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ABSTRACT: In this study, we have assessed the effectiveness of the use of existing observing

systems in the lower troposphere in the GEOS hybrid–4DEnVar data assimilation system through

a set of observing system experiments. The results show that microwave radiances have a large

impact in the Southern Hemisphere and Tropical ocean, but the large influence is mostly observed

above 925 hPa and dissipates relatively quickly with longer forecast lead times. Conventional data

information holds better in the forecast ranging from the surface to 100 hPa, depending on the field

evaluated, in the Northern Hemisphere and lowest model levels in the Tropics. Infrared radiances

collectively have much less impact in the lower troposphere. Removing surface observations has

small but persistent impact on specific humidity in the upper atmosphere, but small or negligible

impact on planetary boundary layer (PBL) height and temperature. The model responses to the

incremental analysis update (IAU) forcing are also analyzed. In the IAU assimilation window, the

physics responds strongly to the IAU forcing in the lower troposphere, and the changes of physics

tendency in the lower troposphere and hydrodynamics tendency in the mid- and upper troposphere

are viewed as beneficial to the reduction of state error covariance. In the subsequent forecast,

the model tendencies continue to deviate further from the original free forecast with forecast lead

times around 300–400 hPa, but physics tendency has showed signs of returning to its original free

forecast mechanisms at 1-day forecast in the lower troposphere.
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1. Introduction23

The planetary boundary layer (PBL) is an important interface between the Earth’s surface and24

the atmosphere, core to the understanding of flux balances across the Earth system components.25

Its importance is well-established for its applications in weather, climate, and air dispersion, and26

as such the PBL has been listed as an ‘Incubation’-class targeted observable in the 2018 NASEM27

Earth Science Decadal Survey (National Academies of Sciences and Medicine 2018). Due to the28

high degree of spatial and temporal heterogeneity of the near surface processes, including diurnal29

variations and complex interactions between the land/ocean surface and atmosphere, the PBL has30

been challenging to accurately simulate and observe.31

Given the capability of advanced data assimilation systems combining model physics with data32

from multiple observing systems coherently to provide optimal initial conditions for models, an33

increasingly large number of observations have been assimilated in the Goddard Earth Observing34

System (GEOS) global hybrid 4D Ensemble-Variational (4DEnVar) data assimilation system at the35

Global Modeling and Assimilation Office (GMAO). The GEOS data assimilation system is aimed36

to constrain the PBL atmospheric thermodynamic structure and to reduce the uncertainties of land37

surface model and PBL parameterization schemes, but in this study we will focus on the lower38

troposphere for simplicity and set the stage for follow-on PBLwork. While each individual available39

observing system offers unique advantages in measuring the earth, however, there is no perfect40

observing system for the lower troposphere. Conventional data such as radiosonde data provide41

reliable temperature, specific humidity andwind profiles, but they aremainly concentrated over land42

and lack adequate temporal resolution to capture diurnal variations. Global Navigation Satellite43

System (GNSS) radio occultation (RO) data has high-vertical but coarse along-ray resolution.44

Furthermore, they are currently not used or assigned very large observation errors in the low45

troposphere, where super-refraction is common and biases are large. Satellite radiance data have46

good global coverage, but introduce other challenges. Microwave observations can penetrate47

through clouds but with broad weighting function and coarse resolution; hyperspectral infrared48

observations offer high spectral resolution but are unable to provide information beneath clouds.49

The various limitations in the existing observations, or in our ability to use them, have made it50

essential to use these observations coherently in the GEOS global data assimilation system. So far,51
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no known study has been performed to comprehensively assess the impact of the various observing52

systems on the analysis and forecasts of the lower troposphere.53

Several approaches can be used to assess observation impact in data assimilation systems, such54

as forecast-based sensitivity observation impact (FSOI, Langland and Baker (2004), Gelaro et al.55

(2010)) and observation-based observation-minus-forecast residuals (Todling (2013). Another56

commonly used way of studying the impact of different observations in data assimilation systems57

is to employ the approach of observing system experiments (OSEs). Many previous OSE studies58

have focused on free atmosphere above the PBL, including the stratosphere. For example, Kelly59

and Thépaut (2007) and Lord et al. (2016). Recently, Duncan et al. (2021) investigated the impact60

of microwave sounders on the analysis and model forecast in the ECMWF system; Lawrence et al.61

(2019) investigated the impact of observations in the polar regions. The present study investigates62

the impact of observations in the low troposphere using the GEOS atmospheric data assimilation63

system (ADAS). The goal is to try to identify specific weaknesses of data usages associated with64

analyzing and predicting thermodynamic structure of the lower troposphere. Additionally, results65

and discussion are presented to illustrate the model responses to analysis increments. It is well66

known that rapidly changing physical, rather than hydrodynamical, processes are hard to constrain67

with data assimilation; basically the model physics tends to forget rather quickly changes induced68

by the assimilation of observations and falls back into its own mechanisms. The responses of69

model physics and hydrodynamics tendencies are worth closer examination.70

This article is organized as the following: section 2 gives an overview of the GEOS global71

hybrid–4DEnVar data assimilation system; a brief summary of the observations used in GEOS72

ADAS is given in section 3 by looking at a summary of its FSOI tool. Data denial experiments73

results are presented in section 4, model responses to analysis increments and evolutions are74

discussed in section 5, and conclusions are provided in section 6.75

2. Brief overview of the GEOS hybrid–4DEnVar ADAS76

The GEOS atmospheric data assimilation system is a hybrid–4DEnVar system that produces77

estimates of global atmospheric states by analyzing observations within a 6-hour time window.78

The deterministic hybrid–4DEnVar uses the Gridpoint Statistical Interpolation (GSI) of Kleist et al.79

(2009) with the preconditioning strategy of El Akkraoui et al. (2013). Its cost function can be80
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written as81
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where Xx is the total analysis increment; d is the observation-minus-background departure vec-82

tor at time C: ; H is the Jacobian of the nonlinear observation operator; a is the extension to the83

control vector account for the ensemble contribution; B2 and R are the prescribed climatological84

background and observation error covariances; L is a localization matrix; V2 and V4 represent85

weights given to the climatological and ensemble background terms. The last term, �3 , represents86

additional constraints, for example, a dry mass conservation term (see Takacs et al. 2016). Mini-87

mization of the cost function leads to a four dimensional increment, which is given as the sum of88

the contribution from the climatological term Xx2 and a term composed of linear combination of89

ensemble perturbations Xx< and optimal coefficients a<, that is,90

Xx: = Xx2 +
"∑
<=1

a< • Xx<: . (2)

