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1. Abstract
The barrier islands of Louisiana’s Breton National Wildlife Refuge (BNWR) are 
disappearing due to sea level rise, extreme hurricanes, sediment starvation, and 
the Deepwater Horizon oil spill. This decline in land area has damaged important 
bird habitat and reduced the islands’ ability to protect coastal Louisiana from 
storm surges. The persistence of the islands is synergetic to that of the 
surrounding seagrass beds; seagrass binds together land, protecting the islands 
from erosion, and the loss of land exposes the seagrass and accelerates its decline.
Furthermore, seagrass is independently important, absorbing excess nutrients and 
providing habitat for marine ecosystems. Here we present the Tool for Coastal 
Remote Ecological Observations in Louisiana (Tool CREOL), a Google Earth Engine
Tool built to easily access data from Landsat 5 TM, Landsat 7 ETM+, Landsat 8 
OLI, and Aqua and Terra MODIS. We show, using time series and maps generated 
using the tool, how land area and seagrass have responded to destructive events 
from the past 36 years (1984-2021). In only 7 years, Hurricane Georges (1998), 
Ivan (2004), and Katrina (2005) reduced land area by approximately 85%, 
accompanied by a major decline in seagrass extent. Tool CREOL will have strategic
utility in planning upcoming restoration and revegetation efforts planned by 
Louisiana’s Coastal Protection and Restoration Authority in the Breton National 
Wildlife Refuge and will provide up-to-date monitoring of the results of that 
project. The tool serves as a basic model which can be adapted to study similar 
coastal regions in the world.

Key Terms
remote sensing, seagrass, Landsat, MODIS, turbidity, hurricanes, restoration, 
salinity, Google Earth Engine

2. Introduction
2.1 Background Information
The persistence of submerged aquatic vegetation (SAV) is essential to the 
restoration and maintenance of a healthy ecosystem in the Breton National Wildlife
Refuge in southeastern Louisiana. SAV refers to rooted underwater vegetation, 
such as seagrasses, that primarily grows in shallow waters (Kentworthy et al., 
2017). Louisiana’s seagrass meadows are located approximately 50 miles off the 
coast of the Mississippi River’s St. Bernard Delta, primarily along the Breton and 
Chandeleur Islands (Figure 1). The Chandeleur Islands, which stretch for 
approximately 72 miles, separate the Chandeleur Sound from the Gulf of Mexico 
and provide storm surge protection to Louisiana's coastal communities (Poirrier & 
Handley, 2006). At a maximum depth of 20 feet, the Chandeleur Sound provides 
the ideal shallow habitat for native seagrass beds which thrive in natural shoals 
behind the Breton and Chandeleur Islands (Poirrier & Handley, 2007). The 
seagrass beds are known to support fisheries and biodiversity by providing aquatic
habitat and absorbing excess concentrations of nitrogen and phosphorus, which 
cause harmful algal blooms and oxygen deficits. Seagrass beds also help protect 
coastal communities such as New Orleans by reducing storm surges, slowing 
barrier island erosion, and trapping suspended sediment.
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Despite the numerous ecological and economic benefits, SAV populations are 
currently in a global decline due to a combination of natural and anthropogenic 
forces. The Chandeleur Islands are facing increased land loss, reducing habitat 
and exposing fragile SAV to harsher and deeper waters. Devastating events such 
as Hurricane Katrina in 2005 (Fearnley, 2009) and the Deepwater Horizon Oil Spill
in 2010 (Kentworthy et al, 2017) increased the vulnerability of existing 
populations. Impending threats of rising sea levels, increasing temperatures, and 
changes in water quality and turbidity are expected to further reduce the extent of 
seagrass meadows (Poirrier & Handley, 2006). Increased monitoring, revegetation,
and restoration of the Breton and Chandeleur Islands are thus needed to 
understand shifts in SAV populations and prepare for both climate-induced and 
anthropogenic changes in the ecosystem. Current in situ sampling methods are 
insufficient in visualizing changes in SAV extent over large periods of time due to 
human error, temporal limitations, and sample processing time (Rowan and 
Kalacska, 2021). Passive satellite remote sensing and aerial photography may be 
able to provide a highly reliable and low-cost method to monitor SAV changes and 
advise restoration efforts. 

