
of Melt-Pool

150 µm
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Complex/Variable AM Microstructure*

Low-power 
unidirectional scan

Low-power 
bidirectional scan

High-power 
bidirectional scan

L-PBF of IN718*Parimi et al. (2014) Materials Characterization 89:102
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Evolution of Criticality of AM Parts*

“Critical” Parts  (e.g., CFR Part 25 à PSEs, CFR Part 33 à LLPs)*
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Transition to “safety-critical” applications in aviation will 
occur sooner than initially expected
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6
* Adapted from Michael Gorelik, FAA

*CFR - Code of Federal Regulations 
PSE – Principal Structural Element
LLP – Life Limited Part
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Examples of “Model-Friendly” Domains*

• Damage Tolerance  à Part 25 (AC 25.571-1D)
– In general, “analysis supported by test evidence” 

is accepted

• Damage Tolerance  à Part 33 (AC 33.70-1)
– Analysis is accepted (e.g., stress, heat transfer, 

crack growth, … )
• However, “…the analysis approach should be 

validated against relevant test data”

* Adapted from Michael Gorelik, FAA

Reference to Title 14 CFR Parts 25 (Airframe) and 33 (Engines) 

Image: NASA

Image: NASA
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• Held at NASA Langley Research Center on January 15-16, 2020.
• Motivated by three related factors:

• The aerospace industry’s increasing interest in expanding the use of 
computational materials for Q&C of process-intensive metallic materials. 

• The rapid maturation of computational materials capabilities across a range of 
applications.

• A general lack of coordination of development and investment in these 
capabilities by funding organizations. 

• Included 60 subject matter experts (SMEs) representing 8 aerospace 
manufacturers, 7 government organizations and 2 universities.  

• Participation was evenly divided into Processing-Microstructure and 
Microstructure-Performance tracks. 

• Key objectives were to:
• Understand existing gaps in model-based, e.g., computational materials, 

capabilities for processing and performance prediction for aerospace 
materials and components.

• Forecast how capabilities can be matured to support material, process and 
part-level Q&C. 

NASA / NIST / FAA Technical Interchange Meeting on 
Computational Materials Approaches for Qualification by 

Analysis for Aerospace Applications
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Group 1 questions - Qualification Gaps, State of the Art (SOA) and Challenges
Q1: What gaps cannot be addressed using traditional qualification methods or processes?  
Q2: What is the current SOA for computational materials, including examples of success stories? 
Q3: What are the main qualification challenges that may be addressed by computational 
materials-enabled capabilities?

Group 2 questions - Leveraging of Related Capabilities and Organizations
Q4: How can the current or near-term use of computational materials in non-qualification 
frameworks be leveraged to mature the capabilities for qualification, developing a pathway for 
leveraging? 
Q5: Are there any competition insensitive ways to share information?  Is there a pathway to 
leverage internal company capabilities for use by the larger community?
Q6: Is there a role that industry working groups/standards organizations could play in this 
process?  Where do the standards opportunities lie?

Group 3 questions - Capability Development
Q7: What is the role of Verification and Validation (V&V) and Data Science in the maturation of 
computational materials capabilities? 
Q8: What is the appropriate balance between modeling and testing for a fully mature 
computational materials framework (end state vision) to achieve the desired state for next-
generation (computational materials-enabled) qualification?
Q9: What capabilities should NASA & NIST champion to enable next-generation qualification of 
process intensive metallic materials (e.g., AM).  What is the timeline and phased approach at 5, 
10, 20 years?

Questions to Participants
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• Data that is missing or of questionable fidelity:

• Critical thermo-physical data for materials models as a function of 
temperature (e.g., viscosity and surface tension) of molten material.

• Melt pool solidification boundaries. 
• Microstructure and properties as a function of location within a complex 

geometry.
• Critical initial flaw size.

• Variability and sensitivity:

• Increase focus on understanding and accounting for machine-to-machine 
variability and its effect on microstructure and properties.

• Determine sensitivity of the build process to each input parameter and 
how accurately these parameters must be maintained to provide a 
reliable and interoperative build system. 

• Develop sensitivity analyses and design of experiment approaches to 
determine parameters that have most important effect on the 
manufacturing processes.

Some Comments Related to Material 
Properties and Microstructure 
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• Data storage:

• Increase support for standardized raw data formats and data storage 
protocols.