Here the symbol • stands for the Hadamard-Schur (element–wise) product of two vectors, and the91

ensemble of forecast perturbations Xx<
:
are derived from running the ensemble square-root filter92

(EnSRF) of Whitaker et al. (2008). In the current GEOS ADAS, the coefficients V2 and V4 change93

with the vertical analysis levels, equally weighting the two terms up to about 5 hPa, and smoothly94

transitioning to a purely climatological error term above that (see Todling and El Akkraoui 2018).95

The assimilation of observations in GEOSADAS is performed through a 4D incremental analysis96

update (IAU). Instead of using the 4D incremental solution provided by the minimization of (1)97

to correct model initial conditions and subsequent model states at given frequency (hourly), the98

incremental solutions are used to form tendency terms that are applied at each model time step99

during a so-called corrector interval that lines up with the 6-hour assimilation window. In addition,100

the present formulation of IAU is a revision of the Bloom et al. (1996) version, following Takacs101

et al. (2018), that guarantees IAU stability by modulating the tendencies with a digital filter.102
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Background fields for the next assimilation cycle are generated by a so-called predictor step that103

integrates the GEOS atmospheric model for an extra 6–hour period past the IAU corrector with the104

analysis tendency terms set to zero.105

The GEOSAtmospheric General CirculationModel (AGCM) relies on a non-hydrostatic version106

of the cubed-sphere finite volume hydrodynamics (see Putman and Lin 2007). Its current physical107

processes include the short- and long-wave components of the Rapid Radiative Transfer Model for108

GCMs (RRTMG; Clough et al. 2005; Iacono et al. 2008); the deep convection parameterization109

of Freitas et al. (2018); a catchment land-surface model consistent with the level-4 GMAO SMAP110

products (Reichle et al. 2018); and gravity wave drag follows McFarlane (1987) and Garcia and111

Boville (1994). The single-moment cloud physics are based onBacmeister et al. (2006). Of greatest112

relevance to the present work are the parameterizations of the boundary layer. More specifically,113

these consist of a non–local K–profile scheme driven by surface and cloud–top buoyancy fluxes114

(Lock et al. 2000), and a local scheme for stable conditions based on the Richardson number (Louis115

and Geleyn 1982). The Lock scheme releases parcels upward from the surface and downward116

from stratocumulus cloud top to determine the depth of an analytic profile of diffusivity. Above117

the well-mixed layer defined by the Lock surface-driven diffusivity, shallow cumulus convection is118

represented by the Park and Bretherton (2009) buoyancy-sorting mass flux scheme.119

A diagnostic component of GEOS that is of relevance to the motivational part of the present work120

is its forecast-based sensitivity to observation impact (FSOI) tool. The GEOS FSOI implements121

a combination of the approaches of Langland and Baker (2004) and Trémolet (2007) that allows122

assessing the contribution of individual observations to reducing errors in 24–hour forecasts. For123

that, it employs a linearized moist global energy norm that serves to transform the impact of124

different quantities into units of energy (J/kg) (e.g., Errico et al. 2004). Use of a moist energy125

component in the norm requires proper representation of linearized moist processes in the model126

adjoint needed for the produce and the generation of 24-hour forecast sensitivities. Details of the127

latest version of such processes is found in Holdaway et al. (2015).128

The near-real-time GEOS ADAS is a 12.5 km system that relies on a 50 km ensemble. This129

work employs a lower horizontal resolution version of GEOS, that runs the deterministic cycle at130

25 km, and the ensemble cycle at 100 km. GEOS uses 72 vertical levels in all its components.131

Several factors can alter observation impact results, even the rankings of relative importance of132
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observations. A few examples of such factors include change in the observing system, changes133

in the data assimilation algorithm, changes in the model, and changes in the weights given to134

the observations and background fields; horizontal and vertical resolution might also affect the135

assimilation of observations. The reduced (yet still reasonably high) horizontal resolution used in136

this study has been carefully chosen and frequently employed to evaluate the operational GEOS137

system and system upgrades. The impact of such horizontal resolution has been found to be138

secondary except for extreme weather conditions, and forecast skills and biases approximate those139

of the operational system. Even in this somewhat reduced resolution configuration the high140

computational resources requirements and the slow turnaround of experiments, led to the adoption141

of a conservative approach to conduct the data denial OSEs of this study. That is, the data denial142

experiments were set up to use the same ensemble backgrounds generated in the control experiment;143

this latter assimilates the complete set of observations and is set to exercise the entire machinery144

of the hybrid data assimilation system. The approach of using a given set of ensemble members145

is referred to as ensemble replay mode. A recent study by Duncan et al. (2021) finds that using a146

given (fixed) ensemble in various OSEs amounts to about 10% of the total change due to changes in147

the observing systems introduced in the various experiments, but still reliably represent the impact148

of such changes.149

3. GEOS observations and FSOI150

The version of GEOS ADAS used in this work is an upgrade to the then-current operational151

system when it was used to process the mid-November-December 2019 period covered here. The152

upgrade involves only changes to the analysis component, and more specifically to the underlying153

observing system, by adding: all-sky Advanced Microwave Scanning Radiometer 2 (AMSR-154

2), COSMIC-2 Global Positioning System Radio Occultation (GNSSRO), and the full spectral155

resolution (FSR) version of the Cross-track Infrared Sounder (CrIS) from both Suomi NPP and156

NOAA-20 (see Todling et al. (2022)). In the average, each 6-hour cycle assimilates roughly 4.5157

million observations; the experiments here neglect a two–week spin–up in November 2019.158

As a motivational introduction to the investigation of how the observing system affects the159

lower troposphere behavior in GEOS, we start by looking at diagnostics produced by exercising160

two different configurations of FSOI in the control experiment, which uses the complete set of161
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Fig. 1. Comparison of FSOI for 24-hour forecasts from all 0000 UTC analyses of December 2019 when two

projections (LPO) of the norm are used in the calculations, namely, using the standard set of vertical levels,

and using only near surface levels (at and below 850 hPa). The panels show: (a) fractional averaged impacts

