
NASA DEVELOP National Program
Virginia – Langley

 Summer 2021

Fairfax County Urban Development
Identifying Urban Heat Mitigation Strategies for Climate

Adaptation Planning in Fairfax County, Virginia

                 Technical Report
Final Draft – August 10th, 2021

W. Pierce Holloway (Project Lead)
Rose Eichelmann

Patricia Murer
Ryan Newell

Caden O’Connell

Advisors:
Dr. Kenton Ross, (NASA Langley Research Center)

Lauren Childs-Gleason, (NASA Langley Research Center)



1. Abstract
Extreme high temperatures lead to increased instances of cardiovascular disease, 
pulmonary disease, and even death, as well as increased energy consumption and 
infrastructure costs. People in urbanized areas experience higher temperatures 
than rural areas due to diminished vegetation and increased impervious surfaces 
which absorb and radiate heat. Fairfax County, Virginia has embarked on Resilient 
Fairfax, a program aimed at addressing climate adaptation and resilience. The 
DEVELOP team partnered with the Fairfax County Office of Environmental and 
Energy Coordination (OEEC) to assess the extent of the urban heat island effect on
the county and its most vulnerable populations. The team used data from Landsat 
8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), as well as 
the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) for the years 2013 to 2021 and found that the hottest spots were in 
densely urbanized areas, with temperatures as much as 47°F above that of 
undeveloped reference areas. The team used the Integrated Valuation of 
Ecosystem Services and Tradeoffs (InVEST) urban cooling model and determined 
that areas with higher tree canopy cover had greater heat mitigation capacity. 
Estimates from the InVEST model showed that a 4.5% increase in canopy cover 
across the county could result in a temperature reduction of up to 2.4°F in some 
areas. The results will allow partners to assess heat distribution across Fairfax 
County and implement effective mitigation strategies, including locating prime 
locations for cooling centers and increasing canopy cover.

Key Terms
urban heat island effect, land surface temperature, vulnerability, Landsat 8 TIRS, 
ECOSTRESS, InVEST, urban development, climate adaptation

2. Introduction
2.1 Background Information
Extreme temperatures threaten public health and infrastructure, especially in 
urban areas, which are home to over half of the world’s current population (Li, 
2013). Heatwaves have a severe impact on more developed areas because their 
land cover is comprised of less vegetation and more impervious surfaces. Tree 
canopies provide shade which has a cooling effect, as does the process of 
evapotranspiration by plants. In contrast, surfaces such as asphalt and concrete 
absorb more heat during the day and radiate that heat back into the atmosphere, 
causing urban areas to be warmer than nearby rural areas. This phenomenon is 
known as the urban heat island effect (UHI) (Arnell, 2019). National, state, and 
local governments are responding to increasing heat by developing heat mitigation
plans that aim to protect their citizens, businesses, and infrastructure. 
Determining areas of high heat exposure and vulnerability are necessary to 
prioritize areas for mitigation efforts and effectively address the UHI effect. The 
threat of extreme heat is causing many urbanized districts including Fairfax 
County, VA to commission further research on urban heat and potential mitigation 
techniques.

Heatwaves in the United States are the deadliest type of weather event, with an 
average of 131 direct heat fatalities a year in the past 20 years (National Weather 
Service, n.d.). The CDC attributes 7,415 deaths in the United States to exposure of 
natural heat as the underlying or contributing cause of death from 1999 to 2010, 
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an average of 618 per year (CDC, 2012). Extreme heat can result in various 
physiological reactions ranging from discomfort and dehydration to more serious 
conditions such as heat exhaustion and heatstroke (Epstein et. al, 2014). Other 
consequences include losses in labor productivity, increased energy consumption, 
and decreased learning (Hsu et. al, 2021). Certain populations are more sensitive 
to heat stress, such as children and the elderly, as well as people with pre-existing 
cardiovascular or respiratory illnesses (Rosenthal et.al, 2014). Furthermore, recent
studies indicate the effects of urban heat have disproportionate impacts among 
marginalized and low-income communities (Hsu et. al 2021). Understanding the 
disproportionate impacts of the UHI effect on a community is crucial to identifying 
priority areas for cooling initiatives and mitigation strategies.

Fairfax County, VA, covers 406 square miles (1,010 km2) in northern Virginia, 
bordering Washington DC, and surrounds Fairfax City.  The county borders the 
Potomac River in the Southeast, as seen below in Figure 1. With about 1.12 million
individuals and a median household income of $128,374, it is the most populated 
and among the most affluent counties in the state (Han and Khaja, 2021).

Figure 1. Study Area of Fairfax County, Virginia and reference areas: 
(A) Prince William Forest Park and (B) Marine Corps Base Quantico in Prince

William County, VA., 
(C) Glatfelter Easement and adjacent areas in St. Charles County, MD. 