Data from Landsat satellites have been previously used to study global SAV 
populations. Misbari and Hashim (2016) used NASA’s Landsat 5 Thematic Mapper 
and Landsat 8 Operational Land Imager data to measure changes in SAV extent in 
Johor, Malaysia. While the Landsat satellites provide reliable 30-meter spatial 
resolution, data analysis is limited by cloud cover and coarse temporal resolution 
(16-day return time). NASA’s MODIS, launched in 2002, is commonly used to 
determine surface water temperature, a key component of SAV persistence 
(Carlson et al, 2014). While MODIS has a coarse spatial resolution, its 1 to 2-day 
return time provides an ideal temporal resolution for monitoring SAV changes. For 
the purposes of this project, we adopted a study period of 1984-2021 to encompass
historical SAV extents and better advise revegetation efforts around the 
Chandeleur Islands. We compiled data to analyze seagrass meadows in the 
Chandeleur and Breton Islands via the development of a graphical user interface 
(GUI) to measure turbidity, chlorophyll-a, land area, sea surface temperature and 
NDAVI/seagrass extent.
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Figure 1. Study area of Louisiana's Chandeleur Sound and Islands

2.2 Project Partners & Objectives
Our team collaborated with Louisiana’s Coastal Protection and Restoration 
Authority (CPRA) and the Louisiana Department of Natural Resources (LDNR), 
Office of Coastal Management. The CPRA is required to submit an annual report on
the state’s effort to preserve coastal wetlands that details short-term and long-term
results citizens can expect to see. Currently, the LDNR is implementing the 
Louisiana Coastal Resources Program (LCRP) to promote the restoration and 
revegetation of Louisiana’s seagrass beds. Partners will utilize project results to 
identify primary areas for restoration and understand ideal areas for seagrass 
habitat. The CPRA and LDNR will then implement restoration and revegetation 
efforts.

One of the key objectives for this project was to develop a user-friendly interface in
Google Earth Engine (GEE) to allow for seagrass monitoring via satellite remote 
sensing. Key variables include turbidity , salinity and NDVI. Results of the GEE tool
will aid users in identifying current and historical seagrass beds as well as ideal 
areas to focus restoration efforts. 

3. Methodology
3.1 Data Acquisition 
The team accessed Landsat and MODIS data through GEE (Table 1). We used 
Landsat 5 Surface Reflectance (SR) Tier 1, Landsat 7 Surface Reflectance Tier 1, 
and Landsat 8 Surface Reflectance Tier 1 optical imagery for January 1984 to 
January 2000, January 2000 to April 2013, and April 2013 to June 2021, 
respectively. In addition, the team used data from the Aqua MODIS and Terra 
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MODIS temperature bands from July 2002 to April 2021 and February 2000 to 
April 2021, respectively. 

Table 1.
Remote sensing data accessed through GEE
Platform
& Sensor

Processi
ng Level

Data
Provider

GEE Image Collection
ID Date Range

Landsat 
8 OLI

Level 1 
SR 
Collection
1 Tier 1

United 
States 
Geologica
l Survey 
(USGS)

LANDSAT/LE08/C01/
T1_SR

April 2013-Present

Landsat 
7 ETM+

Level 1 
SR 
Collection
1 Tier 1

USGS LANDSAT/LE07/C01/
T1_SR

January 1999-April
2013

Landsat 
5 ETM

Level 1 
SR 
Collection
1 Tier 1

USGS LANDSAT/LE05/C01/
T1_SR

January 1984-
January 1999

Aqua 
MODIS

Level 3 
Standard 
Mapped 
Image

NASA 
Ocean 
Biology 
Processin
g Group 
(OBPG)