(%) in each case; and (b) the averaged impact differences obtained after subtracting the standard LPO from

the near-surface LPO results (J/kg), in descending order. Error bars show 95% confidence in fractions and

differences, respectively.
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observations as laid out in Table 1. As mentioned in section 2, FSOI relies on a linearized total162

moist energy norm. The operator, E, corresponding to this norm is enveloped by a so–called163

(diagonal) local projection operator (LPO) S, as in S)ES, containing zeroes and ones along its164

diagonal and enabling, for example, restricting the norm to particular variables, regions, or levels.165

The standard LPO configuration of FSOI in GEOS avoids forecast errors within the sponge layer166

by excluding the top six levels of the model. For the purposes of the present work, an alternative167

LPO considers only forecast errors from the lower troposphere, which is set as the lowest eleven168

model levels (roughly at and below 850 hPa).169

Evaluation of FSOI using the two LPOs described above for 24-hour forecasts for all 0000 UTC176

analyses in the month of December 2019 appears in Fig. 1. Panel (a) compares fractional FSOI177

(%) using the standard LPO (blue bars) with results when the near surface LPO (red bars) is used.178

Satellite winds, radiosonde observations, and MW radiances from Advanced Microwave Sounding179

Unit-A (AMSU-A) and Advanced Technology Microwave Sounder (ATMS) are among the top180

contributors in reducing forecast errors in both LPO configurations. Changing from the standard181
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Table 1. Control and OSEs Definitions

Name Removed Observation DA strategy

XCTL None Deterministic hybrid, full ensemble

XNOIR Infrared radiances Deterministic hybrid, ensemble-replay

XNOMW Microwave radiances Deterministic hybrid, ensemble-replay

XNOSATW Satellite winds Deterministic hybrid, ensemble-replay

XNOCONV Conventional Deterministic hybrid, ensemble-replay

XNOSURF Surface Deterministic hybrid, ensemble-replay

LPO to a near–surface LPO configuration leads to a slight reduction in the fractional impact of182

satellite winds, AMSU-A, Infrared Atmospheric Sounding Interferometer (IASI), and CrIS. The183

fractional contribution from GNSSRO is considerably reduced in comparison to what is seen in184

the default settings; this is similar to the reduction seen for aircraft observations. In contrast, the185

fractional impact of radiosondes, ATMS, Global Precipitation Measurement (GPM) microwave186

imager (GMI), and Advanced Very High Resolution Radiometer (AVHRR) is slightly increased187

when compared to the default LPO. The most noticeable increase in fractional impact is seen for188

land surface observations, followed by Advanced Scatterometer (ASCAT), Advanced Microwave189

Scanning Radiometer 2 (AMSR2), and ships observations. The error bars in panel (a) show 95%190

confidence levels in the fractional results. With the exception of results for AVHRR and MODIS191

winds and drifting buoys, which are not statistically significant, all others are within acceptable192

levels. Corroboration of the statistical significance of the averaged impact difference (J/kg) between193

the near–surface and the standard LPO configurations is provided in panel (b). Results are shown to194

be statistically significant for most of the components of the observing system. Since the standard195

LPO results have larger negative values and the near–surface LPO results have smaller negative196

values, where negative values indicate positive impacts, all the differences in panel (b) are positive197

except AVHRR Wind. The near–surface LPO removes forecast sensitivities above 850 hPa, thus198

FSOI derived at and below 850 hPa are only affected by the sensitivities at and below 850 hPa -199

this reduces quite significantly the magnitudes of FSOI relative to those derived with the standard200

LPO.201

Even with a confined near–surface LPO, both AMSU-A and ATMS still show considerable202

fractional contribution to forecast error reduction. This is even more peculiar since the GEOS203

ADAS analysis does not assimilate window channels and very low–peaking temperature sounding204

9



channels (1–3 and 15) from AMSU-A, and corresponding channels (1–4 and 16) from ATMS.205

Closer examination reveals that the impact from these instruments is dominated by their low–to–206

mid–peaking temperature channels, namely channels 5–7 for AMSU-A, and 5–8 for ATMS, when207

using the standard LPO. The fact that even under a near–surface LPO these instruments contribute208

substantially to fractional impact is attributed to the broad weighting functions associated with209

these channels (not shown). The two other MW sensors, namely AMSR2 and GMI assimilated210

in all-sky conditions, are also seen to contribute substantially to fractional impact with the near–211

surface LPO. The two window channels (23.8 GHz V1 and 36.5 GHz V) of AMSR2 and GMI show212

similar impact as seen from the low–to–mid–peaking AMSU-A and ATMS temperature channels.213

The remaining three GMI channels (166 GHz V, 183.31 ± 3 GHz V, and 183.31 ± 7 GHz V) are214

sensitive to water vapor and snowfall and are seen to have little impact on 850 hPa and below (not215

shown).216

Regarding the impacts of hyperspectral infrared radiances, they are affected by the channel217

selections from each sensor, data usages over different surface types, and quality control procedures.218

ComparedwithAIRS radiances, CrIS radiances are used in amuchmore conservativeway inGEOS.219

CrIS window channels are not used over non-water surface types, and surface-sensitive radiance220

observations are also excluded if brightness temperature Jacobians with respect to surface skin221

temperature are larger than 0.2. Therefore, it is understandable that CrIS’s fractional impact in the222

near surface LPO is lower than in the standard LPO. The seasonal effects of the FSOI results shown223

in this work have not been studied. To the extent that forecast errors vary seasonally there might224

be some seasonality in the impacts, but experience from looking at operational impacts suggests225

that such effects are rather secondary.226

4. Data denial OSEs227

Motivated by the differences seen in the FSOI results discussed above, Table 1 lists a set of data228

denial experiments designed to look more closely at the impact of various observing systems with229

the primary focus of examining the lower troposphere response. The present work focus exclusively230

on the layer at and below 850 hPa, considered here to be the lower troposphere. We intend to231

identify the observing systems that have large impacts in the lower troposphere and that are not232

used effectively or have small impacts. How deep the observation impact penetrates into the lower233