(County boundary source: https://www.fairfaxcounty.gov/maps/, ESRI Light Canvas
base map)

The InVEST urban cooling model has been employed in previous research studies 
to model the impacts of urban development practices on UHI, target hotspots for 
mitigation, and to measure the cooling effects of heat-mitigation efforts 
(Kadaverugu et al. 2020). Bosch et al. used InVEST to show the correlation 
between land use and heat wave intensity in a Swiss urban environment (2021). 
Their study found that the InVEST tool outperformed previous climate assessment 
methods by incorporating the physical characteristics of the land and atmosphere, 
resulting in more accurate and dynamic predictive models.
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2.2 Project Partners 
This team partnered with the Fairfax County Office of Environmental and Energy 
Coordination (OEEC) on this project. The OEEC is interested in investigating UHI 
effects within the county, identifying the hottest spots, most vulnerable 
populations, and determining effective cooling strategies and priority areas for 
heat mitigation. Motivation to investigate UHI has also been underscored by public
support for understanding how populations within the county may be 
disproportionately vulnerable to urban heat. Informed by the InVEST urban cooling
model output, the OEEC will determine how factors such as increased tree canopy 
cover and albedo can be leveraged to improve the heat mitigation capacity of an 
area. The strategies informed by this study will be incorporated into the Resilient 
Fairfax: Climate Adaptation and Resilience Plan, to be completed June 2022.

3. Methodology
3.1 Data Acquisition 
The team retrieved Landsat 8 TIRS Provisional Surface Temperature and OLI 
Surface Reflectance products included in the U.S. Landsat Analysis Ready Data 
(ARD) bundle for Fairfax County and surrounding areas for the months of June 
through August of 2013 to 2020 from the US Geological Survey Earth Explorer 
website. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space 
Station (ECOSTRESS) data from the USGS Application for Extracting and 
Exploring Analysis Ready Samples (AppEEARS) and NASA EarthData portals 
provided the nighttime land surface temperature (LST) and evapotranspiration 
data, respectively, for the months of June through August of 2018 to 2021(Hook 
2019). Table 1 contains the list of satellite platforms and sensors that produced the
data.

Table 1. 
NASA Earth Observations used in this study. 

Platform Sensor Parameter Date Range Resolutio
n

Landsat 8 Operational Land 
Imager (OLI)

Albedo 2013 - 2020 
(June through 
August)

30 m

Landsat 8 Thermal Infrared 
Sensor (TIRS)

Daytime Land 
Surface 
Temperature 
(LST)

2013 - 2020 
(June through 
August)

100 m

Internation
al Space 
Station 
(ISS)

ECOsystem 
Spaceborne 
Thermal 
Radiometer 
Experiment 
(ECOSTRESS)

Evapotranspir
ation 
Nighttime LST

2018 – 2021 
(June through 
August)

70 m

The OEEC provided the county land use land cover (LULC) data as well as the 
canopy cover and building footprints shapefiles, all necessary inputs for the 
InVEST model. The team used the 2016 National Land Cover Database (NLCD) for 
the adjacent areas inside and around the county. The project partners also 
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provided the socio-economic-health data based on the American Community 
Survey (ACS) 2014 - 2018 for the heat vulnerability analysis.

3.2 Data Processing for LST Imagery
3.2.1 Daytime LST
The team first removed any pixels from the daytime LST data that were tainted by 
the presence of clouds or cloud shadows. The Landsat Collection 1 Level-1 Quality 
Assessment band contains information on the usability of pixels within a Landsat 
scene, allowing users to apply filters on pixels containing clouds, water, or snow. 
The team developed a Python script which utilized the Quality Assessment raster 
provided within each LST product to mask pixels values classified as cloud, high-
confidence cloud, medium-confidence cloud, high-confidence cirrus, and cloud-
shadow. The team then used the Cell Statistics tool in QGIS to calculate a mean 
value for each pixel across the 82 cloud-masked daytime LST images, outputting a 
mean daytime LST raster that the team used to derive the daytime LST anomalies.

The Landsat 8 Provisional Surface Temperature Product is in units of degrees 
Kelvin with a scale factor of 0.1, so the team used Eq. (1) in QGIS along with the 
Raster Calculator tool to convert the units into degrees Fahrenheit.