• Establish rigorous standards and requirements for meta-data.
• Establish common formats for acquisition and storage (e.g., fields of 

view, contrast).
• Develop requirements for data quality and inter-applicability (e.g., 

between machines) of training data to support Machine Learning.

• Data exchange:

• Establish mechanisms for sharing competitive data within the community 
that is non-attributable yet has an adequate pedigree.

• Develop means for enabling trust with data/models generated by others 
(i.e., establishing industry-accepted data/model pedigree).

• Develop standardized forms of data exchange among different but 
related communities (e.g., mechanics, materials science).

• Develop protocols for sharing government-owned/produced data.

Some Comments Related to Data 
Storage and Data Exchange
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• Development of capabilities to support:

• Rigorous validation framework for simulation that will help to establish 
credibility with certification authorities (i.e., show that models are as 
credible as test data/results.)

• Clear understanding of precision and accuracy requirements in 
simulation.

• Uncertainty quantification in three key areas: simulations, processing 
and measurement.

• Experiments that are driven by model validation and calibration needs.
• Calibration of non-linear material model parameters under uncertainty.
• Determination of clear bounds on the conditions for which a code has 

been “validated.”

Some Comments Related to 
Gaps in Existing Methodologies
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• Develop closer relationships between simulation and experimental 
communities focusing on the intersection between measurement 
outputs and modeling requirements.

• Improved coordination and communication between measurement 
teams (NIST, NASA, AM-Bench, etc.) and industry simulation teams 
would allow measurement priorities to better reflect industrial needs.

• Lessons learned from other domains (e.g., aerosciences including 
computational fluid dynamics) may provide guidance regarding the 
extent to which simulation can replace testing.

Some Comments Related to 
Community Relationships
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Computational Materials for Qualification 
and Certification (CM4QC) Steering Group

The primary goals of this Steering Group are to 
• Provide coordination for and focus to investments made by U.S. industry 

and the U.S. government toward development of computational materials-
based (CM) approaches for qualification and certification (Q&C) of 
process intensive metallic materials (PIM).

• Identify key considerations and enablers required to increase 
airworthiness / certifying authorities’ acceptance of CM methods used for 
Q&C of structural or flight-critical PIM parts.

• Increase dialogue among the stakeholder organizations and seek 
opportunities for collaboration.  

Membership includes subject matter experts from the aerospace industry, 
various government laboratories and academia
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• Working Group 1: Understanding industry priorities / timeline and key 
regulatory implications (High TRL*)

• Working Group 2: Strategies for maturation and transition of Research to 
Engineering (Mid TRL)

• Working Group 3: Development of required computational materials and 
measurement capabilities (Low TRL)

Operation of the CM4QC Steering Group

09/14/20

Key Stakeholders for CM4QC SG

1

CM4QCAviation
Industry

Working
Groups Standards 

Development  
Organizations

Government 
Agencies

R&D Funding

Academia

National 
Labs

Government 
Agencies

Airworthiness

Expected initial outcome –
Multi-year implementation plan (late Spring 2022)

CM4QC 
Membership

*Technology Readiness Level
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Complementary Investments

NASA University Leadership Initiative at Carnegie Mellon 
University on Development of an Ecosystem for Qualification 
of Additive Manufacturing Processes and Materials in Aviation 
(6 universities, 2 small businesses)
Focused on development of defect-based process maps that guide 
AM production machine settings to minimize or eliminate those 
manufacturing defects.
à Process Windows to Guide AM Machine Settings

Transformation Tools and Technologies Project’s effort on
Qualification and Certification of Advanced Manufacturing-
Based Materials and Structures 
Focused on understanding the effect of processing on evolution of 
material microstructure and defects and the resulting effects of 
microstructure and defects on lifecycle performance
à Microstructurally-Informed Durability and Damage Tolerance
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Process Window: Porosity*

• Key-holing: excessive 
power density

• Lack-of-fusion: 
geometry of melt pool 
relative to layer depth 
& hatch spacing

• Capillarity causes 
“balling up”; 
complicated by fluid 
flow behind the heat 
source

• Note the sharp 
increase in porosity 
predicted in the lower 
right (lack of fusion) 
and upper left (key-
holing).