1V stands for vertical polarization.
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troposphere and the length that observation impacts last with the forecast lead time are also exam-234

ined. Evaluations are performed against a control (XCTL) experiment that uses all observations235

and exercises the full deterministic and ensemble ADAS machinery. The OSEs listed in Table 1236

systematically remove key components of the observing system: XNOIR, removes all infrared237

radiance observations; XNOMW, removes all MW radiance observations; XNOSATW, removes238

all satellite-derived wind observations; XNOCONV, removes all so-called conventional obser-239

vations2, and finally, experiment XNOSURF, removes all surface observations, and is designed240

specifically to evaluate the response of model processes to near–surface observations. Actual241

evaluation of results is done either with respect to the control experiment or with respect to ERA5242

analyses (Hersbach et al. 2020), as duly indicated.243

a. Impact on specific humidity244

According to the PBL Incubation Study Team Report (Teixeira et al. 2021), a key component to245

improve modeling of PBL thermodynamics processes is the ability to optimally assimilate PBL246

observations globally. To this extent, we start by examining the analysis of specific humidity in the247

model lowest levels. The difference of the control (XCTL) analyzed December 2019mean, specific248

humidity at 850 hPa with the corresponding ERA5 monthly mean analysis appears in Fig. 2a. It249

shows that, at the resolution of the experiments here, GEOS ADAS is drier over Tropical oceans250

than ERA5; wetter over the southern oceans in the latitude band from roughly 40-60>S and over251

the Northern Hemispheric Pacific and Atlantic storm tracks. Over South America GEOS ADAS252

seem wetter than ERA5 in the Amazonian rainy season; over the western African GEOS ADAS is253

drier than ERA5 in the area’s dry season.254

To facilitate comparison, the remaining panels of Fig. 2 show closeness plots of monthly mean261

analysis to ERA5 for each of the OSEs in Table 1 and the control experiment. That is, these panels262

show |OSE−ERA5| − |XCTL−ERA5|; hot colors indicate OSE is further away from ERA5263

than the control experiment. With that, it is clear that denying microwave radiances (XNOMW;264

panel b) exacerbates the differences of the control with ERA5, turning the results further drier in265

the Tropical oceans. Although results in western Africa seem mixed, results in South America266

seem to move further away from ERA5. Only minor, mixed, changes are seen in the extratropical267

2The wording conventional observations is somewhat of a misnomer as it stands for radiosondes, pilot bollons, aircraft and a host of truly
traditional observations.
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Fig. 2. Panel (a): Difference of analyzed December 2019 mean specific humidity (g/kg) analysis, at 850 hPa,

and corresponding ERA5 analysis for XCTL experiment. Panels (b)-(f): closeness of given OSE and CTL to

ERA5 monthly mean analysis, that is, difference of the absolute difference of given OSE with ERA5 and the

absolute difference of control with ERA5: (b) XNOMW, (c) XNOCONV, (d) XNOIR, (e) XNOSATW, and

(f) XNOSURF, at 850 hPa. Notice different color scale in panel (a). Locations below the surface are marked as

white.
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oceans. Generally, all other OSEs suffer considerably less from their corresponding observing268

system denial than when microwave is denied. Some noticeable exceptional differences can be269

seen in Europe when conventional observations are removed (panel c), and a slight move in the270

opposite direction to that of microwave, in the tropical oceans, when satellite winds are denied271

(panel e). No clear signals are seen when surface observations are denied (panel f).272

Forecast skill scores for the control experiment and all OSEs have also been calculated, and273

are discussed here when verified against ERA5 analyses. Each panel of Fig. 3 shows globally–274

averaged root mean square error (RMSE) differences from the control with boxes representing 95%275

confidence interval for the associated RMSE difference, at selected levels. The largest increase276

in RMSE is due to denying microwave observations (red curves), with results being statistically277

significant. Loss of skill due tomicrowave is felt throughout the 5-day forecast at all levels displayed278

in the figure, though its significance decreases with increased forecast lead time. To a lesser extent279

than when denying microwave, loss in skill due to denying conventional (blue curves) and IR280

(green curves) observations is also statistically significant with the effect lasting throughout the281

5-day forecast. The significance of denying conventional observations becomes more comparable282

with that of denying microwave observations as we approach the surface. The impact on specific283

humidity from denying satellite winds (purple curves) and surface (yellow curves) observations is284

insignificant at 850 hPa. At lowest levels, satellite winds are seen to have small positive impact in285

the short forecast lead times, but turn slightly negative at longer forecast lead times; the influence286

of surface observations is small, with neutral to slightly positive impact observed toward the end287

of the forecast.288

The regional influence on specific humidity at low levels from the denial experiments of Table 1299

is shown for the Northern Hemisphere (NHE) and Southern Hemisphere (SHE) in Figs. 4–5. In300

the Northern Hemisphere, conventional observations are the most influential data type (Fig. 4a) in301

terms of mean forecast RMSE. Their impact stretches from the surface to 200 hPa throughout the302

5-day forecasts (Fig. 4b), with the largest impact in the lower to mid- troposphere. At 925 hPa and303

below, microwave radiances have much smaller impact, and infrared radiances can be negligible.304

This may be partially because very limited surface-sensitive radiances are assimilated over land.305

As expected, microwave radiances contribute the most in the Southern Hemisphere, followed by306

infrared radiances (Fig. 5a), but the large impact observed from 925 hPa to above 800 hPa decreases307
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Fig. 3. Globally–averaged RMSE difference from the control for all 0000 UTC 5-day forecasts for December

2019 of specific humidity at (a) 850, (b) 925 and (c) 1000 hPa, with boxes representing 95% statistical confidence

interval for each of the RMSE difference curves. The RMSE for the control and each OSE is calculated wrt ERA5

analyses. Curves are for control (black), XNOMW (red), XNOIR (green), XNOCONV (blue), XNOSATW

(purple), and XNOSURF (yellow).
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Fig. 4. Panel (a), as in Fig. 3b, but for Northern Hemisphere. Panel (b), globally-averaged specific humidity

RMSE difference (g/kg) between XNOCONV and XCTL, as a function of pressure levels, for the Northern