Fahrenheit (° F)=Kelvin∗0.1∗1.8−459.67 Eq. (1)

3.2.2 Nighttime LST
The team filtered the downloaded ECO2LSTEv001 dataset and filtered the images 
for nighttime hours and the hot months using R code built in RStudio to process 
only the images acquired for times between 9:00 p.m. and 5:00 a.m. local time, 
between June 1st and August 31st each year of the study period. The team then used
the quality bands in the ECO2LSTEv001 dataset to identify clouded or low-quality 
pixels in the LST dataset and to remove the data from those pixels, such that 
measurements of cloud temperature do not contaminate the calculations for mean 
LST. Specifically, the team applied a filter to omit LST pixels flagged with “cloud 
detected” or “bad/missing data” in the quality control band. Following masking 
and filtering, the team used the r.series tool in QGIS to calculate mean values for 
each pixel from the 29 resulting images to produce a raster layer of mean 
nighttime LST. The team used shapefiles for Fairfax County and the reference 
areas to clip that mean nighttime LST layer and produce mean nighttime LST 
values for the study area and reference areas. The team converted the acquired 
values to Kelvin by multiplying each by a factor of 0.02. 

3.3 Data Processing for Daytime and Nighttime LST Anomalies
To evaluate the UHI effect, the team needed to compare the county temperatures 
to those of undeveloped forested areas.  The team selected Prince William Forest 
Park and the Marine Corps Base Quantico in Prince William County, VA., and the 
Glatfelter Easement and adjacent areas in St. Charles County, MD, as reference 
areas, based on these criteria: altitude and latitude similarity, positioned away 
from major water bodies, and within 50 miles of the county (Figure 1).

The team processed LST of the reference areas according to the process outlined 
in the earlier sections, and further calculated the mean reference temperatures by 
finding the average daytime and nighttime temperatures across the study period 
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for the reference areas. The team derived the temperature anomaly by subtracting 
the mean reference temperature from each pixel of the daytime and nighttime LST 
products. In addition to calculating the LST anomaly using the reference areas, the
team mapped the heat anomalies as a difference from the Fairfax County mean 
temperature. In this exercise, the team calculated a single mean value from the 
Fairfax County daytime LST raster and subtracted that value from each pixel 
within the daytime LST map. The resulting map shows the average temperature 
difference between a given pixel and the spatial mean daytime temperature of 
Fairfax County.

In nighttime LST anomaly map generation, the team aimed to reduce unnecessary 
influence of day-to-day temperature variation on the final anomaly products by 
removing the daily county mean from each individual scene. The team clipped each
scene to the county and reference area shapefiles immediately following masking, 
prior to generating average maps. The team calculated the mean LST value for 
each clipped scene and subtracted it from each pixel, resulting in anomaly maps 
for each acquisition day. The team averaged each of those daily anomaly maps to 
generate mean nighttime LST anomaly maps for the county and reference areas. 
The resulting map, generated from data clipped to the county, represented the 
nighttime LST anomaly with respect to the county, and to generate nighttime LST 
anomaly with respect to the reference areas, the team calculated mean values from
the county and reference areas using the overall mean LST map (described in the 
preceding paragraph) and subtracted the difference from the county LST anomaly 
map.

3.4 Heat Vulnerability Analysis
The team created a heat exposure index and a heat sensitivity index for each 
census tract and used these to produce a heat vulnerability index to display the 
most heat vulnerable regions throughout the county. To calculate heat exposure, 
the team used Eq. 2, where mDLST is mean daytime LST and mNLST is mean 
nighttime LST. Literature suggests that nighttime temperatures are better 
predictors of heat-related health consequences (Murage et al., 2017) and 
consequently the nighttime LST has a greater influence on the exposure index. 
Following calculation of an exposure raster, the team used zonal statistics to 
calculate mean exposure for each census tract, then reclassified those exposures to
index values between one and five using natural breaks. 

Exposure=
mDLST∗0.5+mNLST

1.5
Eq. (2)

The project partners provided the team with 15 socio-economic datasets they 
believed were pertinent for identifying heat-sensitive populations. They already 
had ranked each individual variable into 5 classes using natural breaks and given a
score 1 - 5, with 5 being the most sensitive. The team collected 3 additional 
datasets from the ACS and conducted the same scoring methodology as the county.
The team grouped the variables into four sub-indices: income, health, 
demographics, and housing, which can be seen in Table A1. Then, the team 
averaged the scores of all the variables within each sub-index to calculate an 
overall score per census tract for that sub-index. To get an overall sensitivity score 
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for each census tract, the team averaged all the sub-indices and used natural 
breaks to rank the scores 1 - 5.

The team created the heat vulnerability index by compounding the heat exposure 
index score with the heat sensitivity index score, derived by Eq. (3).

Heat Vulnerability=Heat Exposure∗Heat Sensitivity Eq. (3)

As an alternate methodology, the team attempted to calculate the vulnerability 
index by conducting a Principal Component Analysis (PCA) of the heat sensitivity 
variables. PCA is a statistical procedure which reduces the dimensionality of a 
dataset while retaining as much of the variance within the dataset as possible, 
achieved through the creation of a new set of uncorrelated variables, the principal 
components. However, the team had to throw out the first principal component 
due to its contradicting correlations, greatly reducing the variance explained by 
the chosen components. For this reason, the team decided not to pursue this 
methodology for the vulnerability analysis.