18

Process Window
Pores from powder
Minimum porosity 

at specific P-V

Keyholing
Power density

Focus

Lack of Fusion
Melt Pool Overlap:

Layer Thickness/ Depth
Hatch Spacing/ Width

Balling up
Capillarity

Contour of constant melt pool siz
e, cooling rate

Tang et al. (2017) 
Additive Manuf. 14 39

Meng et al. (2018), Intl J 
Heat Mass Trans 117 508

High speed synchrotron x-rays:
Cunningham, Zhao et al. (2019), 

Science 363 849

Computed tomography:
Cunningham et al. 
(2016, 2017) JOM

Scan Speed

A
bs

or
be

d 
Po

w
er

Increasing cooling rate

Material: Ti-6Al-4V

*A.D. Rollett, NASA Aeronautics Research Mission Directorate’s University Leadership Institute on Development 
of an Ecosystem for Qualification of Additive Manufacturing Processes and Materials in Aviation 
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Simulation of AM Processes

Examination of the Melt Pool Microstructure & Defects
Physics-based simulation and high-fidelity characterization of AM 

processing provide input to microstructure performance simulations

Development of Microstructurally-Informed 
Durability and Damage Tolerance (D&DT) (1/4)   

Thermal Modeling

Scan Direction

Simulation of Microstructure 
& Defect Evolution

Image: CMUImage: CMU

Input Parameters 
from MD Simulation

Measurement and Characterization



20**DREAM.3D   (http://dream3d.bluequartz.net/)

Other Features 
(e.g., porosity, 
other defects)

Combined simulation and 
characterization to consider 
microstructure variability**

FEA Simulations*
Microstructure 

instantiations for FEA*

...

FEA Simulations Consider Representative Microstructures Developed from  Processing 
Simulation and Characterization Data – Capture Microstructural Details and Responses

Development of Microstructurally-Informed D&DT (2/4)   

...100-1000 independent 
simulations

*Yeratapally, et al., NIA

Finite element simulations account for variability in microstructure

Grain 
morphology

...

http://dream3d.bluequartz.net/)
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Fatigue Crack Growth Material 
Parameter Distributions***

𝑑𝑎
𝑑𝑁 = 𝐶(∆𝐾)!

Transition from Microstructurally Small Crack Growth Estimates to Engineering Codes

Development of Microstructurally-Informed D&DT (3/4)   

***Hochhalter, Yeratapally, Leser, et al., LaRC

𝑁!"#$%&' = 𝑁#()% +𝑁#(#* +𝑁+,- +𝑁+.-*

Nondeterministic prediction of fatigue life considering effects of microstructure

**McDowell, et al, GaTech

**

*Sum of the cycles to incubation, initiation, microstructurally 
small crack growth and microstructurally large crack growth
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FRANC3D

Embed these 
Relationships within 
Engineering Codes 

Microstructurally-Informed D&DT of Fracture-Critical Components

Development of Microstructurally-Informed D&DT (4/4)   

Component Level Inputs
Microstructure-

Informed Variability in 
Crack Growth Rates

Microstructurally-informed D&DT simulation applied to determine distribution in 
fatigue life of fracture-critical AM components with variable microstructures
à Maturing Computational Materials Science to Solve Engineering Problems

*Beshears, R., “Computed Tomography Inspection and Analysis for Additive 
Manufacturing Components,” ASNT Annual Conference, November 2, 2017.

*

Image: SwRI

Image: CFG

𝑑𝑎
𝑑𝑁

= 𝐶(∆𝐾)!

Image: SwRI
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Simulation of AM Processes

Examination of the Melt Pool Microstructure & Defects
Physics-based simulation and high-fidelity characterization of AM 

processing provide input to microstructure performance simulations

Development of Microstructurally-Informed 
Durability and Damage Tolerance (D&DT)   

Thermal Modeling

Scan Direction

Simulation of Microstructure 
& Defect Evolution

Image: CMUImage: CMU

Measurement and Characterization

Input Parameters 
from MD Simulation
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Development of techniques based on molecular dynamics simulations to estimate melt properties 
of pure aluminum (Al) and pure titanium (Ti) for melt pool predictions and solidification processes 
in additive manufacturing.