Hemisphere 0000UTC forecasts ofDecember 2019. Shaded areas highlight results that are statistically significant

with 90% confidence. The darker the shading corresponds to larger differences. The solid, dot-dash, and long-

dash lines correspond to the confidence intervals of 90%, 95%, and 99%.
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Fig. 5. As in Fig 4, but for Southern Hemisphere; and for panel (b) comparing XNOMW with XCTL.
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with the forecast lead times (Fig. 5b). In the Tropics (figure not shown), while conventional data308

have the largest impact at 925 hPa and below, microwave radiances dominate at 850 hPa followed by309

infrared radiances and conventional data, and the effect of microwave radiances is most noticeable310

between 875 and 700 hPa but much smaller or neutral impact below. Overall, the impact fromMW311

radiances tends to decrease quickly as forecast lead time increases while the impact of denying312

conventional observations stands well into the 5-day forecast.313

b. Impact on temperature field314

As displayed in Fig. 6a, the impact of microwave radiances on temperature forecasts can be seen317

more clearly in the Tropics, where its impact is neutral to negative below 925 hPa throughout the318

5-day forecast lead times. Their impact below 900 hPa in the Northern and Southern Hemisphere319

is also negligible in the first day or two of the forecast.320

Similarly, Fig. 6b suggests that infrared radiances mostly contribute to temperature forecast321

error reduction above 925 hPa in the Tropics (and also Southern Hemisphere). Loss of skill322

in temperature forecast due to denying infrared observations lasts up to about day 4, whereas323

considerable losses due to removal of microwave observations are felt throughout the 5-day period324

between 600 and 925 hPa (Fig. 6a).325

Like its impact on specific humidity, conventional data dominate the observation impacts on the326

lower troposphere in the Northern Hemisphere. When they are removed, forecasts degrade for327

the 5-day forecast period from surface to 100 hPa with the most severe degradation in the lower328

troposphere. In Tropics, considerable impacts from conventional data are also observed around329

900 and 300-550 hPa (figures not shown).330

c. Impact on wind field331

Although wind is not the focus of the PBL Incubation Study Team report (Teixeira et al. 2021),332

some of the denial experiments of Table 1 show non-negligible consequences to predicting winds333

in the lower troposphere. Conventional data and microwave radiances are the two most effective334

observation sources for reducing wind forecast RMSE globally from the surface to 850 hPa.335

Infrared radiances have little or neutral impact in this layer. The most interesting result is the336

positive impact from microwave radiances. While some radiances are affected by surface wind337
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Fig. 6. Panel (a): similar to Fig. 5b, but for temperature (K) in the Tropics; panel (b): similar to panel (a), but

comparing experiment XNOIR with XCTL.
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Fig. 7. As in Fig. 5a, but for meridional wind (ms−1) at 850 hPa.

speed, a considerable impact in the lower troposphere may be through background error covariance338

and tracer effect when thermodynamic structure is improved by using the microwave radiances.339

For example, Fig. 7 illustrates that in the Southern Hemisphere, microwave radiances have the340

largest impact in reducing forecast errors at 850 hPa, followed by conventional data.341

However, one of the most unexpected results obtained from examining the wind fields is the im-342

provement in forecast scores when satellite winds are removed. This is seen in Fig. 7 (XNOSATW;343

purple curve), with the improvement being retained and increasing throughout the length of the344

5-day forecast. Careful examination reveals this to be the case at other levels, as well, especially345

along the jet–stream level (not show). Another illustration of the undesirable improvement obtained346

when satellite winds are removed, from the version of GEOS ADAS used in this work is seen when347

looking at the ratio of observation–minus–background standard deviations between XNOSATW348

and XCTL, for various instruments. Figure 8 displays this ratio in the Southern Hemisphere for349

(a) ATMS and (b) IASI radiance observations; improvements appear as the solid black curve falls350

below 100% (grey, vertical curve). A careful evaluation reveals this unexpected result to be a351
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consequence of a bug in the GEOS system with no thinning being applied to GOES-R satellite352

wind observations; results improve dramatically after the bug is fixed with proper thinning being353

applied.354

d. Impact on PBL height358

The height of the PBL is a relevant parameter used in air quality studies and mixing of aerosols in359

the turbulence layer. Though careful evaluation of the consequences in changes to PBL height and360

its diurnal cycle are beyond the scope of the present work, it is still worth seeing how the various361

OSEs here change this quantity. In the GEOS system, the PBL height uses different definitions over362

land and ocean. Over land, it is based on the bulk Richardson number with a critical value of 0.25,363

while over ocean it is based on the profile of diffusivity from the turbulence parameterizations,364

with a threshold of 10% of the maximum diffusivity. Figure 9 shows the diagnosed December365

2019 averaged PBL height for the control experiment (panel a), and how PBL height differs for366

a given OSE from the control (remaining panels). Denial of microwave observation (panel b)367

tends to lower PBL height in the Southern Hemisphere oceans at this time of the year, and slightly368

increase it in the Tropics and Northern Hemisphere. This is somewhat similar to what happens369

when infrared observations are denied (panel d) though an increase of PBL height is observed over370

tropical lands in this case. The effect from denying conventional observations (panel c) is more371

visible in the Northern Hemisphere and Tropics with the inner portions of North America and Asia372

showing a decrease in PBL height and the coastal areas showing an increase. The effects from373

denying satellite winds is just as large as that of denying microwave radiances, especially in certain374

areas: noticeably off the Pacific coastal areas of North and South America where stratocumulus375

clouds play a significant role and are considerably affected by the winds in those regions in this376

case. It should be noted that some of the effects from satellite winds seen here are caused by the377

improper handling of GOES-R satellite winds in the GEOS system as discussed in Section 4c.378

Comparatively speaking, the absence of surface observations (panel f) amounts to relatively small379

changes in PBL height, which is perhaps indicative of how little the present data assimilation uses380

such observations to constrain this variable.381
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Fig. 8. Observation–minus–background standard deviation ratio of experiment (XNOSATW) and control for

(a) ATMS and (b) IASI in the Southern Hemisphere, for December 2019. Bottom x–axis show percentage,

magenta shade and top x–axis shows observation count, and bars and grey shades represent 95% significance.

355

356

357
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Fig. 9. Averaged December 2019 PBL height (m) for the control experiment (panel a) and difference for each

OSE: (b) XNOMW, (c) XNOCONV, (d) XNOIR, (e) XNOSATW, and (f) XNOSURF.