3.5 Data Processing for the InVEST Model
3.5.1 Land Use Land Cover (LULC) 
The InVEST model considers the influence of large green areas up to a 2 km 
distance when calculating heat mitigation capacity.  Since the Fairfax County 
LULC GIS data did not include data for its roads, Fairfax City, or areas bordering 
the county, the team adapted the 2016 National Land Cover Database (NLCD) to 
fill in the missing information. The NLCD classifications differed from the 
categories used by Fairfax County and based on judgment, the team reclassified 
the NLCD classifications to match the Fairfax County-provided layer. Lastly, they 
added two land use categories of high and low intensity road. 

The team used the combined raster as the foundation for the biophysical table 
required by InVEST, where they assigned values for shade, albedo, crop 
coefficient, and building intensity for each unique LULC classification. See Figure 
2 below for the Fairfax County LULC categories map utilized by this study.
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Figure 1. Fairfax County Land Use Land Cover categories adapted for the study.

3.5.2 Building Intensity
Accounting for built infrastructure is crucial to understanding nighttime 
temperatures as structures absorb solar radiation throughout the day and release 
this stored energy in the evening. The building footprint vector file covering both 
Fairfax County and city contained building footprint area (Ba) and respective 
relative height. To determine the average ceiling height for each building, the 
team used an approximation of 7.5 feet in residential buildings and 10 feet in 
commercial buildings as described in Chun and Guldmann (2021). The team 
divided relative building height by its respective building ceiling height 
approximation to estimate the numbers of floors in the building (F), rounding to 
the nearest whole number and replacing zeros with a value of one. The team then 
multiplied the number of floors by the building footprint to determine total 
building floor area. The team calculated building intensity for each LULC for the 
biophysical table as a normalized value between 0 and 1 by dividing the total 
building floor area across all buildings in each LULC by the cumulative area of the 
corresponding LULC, according to Eq. (4). 

BI (unitless )=Σ (Ba× F )÷ La
Eq.
(4)

where BI is the building intensity for each LULC class, Ba is the building footprint 
for each LULC class (m2), F is number of floors, and La is the land area for each 
LULC class (m2). The team then spatially joined building intensity results to 
respective LULC pixel to provide a set of values for use in the biophysical table.

3.5.3 Shade
The team calculated shade starting with a vector shapefile depicting canopy 
coverage in a binary form (tree/no tree), which was converted into a raster and 
clipped to the study area. The canopy cover across Fairfax County is shown in 
Figure B1. Then, the team created a fishnet grid (with each grid square ~30 m x 
30 m) encompassing the study area, serving as a zone field to compute percent 
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canopy coverage for each grid square. The team combined this new gridded area 
containing county’s percent canopy cover to the National Land Use Cover 2016 US
Forest Service Tree Canopy Cover using the union tool to create a seamless layer 
for the study area, encompassing both the county and reference areas. Canopy 
coverage was then calculated for each land use area using a 2 km buffer around 
the county to deliver a more accurate representation of canopy coverage at the 
county boundaries. 

3.5.4 Albedo
Albedo represents the proportion of solar radiation reflected by a surface. High 
albedos closer to 1 are typical for snow and deserts, which reflect large fractions of
the sunlight while albedos close to zero are typical of oceans and lakes. Low 
albedos for vegetation indicate that the surfaces absorb most of the incoming 
energy, temporarily “sinking” the heat and improving cooling capacity (Coakley, 
2003). Consequently, the InVEST model includes the average albedo for each land 
use category in its calculations of heat mitigation capacity. The team calculated the
mean albedo from the surface reflectance data of the blue, green, red, near 
infrared (NIR), short-wave infrared (SWIR1 and SWIR2) bands with the “Olmedo 
weighted coefficients” (Olmedo et.al, 2016) using Eq. (5). The resulting map of 
albedo across Fairfax County is shown in Figure B2. 

Albedo=¿∗0.246+¿∗0.146+¿∗0.191+NIR∗0.304+SWIR1∗0.105+SIR2∗0.008Eq.
(5)

3.5.5 Evapotranspiration (ET)
ECOSTRESS Evapotranspiration (ET) data included a quality assessment (QA) 
product, assigning raster pixels values based on their cloud cover levels. This data 
set included layers titled ETDaily, measuring the daily latent heat flux of Fairfax 
County over our study period. The team used a model within ArcGIS Pro to convert
the units of this layer into the format required by the InVEST model [mm day-1] 
using Eq. (6):

ET A [mmda y−1 ]=ET B [Wm−2 ]∗0.0864
[MJ da y−1 ]