APPROACH
• Al system simulated using physically-informed neural 

network (PINN) potential.  Ti system simulated using state-of-
the-art embedded-atom method (EAM) empirical potential.
• PINN potential trained using density functional theory 

(DFT) and achieves high accuracy (~ 1meV/atom).
• Melt properties calculated using Green-Kubo statistical 

mechanics formula.
• Molecular dynamics used to simulate the evolution of Al 

and Ti melts to collect sufficient statistics on velocity, 
energy, and pressure fluctuations at temperature range 
from 1050 K to 1500 K (Al) and 1900 K to 2300 K (Ti).

NEXT STEPS
• Use the developed methodology to develop an accurate 

potential for Ti-6Al-4V system.

Predicting Melt Properties Using 
Atomistic Simulations

RECENT ACCOMPLISHMENTS and IMPACT
• Melt properties predicted within 20% of the experimentally 

reported values.
• The very high heating and cooling rates in AM (~ 104-105

K/sec), make accurate calculation of melt properties from first 
principles a key factor in predicting the correct microstructure 
and properties of the resulting material.

(a)

(b)

Simulation vs. experiment comparison for 
pure aluminum for (a) density; (b) viscosity
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Automated calibration and validation of a single scan track thermal process finite element 
model to build a data driven rapid predictor of local scale thermal inputs for microstructure, 
defect, and part scale models.

APPROACH
• Simplified thermal process model using a parameterized, volumetric heat 

source that simulates effect of transport mechanisms:

𝑄 = 𝛼"#$%&
6 3𝑃
𝑎𝑏𝑐𝜋 𝜋

𝑒'((*'*!)!/#!𝑒'((-'-!)!/.!𝑒'((/'/!)!/0!

• 𝑄 is the power density, P is the laser power, 𝛼"#$%& is the laser 
absorptivity, and 𝑎, 𝑏 and 𝑐 are geometric parameters, and 𝑥1, 𝑦1 and 𝑧1
are reference coordinates.

• Parameters (𝛼"#$%& , 𝑎, 𝑏, 𝑐) calibrated to match observed melt pool data.
• Ex-situ melt pool measurements are limited and noisy; probabilistic 

approach addresses challenges due to natural variations in heating/part 
scale property variation.

NEXT STEPS
• Machine vision algorithm to automate micrograph image analysis/measured data importation.
• Incorporate melt pool cross-sectional shape in place of simplified width and depth measurements.
• Test the method for a wider variety of processing conditions (e.g., those that induce keyhole porosity).

Probabilistic Calibration and Validation of 
Simplified AM Thermal Process Model

RECENT ACCOMPLISHMENTS and IMPACT
• Modeling framework has produced calibrated/validated predicted melt pool width and depth variability along 

a single beam on plate scan track. 
• Melt pool morphology uncertainty can be directly propagated to predictions of microstructure and porosity.

Scan Direction

Top Surface

W/m3

Volumetric Heat Source (Symmetric Cross Section)

Symmetric
Surface

• Gaussian Process Regression for probabilistic calibration using scant data.
• Iterative validate-calibrate adaptive learning algorithm employed to converge after minimal FEA model calls.
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Provide high-fidelity process simulation for moving heat source with melt pool physics to 
predict temperature history, melt pool and vapor cavity, porosity formation, surface topology, 
and establish process parameter linkage.

APPROACH
• Solve the coupled Energy, Mass, and Momentum (Naiver-Stokes) 

conservations equations.
• Sharp interface: use the levelset method to evolve the substrate/gas 

interface according to the fluid velocity.
• Incorporate melt pool physics:

• Fluid Flow • Recoil Pressure
• Buoyancy • Marangoni Shear Stress
• Surface Tension

• Develop adaptive mesh strategy for moving heat source.

NEXT STEPS
• Implement conformal mesh for sharp interface.
• Develop adaptive mesh strategy to address computational expense.

Coupled Fluid-Thermal Process Simulation

RECENT ACCOMPLISHMENTS and IMPACT
• Recent accomplishments

• Diffuse interface implemented.
• Spot weld analysis completed with comparison to a 

transient thermal analysis.
• Impact.

• High-fidelity solution capability for process parameter 
linkage.

• Predict porosity formation at root of vapor cavity for impact 
to property and performance.

Melt Pool Physics

Vapor Cavity & Porosity
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Developing high-fidelity, physics-based Monte Carlo microstructure models with 
Phase-Field informed design for simulating additively manufactured microstructures. 