NASA/OCEANDATA/
MODIS-Aqua/L3SMI

July 2002 – April 
2021

Terra 
MODIS

Level 3 
Standard 
Mapped 
Image

NASA 
OBPG

NASA/OCEANDATA/
MODIS-Terra/L3SMI

February 2000 – 
April 2021

We also used the Joint Research Centre (JRC) Global Surface Water Dataset, which
is a data product derived from Landsat data (Pekel et al., 2016). We used two 
ancillary datasets to analyze environmental conditions that we could not derive 
from the remote sensing data. To track runoff from the Mississippi river we used a 
USGS dataset of monthly nutrient flux and streamflow (Aulenbach et al. 2007). The
USGS generated these data with the intention to track sources of major nutrients 
that lead to hypoxia in the Gulf of Mexico. We supplemented this with an ocean sea
surface salinity model made by combining data from the SMOS and SMAP 
satellites (Droghei et al. 2016, Droghei et al., 2018). Ideally, these datasets provide
independent constraints on Mississippi River runoff we can use to test output from 
our tool against.

3.2 Data Processing
We processed all data in GEE. Our team used the pixel QA band to mask both 
cloud and land pixels from the Landsat SR imagery, retaining only pixels with the 
value 68 for Landsat 5 and 7 imagery and 324 for Landsat 8 imagery. These values 
represent pixels where water is present and clouds are absent. Our tool presents 
multiple options for viewing the data. One option is a least cloudy perspective, 
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which layers images over three-month periods in order of least cloudiness and 
mosaics them. Another option is to get a median composite image, which takes the 
median of all non-cloudy pixels at a given position. 

3.2.1 Seagrass bed extent
We used the normalized difference aquatic vegetation index (NDAVI) to classify 
seagrass bed extent throughout the study area. This unitless index was adapted 
from the normalized difference vegetation index (NDVI) by Villa, Mousivand, and 
Bresciani (2014). NDAVI efficiently identifies aquatic vegetation rather than 
terrestrial. NDVI, which has typically been used to identify the extent and health of
terrestrial vegetation, is the normalized difference of the near infrared and red 
bands. NDAVI differs from NDVI by using the blue band in place of the red band, 
accounting for the difference in vegetation substratum between aquatic and 
terrestrial vegetation (Equation 1).

NDAVI=
(NIR−¿ )

(NIR+¿ )

(1
)

3.2.2 Turbidity
We mapped turbidity using the normalized difference turbidity index (NDTI). NDTI 
is calculated by comparing the intensity of red light to green light. Red light is 
reflected by suspended sediment, organic matter, and other solids, while green 
light is reflected by clearer water. The index uses the normalized difference of the 
red and green band reflectance values in order to account for uncertainties 
(Equation 2).

NDTI=
(¿−¿ )

( ¿+¿ )

(2
)

3.2.3. Salinity
Surface salinity and surface ocean density data was sourced from the Multi-
Observation Global Ocean Sea Surface Salinity and Sea Surface Density dataset 
and downloaded from the Copernicus Environmental and Marine Ecosystem 
Services website. Data were processed with Python using the geospatial data 
analysis package, x-array. We selected a location landward of the Chandeleur 
Islands, in the Chandeleur Sound, and generated a time series across the timespan
dataset (1993-2019). There were no sea surface salinity datasets with adequate 
time or spatial resolution available on GEE natively, so this functionality is not 
available in the Tool CREOL, only in the results presented in this technical report. 

3.2.4. Land and Water
Our land water classification system is derived from the Joint-Research Center’s 
Global Water History dataset, loaded into the Tool CREOL using the Google Earth 
Engine. The raster has values of 0 for pixels with no data, 1 for pixels with land, 
and 2 for pixels with water. Within the Tool CREOL, there is a function that drops 
pixels with no data and transforms the raster values to binary, 0 where there is 
land, and 1 where there is water. 