[W ]
∗0.408

[mmda y−1 ]

[MJ da y−1m−2 ]
 

Eq.
(6)

ETA is the unit-converted numerical rate of ET used in the InVEST model [mm day-

1] and ETB is the ET value before conversion [W ⋅ m-2]. The team used a Python 
script to remove all clouded pixels from the ET raster by using the QA flags and 
then averaged all of the images using the Cell Statistics tool. This produced the 
median ET image needed to run the InVEST model, as shown in Figure B3. Due to 
irregularities present within the ETDaily minimum values, the team used the 
median rather than mean to represent the data and reduce the effect of outliers. 
Since ECOSTRESS does not provide ET data over water, the team filled those 
pixels with the median ET value of the image (74,131), using the ‘is null’ tool in 
ArcGIS Pro to find pixels with no data value and the 'con' tool to set a new value. 

3.5.6 Crop Coefficient (Kc)
The crop coefficient is used by the InVEST model to determine the actual 
evapotranspiration from the potential evapotranspiration. The ECOSTRESS 
evapotranspiration data utilized by the team is already estimated as actual 
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evapotranspiration, and as such, the crop coefficient is not necessary. For this 
reason, the team used a constant Kc value of 1 for each LULC class within the 
biophysical table, as to not interfere with the actual evapotranspiration values 
derived from ECOSTRESS.

3.5.7 Mitigation Scenario
The team developed a mitigation scenario of altering the canopy cover amounts in 
the biophysical table to estimate impacts of potential shade increase across the 
county. The amount of canopy cover increase was chosen arbitrarily and does not 
represent the team’s opinions of possible policy interventions in Fairfax County. 
The impetus behind this exercise was to test the InVEST model’s capability to 
project hypothetical changes and their impacts on heat mitigation. The following 
land use cover categories were increased: Industrial light-heavy (20%); High-
density residential, Medium-density residential, Commercial (15%); Public & 
Utilities (10%); Low-intensity-road (8%); Agricultural & Low-density residential 
(5%). 

4. Results & Discussion
4.1 Analysis of Results
4.1.1 Heat Anomalies 
Using LST data from Landsat 8 and ECOSTRESS, the team produced daytime and 
nighttime heat anomaly maps. The team calculated temperature anomalies with 
respect to both the county mean LST and the reference area mean LST. The 
various heat anomaly maps are shown in Figure 3. Figures 3a and 3b show the 
daytime anomalies in relation to the reference area and county means respectively,
while Figures 3c and 3d show the same relationships for nighttime anomalies. 
Temperature anomalies of 37°F (daytime) and 10°F (nighttime) over the county 
mean were observed, meanwhile in respect to the reference area mean, there were
temperature anomalies of 47°F (daytime) and 14°F (nighttime).
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Figure 3. Fairfax County heat anomaly maps, showing daytime anomalies in
relation to reference (a) and county (b) means, and nighttime anomalies in relation

to reference (c) and county (d) means. 

With consideration toward the physiology of Fairfax County, the team evaluated 
correlation of daytime LST with two variables: canopy cover and impervious 
surface cover. The daytime mean LST temperature of Fairfax County is shown in 
Figure 4. The team calculated mean daytime LST, canopy cover, and impervious 
surface cover by census block group and evaluated the correlations. Figure 4a 
shows the relationships between canopy cover and mean daytime LST and Figure 
4b. shows the relationships between impervious surface cover and mean daytime 
LST. The values for daytime mean LST, canopy cover, and impervious surface 
cover are recorded by block group GEOID in the supplementary data 
documentation. 
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Figure 4. Plots showing correlation between block group canopy cover and daytime
mean LST (°F) (a), and correlation between block group impervious surface

coverage and daytime mean LST (°F) (b)

The evident relationship prompted significance testing, and the Pearson 
correlation coefficients demonstrated a strong relationship in each of the two 
variable pairs, with values of -0.877 for canopy cover and LST, and 0.893 for 
impervious surface cover and LST. The results suggest a strong and approximately 
linear relationship in both pairs over the range studied, with the correlation being 
negative between canopy cover and LST, and positive between impervious surface 
cover and LST. The patterns indicate that areas with high impervious surface cover
and low canopy cover are expected to have the highest mean LST. Inspection of 
the daytime heat anomaly maps reveals that the most urbanized areas, 
characterized by extensive impervious surfaces and relatively low tree cover, did 
exhibit some of the highest mean observed temperatures in this study. 

4.1.2 InVEST HMI and Air Temperature
The team used the InVEST urban cooling model to generate an approximate output
of the Heat Mitigation Index (HMI) for Fairfax County. HMI is a unitless value 
approximation of an areas ability to mitigate heat or cool itself. The InVEST model 
considers values of shade, evapotranspiration, albedo, and distance from cooling 
islands (e.g., parks) to generate its values ranging from 0 (no ability to mitigate 
heat) to 1 (ability to cool completely). The team ran two models to account for the 
daytime HMI as well as the nighttime HMI. The nighttime conditions are 
calculated slightly different from the daytime as it considers building intensity 
within each land classification as its main determinate factor. 