APPROACH
• Phase-field method (high fidelity, specific, micro-scale method) used 

to provide inputs and calibrations for enabling improved Monte Carlo 
(low-fidelity, flexible, meso-scale) modeling of grain competition, 
seeding of micro-segregation regions, and calibrating grain 
coarsening behavior. 

• Monte Carlo problem solved using rejection kinetic Monte Carlo 
algorithm by Rodgers (2017). 
• Randomly flip sites to neighboring orientations, accept flip if it lowers overall 

energy of system. Basis probability of acceptance based on temperature and 
grain orientation.

• Phase-Field model for binary alloy solidification by Karma (2001).
• Coupled parabolic partial differential equations for chemical concentration and 

melt interface.
• Solved numerically with explicit Euler time stepping and finite-difference 

method with 2nd order conserved and isotropic spatial derivative formulations.

NEXT STEPS
• Implement more advanced phase-field informed method for texture evolution in Monte Carlo models.
• Characterize role of curved melt pool and rapid solidification on texture evolution using phase-field models as 

input to Monte Carlo models. 

Phase-Field Informed Monte Carlo 
Modeling of Microstructure Evolution

RECENT ACCOMPLISHMENTS and IMPACT
• Implemented quantitative binary-alloy phase-field model with support for multiple grains of various orientations. 
• Performed large phase-field and Monte Carlo study on texture development comparing rate of grain overgrowth 

vs. input grain orientation.    

𝜃!

𝜃"
𝜃!

𝜃"

Phase Field Monte Carlo
Texture Evolution During Solidification
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Examination of the Melt Pool Microstructure & Defects
Physics-based simulation and high-fidelity characterization of AM 

processing provide input to microstructure performance simulations

Development of Microstructurally-Informed 
Durability and Damage Tolerance (D&DT)   

Measurement and Characterization

Simulation of AM Processes

Thermal Modeling

Scan Direction

Simulation of Microstructure 
& Defect Evolution

Image: CMUImage: CMU

Input Parameters 
from MD Simulation
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Reliable and traceable in-situ inspection techniques are needed to identify process anomalies and 
material defects.

APPROACH
• Implement imaging sensors in infrared and visual wavebands.
• Calibration of the sensors allows for conversion of measured intensity 
counts to radiance/temperature.

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = :
2"

2! 𝑐3

𝜆4 (𝑒
0!

(2 (5678(.34)))
∗ 𝑠𝑒𝑛𝑠𝑜𝑟 𝜆 ∗ 𝑓𝑖𝑙𝑡𝑒𝑟 𝜆 ∗ 𝑑𝜆

• λ is the wavelength variable, T is temperature, c1 and c2 are functions 
of the speed of light, Plank’s constant and Boltzmann’s constant.

• Effective radiance is related to temperature considering the sensor’s 
spectral response over the wavelength bounds, per optical path, and 
solved using numerical integration.

• Microscopy and materials laboratory measurements are used to 
inform and validate in-situ measurements.

NEXT STEPS
• Implement full build tomography with cross-correlation analyses of in-situ measurements with ex-situ 

measurements. Quantify measurement uncertainty and identify measurement requirements.

In-situ Process Monitoring for Powder-Bed 
Additive Manufacturing 

RECENT ACCOMPLISHMENTS and IMPACT
• In-situ thermal measurements compared to finite element-based thermal model for melt pool width given 

various process parameters.  In-situ measures enable process tomography for comparison to X-ray CT and 
serial-sectioned optical microscopy. 

• High performance computing and machine learning tools used to enable 
process anomaly detection via in-situ measurements over large data sets.

Radiance Near Melt Pool
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Serial sectioning via RoboMet to characterize microstructure and porosity in AM parts.

APPROACH
• RoboMet provides means to serial section AM parts; automation enables 

greater consistency and repeatability.
• Combine with other microscopy techniques / equipment to generate data 

on melt pool dimensions, grain morphology, texture, porosity morphology 
and distribution. 

• Reconstruct 2D slices into 3D datasets for visualization and quantification 
of internal part variability.

• Data is used to inform and validate in-situ sensor measurements during 
part fabrication and computational models.

NEXT STEPS
• Use RoboMet to interrogate melt pool dimensions for varying build 

parameter combinations to validate in-situ AM sensor data.
• Expand analysis to more complex information (e.g., electron backscatter 

diffraction, EBSD), porosity quantification and crack initiation studies.