382

383

e. Impact of surface observations384

Early forecast models had low vertical resolution and simply had surface heat exchange, momen-385

tum drag and vertical diffusion, with consequent highly dissipative surface layers. Thus, forecasts386

in these layers were relatively insensitive to changes of fields aloft which would overwhelm the387

mechanisms for error growth and vice verse. Modern PBL schemes (e.g. Lock et al. 2000) are388

more sophisticated, incorporating vertically non-local forcing and effects upward from the surface389

as well as downward from the layer’s top. As removing the surface observations in experiment390

XNOSURF introduces changes mainly to the analyses in the lowest levels, it is worth examining391

how the atmosphere responds to such changes.392
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Fig. 10. As in Fig. 4b, but for comparing XNOSURF with XCTL in the Tropics.

Figure 10 shows specific humidity RMSE difference between XNOSURF and XCTL in the393

Tropics for the month of December 2019. It is seen that removing surface observations degrades394

upper atmosphere forecast skill from about 150 to 350 hPa in the Tropics persistently. Similar395

degradation is also observed from 100 to 200 hPa in the Northern and Southern Hemisphere up to396

day 4. Although the degradation magnitude is small, they are statistically significant at confidence397

value of 90%. The surface observations have mixed impact on the mid- and lower atmosphere.398

Removing surface observations makes forecast skill worse below 800 hPa but better in the mid-399

atmosphere in the Tropics, and the forecast skills below 900 hPa become better for up to one400

and a half days in the Northern Hemisphere. Removing surface observations, however, has no401

statistically significant impact on temperature and wind fields. In this experiment where surface402

observations are excluded, the results indicate that changes at or near surface do affect mid- and403

upper- atmosphere in the GEOS system. As more PBL observations will become available in the404

future, more studies should be performed to investigate how they affect not only the PBL simulation405

but also the above free atmosphere.406
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5. Model tendency responses to the IAU forcing407

In a traditional data assimilation framework, analysis increments are used to intermittently correct408

the model’s initial condition at every cycle. When the increments change the initial state in a way409

that is not consistent with the model hydrodynamical and physical processes the model tends to410

reject the observational information. Geostrophic adjustment, happening in time scales of minutes411

to hours, is one such well–known dynamical process the model goes through to accommodate to412

undesirable changes in its state induced by the analysis. When components of the initial state prove413

inconsistent with the physical processes, the model may reject the analysis information and return414

to its desired state in a single time step. One such example is discussed in Zhu et al. (2016, Fig. 16415

there), where parts of the cloud analysis increment are simply rejected after the first pass through416

the physics term in the model integration. In this example, it was found that an inconsistency417

between the model clouds and the relative humidity analysis partially explained why the model418

readily ignores the cloud analysis increments. More generally, the way analysis increments are419

presented to the model, and whether they are dynamically and physically consistent with the model420

underlying processes determines how the model retains information from the observations. This421

consistency is well understood when it comes to dynamical balances, such as geostrophic balance,422

and it has led to careful development of initialization algorithms (e.g., Kleist et al. 2009, and423

references therein), and it has also led to procedures to develop dynamically consistent background424

error covariances (see Bannister 2008, and references therein).425

Asmentioned in Section 2, instead of correcting the model through traditional intermittent initial426

condition updates, the GEOS data assimilation system employs an IAU procedure that presents the427

analysis corrections as tendency terms that are continuously applied to the model during the 6-hour428

assimilation window around the analysis time, [-3h, +3h]. Whether in 3D, or its 4D formulation429

used in the current GEOS hybrid system, a digital filter modulates the analysis tendencies (Takacs430

et al. 2018) in a way that guarantees a smooth transition from one 6-hour assimilation cycle to the431

next. After the first pass of the IAU tendency, model hydrodynamics and physics tendencies start432

to evolve and depart from the original free model forecast path where IAU forcing is not added.433

In this section, the changes of model tendencies induced by the IAU forcing in the assimilation434

window and beyond are examined, and hopefully this information will be helpful for a future study435

on improving observation retention in model forecast.436
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For a simplified and idealized forecast model, as shown in the Appendix, negative value of the437

cross–covariance between total model tendency and IAU tendency causes smaller increase ofmodel438

prediction error from time C=−1 to C= during the IAU [-3h, +3h] assimilation window. Such negative439

cross-covariance values are also observed over large areas in the complex and nonlinear GEOS440

system (figure not shown). A closer examination of the two cross-covariance terms between model441

hydrodynamics/physics tendency (i.e.,
(
mG
mC

)
3
,
(
mG
mC

)
?
) and IAU tendency XG

g
are conducted using an442

ensemble forecast with the IAU forcing for temperature state (right columns of Figs 11–12). XG443

represents the analysis increment, and g represents the scaling parameter used to convert increments444

into tendencies. The cross-covariances using the ensemble forecast without the IAU forcing are445

also calculated (left columns of Figs 11–12) to help illustrate how the model hydrodynamics and446

physics tendencies have changed in response to the IAU forcing in the assimilation window. It447

is shown in Fig. 11 that the patterns of 2>E
((
mG
mC

)
3
, XG
g

)
, the cross-covariances between model448

hydrodynamics tendency and IAU tendency, exhibit little change at 1000 and 925 hPa, but become449

increasingly negativewith height at and above 850 hPa due to the use of the IAU forcing. In contrast,450

2>E

((
mG
mC

)
?
, XG
g

)
, the cross-covariances between model physics tendency and IAU tendency (Fig.451

12), indicate relatively small changes at higher vertical levels but substantial changes at 1000, 925452

and 850 hPa. When IAU forcing is off, these levels show no clear pattern with mixed positive and453

negative values, but cross-covariance values become strongly negative over large areas when IAU454

forcing is on. These results indicate that physics tendency tends to evolve much more in response455

to the IAU forcing than hydrodynamics tendency in the lower troposphere, while the change of456

hydrodynamics tendency dominates in the middle and upper troposphere. While negative cross-457

covariance values are usually viewed as beneficial to reduce the state error covariance in Equation458

(A4), they suggest that analysis affects hydrodynamics tendencies more in the desired direction459

at mid-levels of the troposphere than it does at low levels; conversely, the analysis drives physics460

tendencies more toward desirable values at low levels than at mid levels of the troposphere.461

Similar patterns are also noticed in the cross-covariance terms between model hydrodynam-467

ics/physics tendency and IAU tendency for specific humidity and wind (figures not shown). The468

only noticeable pattern variation is seen in the cross-covariance between model hydrodynamics469

tendency and IAU tendency for specific humidity. While it is still becoming more negative at 850470
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Fig. 11. Cross-covariance (×1.04−10 2B−2) between ensemble model temperature hydrodynamics tendency

and ensemble IAU tendency at 1000 (a, f), 925 (b, g), 850 (c, h), 500 (d, i), and 200 (e, j) hPa at 00UTCDecember

16, 2019 for the ensemble forecasts with (right columns) and without (left columns) the IAU tendency forcing.