The team found that based on current conditions within the area the average 
daytime HMI for Fairfax was 0.42. Figure 5a shows the distribution of HMI values 
across the county. Additionally, the team found that the average nighttime HMI 
was 0.82. Figure 5b below illustrates the nighttime HMI values across the study 
area. More detailed analysis revealed that more urbanized areas had lower HMI 
values. The land classes with the two lowest HMI values were Commercial and 
High-Intensity Road, 0.244 and 0.273 respectively. Contrastingly the land classes 
with the two highest were Recreation and Open land, not forested or developed 
with average HMI values of 0.542 and 0.506 respectively. 

11



Figure 5. Fairfax County daytime HMI (a) and nighttime HMI (b) on a scale from 0
(red) to 1 (blue).

Along with the ability to model a HMI index for the county, the InVEST model 
generated maps of county air temperature. It was found that the county average 
daytime air temperature was 106.7 °F and the county average nighttime air 
temperature was 78.6°F. Further analysis showed that the land classes with the 
two highest average daytime temperatures were Commercial and High-density 
Residential, 109.2°F and 108.8°F each. While the two land cover classes with the 
lowest average daytime temperatures were Open land, not forested or developed 
and Recreation, having values of 105.7°F and 103.8°F respectively. Commercial 
areas stayed consistently hot in the nighttime, having the highest average 
nighttime temperature at 79.9°F. While Open Water had the lowest average 
nighttime temperature of 77.1°F.

4.1.3 InVEST Mitigation 
The InVEST Urban Cooling model offers a powerful opportunity to alter conditions 
in the biophysical table to project the impacts of hypothetical changes to canopy 
cover, albedo, or building intensity. The team determined that a mitigation 
scenario of increasing canopy cover would be the most impactful variable to alter. 
This was due to preliminary analysis showing little impact from Albedo change in 
addition to past projects finding albedo alternations resulting in little to no change 
(LaJoie et al. 2021). 

The team ran the InVEST model for daytime conditions altering only canopy cover 
and keeping all other factors consistent with the baseline. They found that a 
collective 4.5% increase in canopy cover across the county could result in a 
temperature reduction of up to 2.4°F in some areas. More detailed analysis 
revealed that the public land cover class experienced the largest area temperature 
reduction of 1.6°F. 

4.1.4 Vulnerability
Results from the heat vulnerability analysis aid in determining which regions 
within Fairfax County are both more sensitive and have higher exposure to heat 
than other regions. The Heat Exposure Index, displayed in Figure 6a, illustrates 
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similar patterns to the heat anomaly maps, with more urbanized census tracts 
exhibiting hotter temperatures. Areas most impacted by high heat exposure 
included Tyson's Corner, Merrifield, Centreville, Springfield, Reston, Huntington, 
and Fair Lakes. Census tract 51059491303 had the highest heat exposure with a 
weighted mean temperature of 86.3 °F (Table A2). Areas with the lowest heat 
exposure scores included regions in South Central and North Central Fairfax 
County.

The Heat Sensitivity Index (Figure 6b) shows a somewhat different pattern than 
that of the Heat Exposure Index; some areas that had high exposure scores had 
low sensitivity scores and vice versa. However, some of the hottest areas did 
coincide with the most sensitive areas, such as Springfield. Some of the other most
heat sensitive neighborhoods included Annandale, Hybla Valley, Seven Corner's 
and Bailey's Crossroads. A list of the top 10 heat sensitive tracts can be found in 
Table A3, with census tract 51059451400 scoring as the most heat sensitive. Some
of the less sensitive areas include Oak Hill and Western-most Fairfax County.

The Heat Vulnerability Index (Figure 6c), as a result of heat sensitivity and heat 
exposure, illustrates the distribution of vulnerable regions within the county. The 
highest heat vulnerability scores were found in the areas of Springfield, Seven 
Corner's, Bailey's Crossroads, and Huntington. Table A4 displays the top 10 most 
vulnerable census tracts.

Figure 6. Heat Exposure Index with score of 5 being most exposed (a), Heat
Sensitivity Index with score of 5 being most sensitive (b), and Heat Vulnerability
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Index with score of 5 being most vulnerable (c). The team divided the actual Heat
Vulnerability Index values by 5 (Table A4) so the scale would align with other

indices for visualization purposes. 