Microstructure and Porosity 
Characterization in AM Parts

RECENT ACCOMPLISHMENTS and IMPACT
• Automated serial sectioning combined with quantitative imaging and 

analytical techniques enables 3D lab-based characterization.
• Data is critical for instantiation and validation of structure-property 

models; comparison / validation of NDE porosity measurements; 
quantifying melt pool dimensions to validate / calibrate thermal 
model.  

Single Track Melt Pool Measurement

Rowenhorst, et al. Current Opinion in Solid State 
and Materials Science 24.3 (2020): 100819.

3D Reconstruction from RoboMet
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Microstructure and Porosity Characterization in 
AM Parts via Synchrotron Experiments

3D Grain Maps

Near and Far Field HEDM

High energy synchrotron sources for microstructure and porosity characterization in AM parts.

NEXT STEPS
• Expand relationships with synchrotron users and develop funding to support 

experiments of interest.

RECENT ACCOMPLISHMENTS and IMPACT
• Developing relationships with university partners and other government labs to 

leverage access to experiments and data generated at synchrotron sources.
• DXR data shared by grantee used to validate thermal model for AM process. 
• DXR and HEDM studies offer unprecedented in-situ data - highly valuable for 

characterization and model calibration / validation.

APPROACH
• Leverage the multiple emerging synchrotron-based methods being 

developed for characterization of materials.
• Dynamic X-ray Radiography (DXR)

• Enables real-time visualization of the laser interaction within the 
material. 

• Quantifies critical features of the AM process (vapor cavity size, 
melt pool depth and length, powder ejection, solidification rate, 
and porosity formation).

• High Energy Diffraction Microscopy (HEDM)
• Near-field HEDM provides 3D non-destructive microstructure 

characterization (grain orientation and morphology). 
• Far-field HEDM enables in-situ grain-level stress-strain 

measurement to interrogate the influence of microstructure and 
porosity on local stress fields and damage accumulation. Dynamic X-ray Radiography
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Data driven modeling to develop relationships between processing parameters and resulting 
deformation, residual stresses and microstructure, including defect formation.  

APPROACH
• Calibrated process models are needed to predict temperature 

history and enable simulation of melt pool dimensions, 
deformation, residual stresses and microstructure. 
• Development of deep learning and recommender system 

methodologies, to include generative models, to predict and 
generate microstructure geometries.

• Can leverage smaller datasets, unlabeled data to identify 
latent features by mapping input data to a lower 
dimensional feature space.

• Predictions of power/velocity combinations for melt pool 
and keyhole dimensions.

NEXT STEPS
• Application of a conditional generative adversarial network 

(C-GAN) to incorporate thermophysics variables as input 
features.

Artificial Intelligence for In-Situ AM Melt Pool 
Characterization

RECENT ACCOMPLISHMENTS and IMPACT
• Refined predictive accuracies for models generating 

keyholing depth, width, area, and convex hull area 
measurements.

• Established modeling approach to predict geometries based 
on laser absorption.



33**DREAM.3D   (http://dream3d.bluequartz.net/)

Other Features 
(e.g., porosity, 
other defects)

Combined simulation and 
characterization to consider 
microstructure variability**

FEA Simulations*
Microstructure 

instantiations for FEA*

...

FEA Simulations Consider Representative Microstructures Developed from  Processing 
Simulation and Characterization Data – Capture Microstructural Details and Responses

Development of Microstructurally-Informed D&DT   

...100-1000 independent 
simulations

*Yeratapally, et al., NIA

Finite element simulations account for variability in microstructure

Grain 
morphology

...

http://dream3d.bluequartz.net/)
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Fatigue Crack Growth Material 
Parameter Distributions**

𝑑𝑎
𝑑𝑁 = 𝐶(∆𝐾)!

Transition from Microstructurally Small Crack Growth Estimates to Engineering Codes

Development of Microstructurally-Informed D&DT   

**Hochhalter, Yeratapally, Leser, et al., LaRC

𝑁!"#$%&' = 𝑁#()% +𝑁#(#* +𝑁+,- +𝑁+.-

Nondeterministic prediction of fatigue life considering effects of microstructure

*McDowell, et al, GaTech

*
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Use microstructure-based high-fidelity computational models to understand the effect of 
process-specific defects on the accumulation of damage and debit in mechanical performance.

