National Aeronautics and Space Administration

Space Communication and Navigation

Development and Demonstration of a Wideband RF User Terminal for Roaming between Ka-band Relay Satellite Networks

26th Ka and Broadband Communications Conference 38th International Communications Satellite Systems Conference (ICSSC)

Marie Piasecki NASA Glenn Research Center

SCaN's Vision, Goal & Strategy

VISION: Interoperable and resilient space and ground communications and navigation infrastructure

GOAL: Enable high speed, robust, secure, and cost-effective space communications and navigation services to future science and exploration missions

Foster an Affordable and Growing U.S. Space Industry

Leverage Commercial

Capabilities to

Increase Efficiency

and Robustness of

NASA Space Networks

Infuse Transformational Technologies to Enhance Services Near the Moon and Beyond

Ensure Efficient Use of Spectrum through Regulatory Oversight and Streamlined Processes

Provide Technical Leadership in Pursuing and Implementing PNT Policies and Technology

Wideband RF User Terminal Purpose and Approach

Demonstrate a Wideband Terminal with a path to flight to support NASA's transition to commercial SATCOM services

- Demonstrate connectivity with a variety of services
 - > NASA/Military/Commercial Relays
 - > LEO/MEO/GEO Orbits
- Seamlessly Roam between different providers
- Develop and integrate commercially available products into a complete terminal
- Provide a flexible, resilient solution for future missions

Provide future NASA near-Earth missions capability to roam and also utilize potential commercial relay services

Wideband Terminal Specifications

Terminal Specs					
Frequency Bands	17.7 – 23.55 GHz Receive 25.25 – 31.0 GHz Transmit				
Bandwidth	>500 MHz (Tx and Rx)				
Antenna	<1m class				
Axial Ratio	1 dB Axial Ratio (Tx) 1.5 dB Axial Radio (Rx)				
Polarization	LHCP / RHCP				
PA Output Power	10-20 W (SSPA)				
EIRP	>50 dBW				
G/T	>12 dB/K				
Power	<200 W (Active)				
Mass	< 15 kg				
Temperature	-25 C to +55 C operational				
Life	15 year				
Radiation	100 kRad				
EMC	MIL-STD-461F				

17.3

17.7

17.8 18.3

18.6

18.8

19.3

19.7

20.2

21.2

21.4

22.0

22.21

21.5

21.55

23.55

23.6

24.0

24,05

24.25 24.45 24.65 24.75

25.05

25.25 25.5

27.0

27.5

29.5

34.0

31.0

ted plocel p

ORATION

REED-SATELUT

REPORTED TO A STATEMENT

WORLD-SATELLITE (space-to-Earth

RXED-SATELLITE (space-to-Barth)

NCELE

MOBILE

MOBILE**

WORLE"

MOBILE

MOBILE

EARTH EXPLORATION -SATELLITE - (Deserve)

AMATEUR-SATELLITE

INTER-SATELLITE

OLDENTON SATELUTE (Extra space FIDED-SATELLITE

(Earth-Io-space)

Eastedo-spaces

MOBILE INTER-SATELLITE

MOBILE-SATELLITE (Earth-to-space)

RXED-SATELLITE (Earth-space)

MOBILE -SATELLITE (Earth-to-space)

MOBILE

EARTH FOP LORATION-SATTELUTE (para)

TER-SATELUTE WHEE

INTER-SATELLIT

Radio

location

BILE-SATELLITE (space-to-Earth

Waveform Application Summary

High-Rate Bandwidth-Efficient Transmit Waveform

Modulation: GMSK, BPSK, OQPSK, 4/8/16-PSK, 16-QAM, 16/32-APSK Data Rate: Tunable up-to 1.67 Gbps (uncoded), 333.33 Mbaud Pulse-shape Filtering: SRRC, RC Forward Error Correction: LDPC 1/2, 2/3, 4/5, 7/8, Rate ½ Conv Digital Pre-distortion: Memory-less, Symbol Pre-distortion

Channel Pre-compensation: 32-tap FIR

DVB-S2 Transmitter

Modulation: 4/8-PSK, 16/32-APSK Data Rate: Tunable up-to 16 Mbaud (66.5 Mbps)

Pulse-shape Filtering: SRRC 0.2, 0.35 Forward Error Correction: LDPC ¼ to 8/9, Short Frames

Pilots: On or Off

Encapsulation: ~Generic Stream Encapsulation (GSE)-Lite

Digital Pre-distortion: Memory-less, Symbol Pre-distortion

Channel Pre-compensation: 32-tap FIR

PSK Receiver

Modulation: BPSK / QPSK Data Rate: Tunable up-to 7.5 Mbps, extensible to 62.5 Mbps Forward Error Correction: Viterbi, Rate ½ convolutional code Framing: CCSDS AOS

DVB-S2/S2X Receiver

Modulation: 4/8-PSK, 16/32/64/128/256-APSK

Data Rate: Tunable up-to 62 Mbaud (~250 Mbps)

Pulse-shape Filtering: SRRC 0.05 ->, 0.35

Forward Error Correction: LDPC ¹/₄ to 9/10, Short or Normal Frames

Pilots: On or Off

GRC Wideband Combined Commercial Service CONOPS

•

Link Performance

	Modulation	FEC	Symbol Rate	Information Rate (Mbps)	RX Es/No (dB)
TDRSS	OQPSK	Rate 1/2	150M	150	N/A
TDRSS w/DVB-S2	8-PSK	LDPC 9/10	200M	535.8	12.8
Inmarsat	8-PSK	LDPC 3/5	70M	124.6	6.1
Inmarsat	16-APSK	LDPC 3/4	15M	41.42	12.3
O3b	8-PSK	LDPC 3/4	70M	145.45	9.5
O3b	32-APSK	LDPC 8/9	20M	83.2	16.3

Forward Link Performance

	Modulation	FEC	Symbol Rate	Information Rate (Mbps)	RX Es/No (dB)
Inmarsat	8-PSK	LDPC 5/6	59M	146	6.4
O3b	16-APSK	LDPC 2/3	80M	200.4	16.3

Additional Demonstration Results

Network Connectivity

Internet Control Message Protocol (ICMP) Ping Tests
UDP Data Tests

Variable Coding and Modulation

- All DVB-S2 MODCODs demonstrated
- •Tests included +/-700 kHz Doppler at 1.1 kHz/sec

Doppler Emulation

•Doppler tests run at 15 MBaud with 16-APSK LDPC 3/4 modulation

Roaming

•Successfully demonstrated service roaming between TDRSS and commercial vendors with <30 sec downtime

Lessons Learned & Future Work

- Interoperability on multiple services is viable using a single terminal
- Difference between Service providers even when using standards
- Wideband functionality (mostly) achievable with COTS hardware

Future Work:

- Enhancing terminal functionality
- Potential flight demonstration