As previously mentioned, the team decided not to conduct the heat vulnerability 
analysis using results from the PCA. This was because the first principal 
component, which retained 33% of the variance within the dataset, was thrown 
out. Variables that weighed heavily upon this component included old age with a 
positive loading factor, and poverty, with a negative loading factor. In other words,
within Fairfax County, an increase in age is associated with a decrease in poverty. 
This complicated interpretation of the results because old age is associated with 
higher heat sensitivity while more wealth is associated with lower heat sensitivity. 
The team was unsure whether higher values in component one should be 
associated with high or low sensitivity risk, thus the reasoning for throwing out the
first component and retaining components two through five instead. However, in 
doing so the variance of the dataset was greatly reduced, and the team decided 
this methodology would not produce an accurate depiction of heat vulnerability 
within the county.

4.2 Future Work 
Future work could refine the heat vulnerability index by further analyzing the 
public’s daily routine, which could increase the accuracy of the heat sensitivity 
index and discern the effect of daytime or nighttime heat in relation to the most 
frequented locations throughout the day. One limitation of the vulnerability 
analysis was that the grouping of variables into larger sub-indices was subjective 
and somewhat arbitrary. Future work could compare results from our heat 
vulnerability index obtained from subjectively grouping the component variables 
with an index produced using PCA. Research could also be conducted to determine
whether some variables should be weighted more than others when it comes to 
determining heat vulnerability. In addition, the city’s development patterns, and 
zoning practices could be analyzed to determine the influence of past planning 
decisions on of the presence of current UHI.

In order to improve the results of the InVEST model, future work could refine input
datasets. Certain rasters of the input datasets had ‘NoData’ pixels that the team 
had to estimate for. The team needed to revise some InVEST results as well to 
preserve the accuracy of the product. Possible future work includes collecting 
additional datasets to calculate the true rate of evapotranspiration over water 
bodies and reassessing the representation of roads in InVEST input layers. The 
InVEST Model flagged roads as areas with very high cooling capacity when in 
reality they retain heat during the day and slowly release it at night. Therefore, the
team had to remove all InVEST outputs on roads to correct this. Future work could
also include the collection of additional data to generate an Energy Savings Table, 
allowing for the financial impact of UHI as well as potential savings due to heat 
mitigation to be an end product.

Lastly, future work could reassess the study’s methodology and improve the 
accuracy of the overall results by using an algorithm that references the 
ECOSTRESS tiles properly before processing. These tiles have slight geo-positional
variances that reduced the accuracy of the data when averaging multiple images. 
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Also, surface temperature results from the provisional data set could be compared 
with results obtained from downloading and processing the data with a Google 
Earth Engine script.

5. Conclusions
Some areas within Fairfax County experienced day and nighttime temperatures 
similar to the temperatures of rural reference areas. However, like many urban 
jurisdictions, our study found the county had urban heat islands with high heat 
anomalies and temperatures upwards of 40˚F above that of the reference areas 
and the county. These hotspots corresponded to areas of high building intensity in 
commercial, business, industrial, and residential zones as well as along highways.

Heat sensitive populations are more vulnerable when working and living in areas 
of high heat exposure during the day and returning home to an area of high 
nighttime temperature in the evening. The combination of sustained high 
temperatures during the day and not being able to cool off at night is dangerous to 
human health. Sustained heat stress does not allow the body to rest and 
exacerbates medical conditions. Therefore, addressing the effects of UHI on public 
health requires heat mitigation initiatives to focus on residential areas, and not 
solely regions with the highest heat exposure. 

The HMI results from the InVEST model followed a similar pattern of spatial 
distribution as the heat anomalies. Areas in the county with a high density of 
impervious surfaces absorb more heat and have less tree canopy, resulting in a low
heat mitigation capacity. Additionally, urbanized areas next to parks and forested 
land experience lower temperatures and a higher heat mitigation capacity.

The InVEST model also suggested that efforts to increase albedo have relatively 
little effect in reducing temperatures around the county. Other studies have 
noticed similar results. According to the InVEST model, increasing tree canopy is a
more effective heat mitigation strategy. If Fairfax County increased tree canopy by 
4.5%, the temperature could be reduced by 2.4˚F in some areas. 

It is a goal of the Fairfax County OEEC to use these results to evaluate the 
effectiveness of the cooling center locations.  The heat vulnerability map with 
cooling center locations overlayed indicated that not all areas of high heat 
vulnerability are within one mile of a cooling center.  However, the areas not 
within one mile may not be highly populated.  Therefore, further analysis is needed
to assess the effectiveness of current cooling center locations.