APPROACH
• Fuse the defect and microstructure data to feed the process-specific 

defect embedded microstructure model into a crystal plasticity (CP) simulation.
• CP simulation gives quantitative information on the heterogeneous distribution 

of stress and strain, governed by microstructure and defect character.
• Elasto-viscoplastic fast Fourier transform of Lebensohn (2001) was used.
• Crack initiation metrics: 

• Accumulated plastic slip (Γ):  ∑$:3; γ$ ; 𝛾$ is slip on slip system, s.
• Fatigue indicator parameter on slip plane p, 𝐹𝐼𝑃<= ∫1

= Γ 1 + >#$

>%
𝑑𝑡

• Presence of defects raises the accumulation of plastic strain in its vicinity. 
Defects close to free-surface accumulate high plastic strain.

NEXT STEPS
• Use serial sectioned data from RoboMet as input into models.
• Obtain HEDM data to perform in-situ microstructure characterization and strain 

measurements at the grain scale.
• Develop capabilities to simulate microstructurally-small fatigue crack growth.

Investigation of Effect of Defect Distributions on 
the Localization of Plastic Strain

RECENT ACCOMPLISHMENTS and IMPACT
• Integrated complementary characterization data (from X-ray CT and EBSD) with 

high-fidelity CP simulation to gain fundamental understanding on strain 
localization near defects. 

• New methodology provides information that cannot be obtained by testing alone.

𝜎<? is normal stress on slip plane p and 𝜎@ is the yield stress 

Equivalent Plastic Strain

J2 Plasticity (no microstructure)

Crystal Plasticity
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Mechanical Testing of AM  Ti-6Al-4V

Mechanical testing to characterize the effect of processing defects on mechanical performance.

NEXT STEPS
• Conduct fatigue crack growth experiments including smooth-bar fatigue 

testing to study natural crack initiation at defects.  
• Testing within scanning-electron microscope will allow real-time monitoring 

of damage evolution during service-like loading.

RECENT ACCOMPLISHMENTS and IMPACT
• Capabilities coming back on-line.
• Understanding the first-order variables that affect fatigue and fatigue 

crack growth behavior are critical for next-generation Qualification and 
Certification.  

APPROACH
• Fatigue crack initiation / growth are often the dominant life-limiting failure 

mechanism; effect of AM processing defects not well understood.
• Perform fatigue crack initiation / growth testing on AM Ti-6Al-4V material 

under nominal, high-power (keyhole defects likely), and low-power (lack-
of-fusion defects likely) conditions.

• Examination of crack surfaces to reveal information about the interaction 
between the crack tip and defects.
• Scanning electron microscopy to characterize defects that interact with 

the crack tip.
• Determine role of various attributes of defects (e.g., size, shape, 

position, orientation) on fatigue crack performance.

In-Situ Testing

log DK
Anticipated Effect of Porosity 

on Crack Growth Rate
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Variability in part performance due to processing conditions is predicted using a high-fidelity, 
multi-scale simulation pipeline where uncertainties are quantified and propagated at each scale.

APPROACH
• Probabilistic analysis to capture inherent variability:

• Quantify uncertainties at each simulation scale 
through elicitation or inverse methods (red arrows).

• Propagate uncertainties to the subsequent scale 
(green arrows).

• Address computational expense:
• Quantifying uncertainty often involves an expensive 

inverse problem (red arrows).

NEXT STEPS
• Continue testing of the HPC capabilities in preparation for first proof-of-concept analysis using uncertainties 

propagated from a calibrated process model.

Quantification and Propagation of Uncertainty 
for Qualification & Certification of AM Parts

RECENT ACCOMPLISHMENTS and IMPACT
• Developed Python framework for performing automated Monte Carlo analysis using NASA HPC.
• Accounting for inherent variability in the AM process is essential for next-generation Q&C of AM.