462

463

464

hPa when the IAU forcing is turned on, the changes between with and without IAU forcing are471

much smaller than those for temperature and there is little difference at 500 and 200 hPa.472

The changes of hydrodynamics and physics tendencies in response to the IAU forcing are also473

reflected in the spatial correlation coefficients of the model tendencies between the ensemble474
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Fig. 12. The same as Fig. 11 but for cross-covariance between ensemble model temperature physics tendency

and ensemble IAU tendency.

465

466

forecast with the IAU forcing and the original free ensemble forecast. A higher correlation475

coefficient indicates a model tendency is more similar to that of the free model forecast. With the476

use of IAU forcing, the model tendencies deviate from those of the original free forecast, and the477

departures are expected to increase with forecast hours. The behaviour of the model tendencies478
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and the degree of similarity to the original free forecast are examined at selected model vertical479

levels.480

The global correlation coefficients for temperature hydrodynamics and physics tendencies are481

displayed in Fig. 13 during the 27-hour ensemble forecast, which includes a 6-hour IAUassimilation482

window (i.e., [-3h, +3h] relative to the analysis cycle time) followed by a 21-hour (i.e., [3h, 24h]) free483

forecast. In the [-3h, +3h] IAU assimilation window, the correlation coefficient of hydrodynamics484

tendency (left panel of Fig. 13) dipped slightly at about 100, 300, and 850 hPa, but overall it485

has relatively small vertical variation globally, and experiences more rapid changes in the second486

half of the assimilation window than the first half of the window (except for 1000 hPa) and the487

following free forecast lead hours. In the subsequent [3h, 24h] forecast when the IAU forcing488

is turned off, the correlation decreases with the forecast lead hours and with the height globally,489

reaching a minimum of about 0.7 at 300 hPa at 24h, then increases to 0.81 at 200 hPa. At and490

below 850 hPa, the correlation coefficient has the slowest rate of change after the IAU is turned off.491

On the other hand, the pattern of the physics tendency correlation coefficient (right panel of497

Fig. 13) is quite different from that of hydrodynamics tendency. Little departure is observed498

in physics tendency due to the use of IAU forcing at and above 100 hPa. In the [-3h, 3h] IAU499

assimilation window, the correlation coefficient of physics tendency experiences relatively smaller500

vertical variation below 100 hPa and above 850 hPa. However, at and below 850 hPa, it decreases501

rapidly as the physics tendency deviates from the original forecast model, and the model physics502

evolves much more significantly in the first half of the assimilation window than the second half.503

After the IAU forcing is off, two minimum correlation coefficient levels are noticed, one is at the504

lowest model levels 850–925 hPa, the other is located around 300–400 hPa. While the correlation505

coefficient still roughly decreases with the forecast lead hours in the mid- and upper troposphere,506

such pattern doesn’t exist in the lower troposphere due to the complexity of physical processes, for507

example, the correlation coefficients at 6h, 9h, and 12h are higher than 3h, the correlation at 24h508

is higher than some shorter forecast lead times, and all correlation coefficients of different forecast509

lead hours cluster together at 1000 hPa.510

Comparing the correlation coefficients in the left and right panels of Fig. 13, it is clearly shown511

that the lower troposphere physics tendencies diverge more quickly than the hydrodynamics in both512
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Fig. 13. Globally-averaged correlation coefficients of model temperature hydrodynamics (left) and physics

(right) tendencies between the ensemble forecast with IAU forcing and original free ensemble forecast without

IAU forcing during a 27-hour ensemble forecast. The light green line is for the correlation coefficient at the

beginning of the assimilation window and therefore the coefficient value is 1. The red/black line is for the

coefficient at the middle/end of the assimilation window.

492

493

494

495

496

the lower and upper troposphere, which is consistent with the idea that the PBL physics responds513

strongly to the IAU.514

The global correlation coefficients of hydrodynamics and physics tendencies between the ensem-515

ble forecast with IAU forcing and the original free ensemble forecast are also evaluated for specific516

humidity and wind (figures not shown). Like the temperature hydrodynamics tendency correlation517

coefficient, the correlation coefficients for specific humidity and wind decrease significantly in518

the IAU assimilation window, then continue to decrease gradually with forecast lead times with519
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the smallest change rate at the lower troposphere and reaching the minimum around 150 hPa for520

specific humidity and 200–500 hPa for wind. As to the physics tendency correlation coefficients,521

the patterns for temperature and specific humidity are similar. The correlation coefficients for522

specific humidity increase at 24h and are even comparable or larger than those at 3h in the lower523

troposphere, while they decrease gradually with forecast lead times in the mid- and upper tropo-524

sphere with a minimum correlation at 50 hPa. The correlation coefficients for wind decrease the525

most at 400 hPa in the IAU assimilation window, and decrease slightly with forecast lead times at526

925 hPa but there is no clear pattern at other levels in the subsequent forecast when the IAU forcing527

is off.528

6. Conclusions529

The GEOS data assimilation system has provided the critical capability of combining model530

physics and awide range of observationswith various data coverage and spatial/temporal resolutions531

coherently to improve the global thermodynamic structure and numerical forecast. To prepare for532

future observing systems of the next decade, we have assessed the effectiveness of the use of533

existing observing systems in the lower troposphere in the GEOS data assimilation system.534

The full set of observations assimilated in the global GEOS data assimilation system is first535

assessed using the FSOI with the forecast error norm integrated from surface to about 850 hPa.536

Radiosonde data and microwave radiances from AMSU-A and ATMS are among the top contribu-537

tors to the GEOS system. Both lower peaking temperature sounding channels from AMSU-A and538

ATMS and window channels from AMSR2 and GMI are found to be effective in reducing model539

forecast errors.540

Given the FSOI results from the control experiment, a set of data denial experiments are con-541

ducted with selected observing systems of interest being removed. The results of the data denial542

experiments show that, microwave radiances and conventional data are the two most important data543

types to improving model forecast skills in the lower troposphere, which is in agreement with the544