The OEEC will be able to utilize the results of this study within their Resilient 
Fairfax: Climate Adaptation and Resilience Plan. The vulnerability analysis will 
help inform partners of areas within Fairfax County that should be prioritized for 
mitigation efforts, allowing the county to visualize the distribution of populations 
that are most sensitive, exposed, and vulnerable to heat. Results from the InVEST 
model will help partners understand the effects of different land cover types on 
heat mitigation capacity and the cooling potential of planting more trees across the
county.
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7. Glossary
Albedo - the fraction of light reflected by a surface
Earth observations – Satellites and sensors that collect information about the 

Earth’s physical, chemical, and biological systems over space and time
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS) - satellite mission that aims to measure how the terrestrial 
biosphere changes in response to environmental changes such as water 
availability.  

Evapotranspiration – the sum of evaporation of water from land and other 
surfaces and through transpiration by plants

Heat Anomaly - temperatures higher than a reference temperature
Heat Exposure – the magnitude of heat energy in a given area
Heat Mitigation Index (HMI) - value approximation of an areas ability to 

mitigate heat or cool itself
Heat Sensitivity Index – aggregate score of health, economic, social and 

demographic variables that make an individual experience more severe 
consequences if exposed to heat. 

Heat Vulnerability Index – numerical score from the product of heat sensitivity 
and heat exposure

Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) - a suite
of models used to map and value the goods and services from nature that 
benefit human life

Land Surface Temperature (LST) - temperature of the surface of the Earth
Operational Land Imager (OLI) - sensor aboard the Landsat 8 satellite that 

measure visible, near infrared and shortwave infrared wavelengths
Thermal Infrared Sensor (TIRS) - sensor aboard the Landsat 8 satellite that 

measures both Earth’s surface temperature and atmospheric temperature
Urban Heat Island (UHI) Effect – difference in temperature between and urban 

area and an undeveloped or more natural forested area
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9. Appendices
Appendix A: Additional inputs and findings from vulnerability study. 

Table A1.
Overview of sensitivity index sub-indices and their associated American 
Community Survey (ACS) socio-economic variables.
Sensitivity Factor ACS Datasets

Income Below Poverty Line

Median Household Income
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Severely Burdened Renter

No vehicle

Health Population without health insurance

Population with a disability

Adults with hypertension

Adults with COPD

Adults with asthma

Adults with diabetes

Adults reported as obese

Demographics Age 65 & over

Age 5 & under

Population that speaks English "less 
than well"

Housing Overcrowding

Populations in nursing homes

Populations incarcerated

Mobile Homes

Table A2. 
Heat Exposure Score table 
displaying top 10 scoring census 
tracts.

20

GEOID Mean 
Temperature 
(°F)

Exposur
e Score

51059491303 86.3 5

51059420400 85.9 5

51059482203 85.6 5

51059491202 85.4 5

51059452802 85.4 5

51059440201 85.3 5

51059421002 85.1 5

51059420503 85.0 5

51059481101 85.0 5

51059480203 84.9 5



Table A3. 
Heat Sensitivity Score table displaying top 10 highest scoring (most sensitive) 
tracts.

GEOID Income 
Score

Demograp
hic Score

Health 
Score

Housing 
Score

Sensitivity 
Score

51059451
400

4.500 4.333 3.500 1.000 5

51059452
802

4.500 3.000 4.333 1.333 5

51059451
502

3.750 3.667 4.000 1.667 5

51059421
500

4.000 3.000 3.667 2.333 5

51059421
600

4.750 3.000 4.167 1.000 5

51059415
500

4.000 3.000 4.167 1.667 5

51059451
501

4.750 3.667 3.333 1.000 5

51059421 4.250 3.333 4.000 1.000 5
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701

51059421
400

4.250 3.333 3.833 1.000 5

51059431
600

4.250 3.000 3.500 1.667 5

Table A4. 
Heat Vulnerability Score table displaying the top 10 scoring (most vulnerable) 
tracts.
GEOID Exposure 

Score
Sensitivity
Score

Vulnerabi
lity Score

51059451400 5 5 25

51059420501 5 5 25

51059451502 5 5 25

51059452802 5 5 25

51059415401 4 5 20

51059416000 4 5 20

51059421400 4 5 20

51059421500 4 5 20

51059421600 4 5 20

51059421701 4 5 20
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Appendix B: Auxiliary Maps Used in Calculations

Figure B1. Percent Tree Canopy Cover
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Figure B2. Average Albedo

Figure B3. Evapotranspiration
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Figure B4. Average Daytime LST

25


	1. Abstract
	2. Introduction
	3. Methodology
	4. Results & Discussion
	5. Conclusions
	Some areas within Fairfax County experienced day and nighttime temperatures similar to the temperatures of rural reference areas. However, like many urban jurisdictions, our study found the county had urban heat islands with high heat anomalies and temperatures upwards of 40˚F above that of the reference areas and the county. These hotspots corresponded to areas of high building intensity in commercial, business, industrial, and residential zones as well as along highways.
	6. Acknowledgments
	7. Glossary
	8. References
	9. Appendices