Uncertainty Quantification and Propagation

Model Output 
Parameters

Input 
Parameters

y = M(✓)

p(✓) p(y)

⇥ Y

Measurements

• Estimating 𝑛=A-order statistical moments (e.g., mean, 𝑛 = 1) of a quantity of interest (e.g., fatigue life) involves 
integration:

𝜇? = :
B
𝜃 − 𝑐 ?𝑓(𝜃)𝑑𝜃

• Joint probability density function of model inputs, 𝜃, is 𝑓 𝜃 . 𝑐 is value about which the moment is estimated.
• Integral is over the entire parameter space Θ for all models, making it expensive to estimate
• High performance computing (HPC) and multi-fidelity (MF) Monte Carlo methods to overcome expense but 

maintain fidelity/accuracy.
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FRANC3D

Embed these 
Relationships within 
Engineering Codes 

Microstructurally-Informed D&DT of Fracture-Critical Components

Development of Microstructurally-Informed D&DT   

Component Level Inputs
Microstructure-

Informed Variability in 
Crack Growth Rates

Microstructurally-informed D&DT simulation applied to determine distribution in 
fatigue life of fracture-critical AM components with variable microstructures
à Maturing Computational Materials Science to Solve Engineering Problems

*Beshears, R., “Computed Tomography Inspection and Analysis for Additive 
Manufacturing Components,” ASNT Annual Conference, November 2, 2017.

*

Image: SwRI

Image: CFG

𝑑𝑎
𝑑𝑁

= 𝐶(∆𝐾)!

Image: SwRI



39

Concluding Remarks

• Additive manufacturing (AM) offers unprecedented 
design flexibility and enormous potential economic 
impact but with increased material variability

• Use of AM parts in critical applications is evolving rapidly 
and necessitates new approaches to Q&C

• FAA requirements provide entry points for computational 
materials simulation if supported by testing

• Continued extensive engagement with the community 
across the TRL scale

• NASA research is aimed at development of needed 
capabilities to support next-generation Q&C
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Femera is a high-performance tensor-based matrix-free finite element analysis (FEA) code.

APPROACH
• Matrix-free solver (i.e., solve without building a system matrix).

• Traditional FEA solver performance is limited by the memory 
and bandwidth needed for the sparse system matrix. 

• Matrix-free tensor train evaluation reduces memory needed 
by 90% and large 3D unstructured mesh elasticity solution 
time by 75-80%.

• Flexible data handling (i.e., read/write a variety of file formats)
• FEA applications for elasticity typically require input data to 

be pre-processed into a specialized format unique to the 
application.

• Open-source libraries allow Femera to read and write a 
variety of data formats and enable on-demand meshing to 
reduce or eliminate pre-processing. 

NEXT STEPS
• Demonstrate alternative workflows and document best practices that reduce or eliminate the pre-processing 

bottleneck and improve analysis throughput.
• Continue to integrate and mature elements of the code; applications to computational materials simulation 

(e.g., crystal plasticity FEA).

Matrix-Free Finite Element Analysis - Femera

RECENT ACCOMPLISHMENTS and IMPACT
• Femera Mini-app v0.2 developed and baseline tests conducted.
• Baseline tests identify data handling bottlenecks that limit analysis throughput; mitigations being developed.

Femera Mini-app v0.1 solver performance 
(Nx concurrent models)
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Physics-based simulation of ultrasonic NDE for AM parts, assessing flaw-signal relationships and 
advancing towards simulation-based inspection guidance.

APPROACH
• Physics-based simulation of ultrasound propagation and wave-defect 

interaction in AM Ti-6Al-4V parts under varying porosity conditions.
• Gold standard flaw data extracted from high resolution (5 µm) X-Ray 

CT. Extracted pore metrics used to develop a simulation case generator; 
results will be validated using ultrasonic immersion scan data.

• Three-dimensional elastodynamic equations solved using a rotated 
staggered grid (RSG) finite difference algorithm.
• HPC algorithm well-suited for simulation of ultrasound propagation in 

heterogeneous, anisotropic media.

NEXT STEPS
• Complete validation studies via empirical-simulation comparison of key metrics (e.g., velocities, attenuation).
• Employ parametric exploration methodologies, iterating over flaw features to explore connections with 

inspection results.

Ultrasonic NDE Simulation of 
Porosity Characteristics

RECENT ACCOMPLISHMENTS and IMPACT
• Performed image segmentation on X-Ray CT data, extracting pore 

metrics (e.g., shape, size, location >10,000 individual pores).
• Built a case generator that incorporates pore feature distribution into 

inspection domain.
• incorporating pore characteristics into HPC simulation, we can 

explore connections between defect features and inspection 
methodologies/results. This is a fundamental step towards strategic 
capabilities (e.g., development of simulation-based inspections).

Elastic wave simulation in AM dog 
bone specimen.

Cross-sectional slice from 5µm resolution X-Ray 
CT inspection of high laser power build.