FSOI results. Microwave radiances usually have large positive impact in the Southern Hemisphere545

and Tropics ocean, but most of the large impact is observed above 925 hPa and at early forecast lead546

times as the impact dissipates with longer lead times. Microwave radiances are also shown to con-547

tribute much more to specific humidity field than temperature field. Infrared radiances collectively548
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have much smaller impact in the lower troposphere, and they have difficulty to influence model549

levels below 925 hPa. In contrary, conventional data have the largest contribution in the Northern550

Hemisphere on both specific humidity and temperature fields, and their impact ranges from surface551

to 100 hPa, depending on the field evaluated. Meanwhile, data denial experiment results also552

reveal that changes at and near the surface by assimilating surface observations can affect not only553

lower but also mid- and upper troposphere. They have small but persistently positive impact on554

specific humidity forecast skill in the upper troposphere but mixed impact in the lower and mid555

troposphere. However, their impacts on temperature and PBL height are small or negligible.556

One surprising finding of this study is the obvious inconsistent results between the FSOI and the557

data denial experiment on satellite winds. FSOI results suggest high positive impact of the satellite558

winds data, but the data denial experiment indicates negative impact of these data in the GEOS559

system. Close examinations of the OmF of ATMS and IASI agree with the data denial experiment560

results. This inconsistency may be partially attributable to the choice of forecast aspect in the561

FSOI, which may lead to incomplete assessment of the observing system (Todling 2013). The562

negative impact from the satellite winds is most likely due to the missing of the thinning procedure563

for a subset of satellite winds. Further testing and tuning of the satellite winds in the GEOS system564

have been underway in a separate effort.565

The responses of model hydrodynamics and physics tendencies to the IAU tendency forcing are566

also investigated in this study. In the GEOS data assimilation system, IAU procedure is employed567

so piecewise analysis increment tendency is introduced into the forecast model during the 6-hour568

assimilation window. As the model re-adjusts to the IAU forcing, the IAU tendency is found to569

contribute to the reduction of state error covariance, mostly noticeable through the interaction570

with model hydrodynamic tendency in the mid- and upper troposphere and the interaction with571

model physics tendency in the lower troposphere. The correlation coefficients of temperature572

hydrodynamics and physics tendencies between ensemble forecast with IAU forcing and free573

ensemble forecast further illustrate the changes of the model tendencies in the assimilation window574

and reveal their evolution behaviors in the subsequent free forecast. In the IAU assimilation575

window, physics tendency correlation coefficient exhibits significant and rapid decrease in the lower576

troposphere as physics tendency re-adjusts quickly there to the IAU forcing, but hydrodynamics577

tendency correlation coefficient has much less vertical variation. In the following forecast when578
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IAU forcing is off, both hydrodynamics and physics tendencies see low correlations around 300-400579

hPa. In the lower troposphere, while the hydrodynamics tendency has the slowest change rate, the580

physics continues to diverge, but the correlation coefficient of physics tendency at 24h becomes581

larger, instead of smaller, than shorter forecast lead times in the lower troposphere, which may582

suggest that this tendency tends to get back to the original free forecast mechanism.583

Overall, there are still a lot of room to improve observation usages in the lower troposphere in584

the GEOS data assimilation system. GMAO plans to significantly increase the vertical resolution585

of its GEOS model in the near future, making corresponding adjustments to the model physics586

and data assimilation components. This near-future upgrade will aim, among other things, to587

maximize the benefits of using various observations in the lower troposphere through improved first588

guess thermodynamics. As the complexity and short timescale of PBL processes pose additional589

difficulties in response to the IAU tendency forcing and retention of information content of PBL590

observations, future research is also much needed to further improve representation of processes591

by the analysis and model parameterization schemes and parameters.592
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APPENDIX601

A brief derivation of state error covariance with IAU forcing602

A brief back of the envelop, idealized, calculation provides the rationale to justify why it is603

thought that the correlations between the total model tendency and the IAU tendency should be604

negative.605
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In a very simplified context, and under the most straightforward flavor of IAU, a state variable606

G= evolves in a single time step, ΔC , from time C=−1 to C= following607

G= = G=−1 +ΔC
mG

mC
+ΔC XG

g
, (A1)

where the differential in the second term in the rhs represents the total model tendency, which608

includes hydrodynamics and physics tendencies,
(
mG
mC

)
3
and

(
mG
mC

)
?
. XG represents the analysis609

increment, and g represents the scaling parameter used to convert increments into tendencies.i610

Subtracting the true state from the equation above, multiplying the resulting expression by itself,611

taking the expectation of the result, and assuming that G=−1 is not correlated with either the total612

tendency (i.e., linear dynamics) and the IAU term, we get613

%= = %=−1 + (ΔC)2&G + (ΔC)2&8

+ (ΔC)2 2>E
(
mG

mC
,
XG

g

)
(A2)

In the above, P is the state error covariance, &G = 2>E
(
mG
mC

)
, &8 = 2>E

(
XG
g

)
, and the symbol 2>E()614

is used to represent either an autocovariance when only a single entry is in its argument, or a615

cross-covariance when two arguments are present. In the ideal world, %= − %=−1 > 0, that is the616

error in the predicted state grows in time, therefore,617

2>E

(
mG

mC
,
XG

g

)
> −(&G +&8) (A3)

meaning the cross–covariance must be larger than a certain negative value. Any value large618

than a minimum negative value implies a larger error in the prediction, that is, a large value for619

%= −%=−1. Therefore the smaller the value of the cross–covariance or the smaller the sum of the620

cross-covariance and &8, the smaller the prediction error.621
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If splitting total model tendency into hydrodynamics and physics tendencies, similar to Equation622

(A2) we also have623

%= = %=−1 + (ΔC)2& + (ΔC)2&8 + (ΔC)22>E
((
mG

mC

)
3

,

(
mG

mC

)
?

)
+ (ΔC)2 2>E

((
mG

mC

)
3

,
XG

g

)
+ (ΔC)2 2>E

((
mG

mC

)
?

,
XG

g

)
(A4)

where & = 2>E
((
mG
mC

)
3

)
+ 2>E

((
mG
mC

)
?

)
. The last three cross-covariances terms in the rhs affect %=624

simultaneously in Equation (A4).625
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