3.3 Data Analysis
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All of the Chandeleur Island data for this study was processed using the Tool 
CREOL and Google Earth Engine. While Google Earth Engine has its limitations 
regarding data analysis and the application of rigorous statistical models, its 
advantage is that it is very user friendly. Our study is designed to highlight the 
utility and simplicity of the Tool CREOL, and using the data processed by the tool 
maximizes reproducibility.

Interpretation of NDAVI, the index we used to monitor SAV, was limited by a lack 
of in situ data. We have images of the field area with presence/absence data for 
SAV, generated by the USGS in a study assessing the response of seagrass to the 
BP Oil spill, from 2010 and 2011 (Consentio-Manning et al., 2015). We 
georeferenced these field images and the seagrass extent was compared to Tool 
CREOL’s SAV outputs. We did not perform a quantitative classification identifying 
presence/absence of SAV per pixel using NDAVI. Instead, we adjusted the color 
scale of the NDAVI images to provide the best visual match to the USGS image. 

4. Results & Discussion
4.1 Tool for Coastal Remote Ecological Observations in Louisiana
We developed the Tool for Coastal Remote Ecological Observations in Louisiana 
(CREOL) on the GEE JavaScript API to analyze water quality parameters within 
coastal Louisiana. Tool CREOL consists of an interactive graphical user interface 
(GUI) that allows users to analyze historical trends in seagrass extent (represented
by NDAVI), turbidity (represented by NDTI), SST, and land area. Within the GUI, 
users can select a predefined area of interest, upload their own asset, or draw an 
asset for analysis. Users then input a year and season ranging from January 1984 
to the present and select a set of water quality parameters for analysis. Tool 
CREOL reads the specified user inputs and creates a filtered and masked image 
collection of the selected water quality parameters using imagery from Landsat 5 
TM, Landsat 7 ETM+, Landsat 8 OLI, and Aqua and Terra MODIS. Within Tool 
CREOL’s GUI, users also can also compare parameters through a split screen 
comparator, generate time series analyses through a specified point change 
inspector, and export GeoTIFFs to Google Drive.

4.2 Analysis of Tool CREOL Results
4.2.1 Hurricane Impacts to the Islands
We used the imagery and time series generated by Tool CREOL to assess the 
impact of major hurricanes on the Chandeleur Islands and seagrass there across 
the duration of our study interval (1984-2021). The left and right panels of figure 2 
show true color images of the Chandeleur Islands in 1984 and 2021, respectively. 
The middle panel includes time series of NDAVI for 5 points in a latitudinal 
transect across the islands, as well as a time series of total land area throughout 
the Chandeleur Islands. Vertical dotted lines represent major hurricanes that 
impacted the region during our study interval. 
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Figure 2. Spring 1984 true color image of the Chandeleur Islands. Red dots
represent the locations NDAVI time series were extracted using the Point

Inspector Tool (left panel), NDAVI and land area time-series graphs taken with the
Point Inspector tool and Time Series Chart Generator tool. Vertical lines and bars

represent major events in the islands across the past 36 years, including
hurricanes, and the BP Oil Spill. (center panel), and spring 2021 true color image

of Chandeleur Islands (right panel).

The NDAVI and land area time series demonstrate the ability of Tool CREOL to 
reconstruct past environmental change and measure the impact that hurricanes 
have had on the islands (Figure 2). Between 1984 and 1999, the NDAVI index and 
land area appears to be in an equilibrium state, with a relatively consistent 
seasonal cycle within a flat long-term trend. Short-term variability in land area is 
evident across this time interval, with rapid response and recovery to storm 
systems Andrew and Josephine. Long-term variation in this period is minor, with 
only a gradual increase in land occurring in the first 5 years of the record.

The passage of a few major storms, Georges (1999), Ivan (2004), and Katrina 
(2005), eroded a huge fraction of the land in the Chandeleur Islands. Land area 
dropped from approximately 16 km2 in 1998 to approximately 2 km2 in 2006. The 
NDAVI remained stable until Hurricane Katrina in 2005, after which followed the 
most severe declines in the NDAVI records. According to the NDAVI, seagrass in 
the northern part of the island declined immediately, while seagrass in the 
southern part of the island suffers a more gradual decline. The down trending 
NDAVI in many cases stabilized by around 2010. Following 2010, and land area 
stabilized or even increased in some areas. Seasonal variability in the NDAVI also 
increased markedly after this interval. 

