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Abstract:

Use of composite adhesively bonded joints (ABJ) is of critical importance to the adoption of composite materials in the
automotive industry, as ABJ enable lower stress concentrations as compared to conventional mechanically fastened joints. ABJ
are better suited for joining composite materials as compared to fastened joints because fastened joints require drilling of
holes which locally affect composite material structure. Composite materials and adhesives are subject to unavoidable
stochastic local material variations which make different failure scenarios possible. An experimentally tested ABJ configuration
Richard Larson?, Andrew Bergan?, Frank Leone2, Oleksandr G. is simulated using finite element analysis (FEA). Experimentally, under tension, the joints failed by three major failure modes,
Kravchenko?l with peak loads ranging from 13.0-16.1 kips. Progressive failure analysis tools are used to simulate damage development
1 0ld Dominion University, 5115 Hampton Blvd, Norfolk, VA, 23529, USA within.each matgrial within the joint. .The. simul'ation -agreed. well with the a\./erage.experimental p'eak Io<j;\d. StochasticaIIY |
2 Damage Tolerance, Durability, and Reliability Branch, NASA Langley occurring adhesive porosity and matrix-fiber micro-disbonding were numerically simulated. The simulations revealed a similar
Research Center, Mail Stop 190, Hampton, VA 23681 trend as observed experimentally: joints which failed at higher peak loads had lower levels of damage within the face-sheets
of the composite panels which were adhesively bonded; these joints which failed at higher peak loads also had greater
damage in the doubler of the experimentally tested double lap joint configuration.
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* Inthe combined 6% porosity and simulated facesheet microcracking simulation, the
trend was observed again: simulations with more facesheet damage failed at lower
loads.

* The CoV for the combined defect simulations was 3%; for the porosity only
simulations the CoV was 2.9%
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Fig. 7 a) Stress v. strain curve b) core damage c) delamination

______Fig. 4Experimentally tested joint configuration[] damage d) adhesive damage

The models revealed unintuitive interactions between manufacturing defects, peak load and
failure mode. Fabric material variability was not simulated, yet fabric material variability may
account for discrepancies between experimentally observed strength coefficient of
variance(CoV), and simulation CoVs.