Our long-term time series analyses of NDAVI and land cover allow for a nuanced 
analysis of how various events have impacted the Chandeleur Islands over both 
space and time. The time series reflect the tremendous land loss caused by 
hurricanes over the past several decades. The impacts of hurricanes on the islands 
are highly variable since it’s dependent upon the path, intensity, and duration of 
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the storm (Fearnley et al., 2009). However, our analysis shows that some 
particularly catastrophic hurricanes, such as Hurricane Katrina, caused lasting 
land loss as well as long-term impact on seagrass extent and health. Finally, the 
time series demonstrate the impacts of restoration efforts and natural rebound on 
land area recovery. The increase in land area after a sand berm was constructed in
2010 to protect the islands from the BP Oil Spill was likely due to a combination of 
the berm itself and natural recovery.

4.2.2 Mississippi River Discharge and Seagrasses
We compared a time series of NDAVI integrated across the Chandeleur islands, 
generated with the Tool CREOL, to discharge from the Mississippi River (Figure 3)
to get a sense of how the seagrass responds to changing salinity conditions, 
sediment discharge, and concentrations of important nutrients. We supplemented 
the Mississippi discharge data with a global salinity model, sampled behind the 
Chandeleur Islands in the Chandeleur Sound between 1993-2019 (Figure 3) to get 
independent constraints on river discharge, as the Mississippi is the main source of
fresh water regionally. A qualitative comparison of trends in the data shows a 
possible positive long-term relationship between freshwater input from the 
Mississippi River and a NDAVI. Seagrass growth could be directly related to the 
salinity of the environment (Hillmann & Peyre, 2019), but could also be enhanced 
by the increased availability of macro-nutrients delivered by the river during high 
discharge periods (Darnell et al, 2017). Regardless, our results have positive 
implications for the health of seagrass beds in southern Louisiana as the CPRA 
plans new diversions for sediment and fresh water out of the lower Mississippi 
River (Bradberry et al., 2017).

Figure 3. Seagrass (NDAVI), salinity, and freshwater discharge in the coastal
Louisiana region from 1984 – 2021
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4.3 Errors and Uncertainties
Limitations of our data included cloud cover, limited access to in situ data, 
inconsistencies between satellites, and the lack of assessing chlorophyll-a in our 
analysis. In remote sensing research, clouds are a typical source of error and can 
result in skewed data values and calculations. The Chandeleur Sound region is an 
exceptionally cloudy area which contributes to cloud cover as a potential error in 
our tool’s imagery. For years such as 2020, cloud cover results in scattered data 
which can be misinterpreted and misrepresented as exceptionally high or low 
values for any of our parameters. Secondly, limited access to in situ data prevented
proper data calibration and validation which may result in uncertainties in output 
values. Lack of ground truthing particularly produced uncertainties in our SAV 
model outputs generated via the NDAVI index. Our only source of in situ data came
from two georeferenced site images depicting seagrass extent which were then 
utilized to calibrate our model as accurately as possible. Calibration of NDAVI had 
limited success across the 36-year study period, some of which can be attributed to
differences between the Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI 
satellites and sensors. Differences in bandwidths between each of the satellites 
may result in differing values for our parameters and affect trends seen in time 
series analyses. 

4.4 Future Work
Future work includes the incorporation of in situ data, calibration of our indices 
and improvement of our SAV model. Firstly, our project had limited access to in 
situ data which reduced our ability to calibrate our parameters and validate our 
results. The addition of more in situ data would allow for us to better understand 
what values our study area typically sees for chlorophyll, turbidity, SST and SAV. 
In the future, in situ data can be incorporated into our parameters to help produce 
stronger results and improve confidence in Tool CREOL’s outputs for our partners.
Additionally, we would like to improve our SAV model to provide accurate 
visualizations of historical seagrass trends. We currently use the NDAVI index to 
determine seagrass extent. This can be improved in the future by utilizing in situ 
data and Tool CREOL outputs to develop a binary seagrass model. This future 
model would aid the CPRA and LNDR in the identification of ideal areas for 
seagrass revegetation and island restoration. This would directly assist the Breton 
National Wildlife Refuge in the ongoing 2020 restoration effort.

There are also opportunities for future additions to Tool CREOL. Firstly, added 
statistical capabilities within the tool would be beneficial. For example, the ability 
to add trend lines to time series charts in the tool would help our partners to better
understand historical trends in seagrass and water quality. Another potential 
addition is a GIF generator, which would allow users to create and export a GIF of 
images spanning a given time range. This would be useful in creating 
communication and public outreach materials.

5. Conclusions
The Louisiana Water Resources Team developed the Tool for Coastal Remote 
Ecological Observations in Louisiana Coastal within GEE which assesses how the 
distribution of seagrass meadows in the coastal Louisiana region have shifted from 
1984 to 2021, and also monitors how the barrier islands in the region have 
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changed over time. This tool, also known as “Tool CREOL,” allows the users to 
conduct different kinds of data analyses within the tool’s GUI that aid identifying 
historical trends and spatio-temporal variation in both seagrass extent and water 
quality around the selected regions of interest. The tool is programmed to 
automatically utilize the most up-to-date available imagery and enables more 
frequent monitoring than can be obtained from in situ data collection of the coastal
region and various water quality parameters which include: true color, NDAVI, 
NDTI, SST and land/water. Tool CREOL allows the user to select their preferred 
area of interest out of the provided options, or allows them to draw their own asset
instead, which will be used as a parameter to guide the amount of imagery being 
generated. This selection opens more of the tools’ functionalities such as: split-
screen comparisons, a point change inspector, and time series generator. The tool 
also allows users to export the generated time-series graphs, and export imagery 
as batch or single image files. 

Using remote sensing analytical techniques, our team used Tool CREOL to identify 
various trends and correlations between different parameters in the region. We 
observed that the islands’ land area has greatly declined in response to hurricanes 
since 1984, and that the extent of surrounding seagrass bed has decreased as well.
We also found that the health of seagrass beds in the region may be related to the 
amount of freshwater discharge from the Mississippi River, either through changes
to the salinity of the environment, or through the influx of nutrients from the river. 
Further analyses with additional satellite (Sentinel 2) and in situ corresponding 
data are suggested to validate these results. 

Our partners will be able to utilize Tool CREOL to not only analyze the results we 
have drawn from various parameters in the region, but also to consistently study 
the coastal Louisiana region moving forward. The many functionalities available in 
the tool will help our partners with restoration and revegetation efforts in our 
study region and enable real-time monitoring of the Chandeleur Islands and Breton
National Wildlife Refuge.
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7. Glossary
API – Application programming interface
BNWR – Breton National Wildlife Refuge
CPRA – Coastal Protection and Restoration Authority
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
ETM+ – Enhanced Thematic Mapper Plus
GEE – Google Earth Engine
GeoTIFF – An image file with georeferenced metadata
GUI – Graphical User Interface
JRC – Joint Research Centre
LCRP – Louisiana Coastal Resources Program
LDNR – Louisiana Department of Natural Resources
MODIS – MODerate resolution Imaging Spectroradiometer
NDAVI – Normalized Difference Aquatic Vegetation Index
NDTI – Normalized Difference Turbidity Index
NDVI – Normalized Difference Vegetation Index
OLI – Operational Land Imager
SAV – Submerged Aquatic Vegetation
SR – Surface Reflectance
SST – Sea Surface Temperature
TM – Thematic Mapper
Tool CREOL – Tool for Coastal Remote Ecological Observations in Louisiana
USGS – United States Geological Survey
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