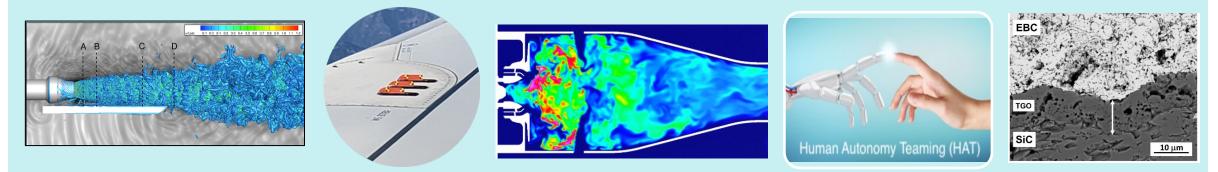


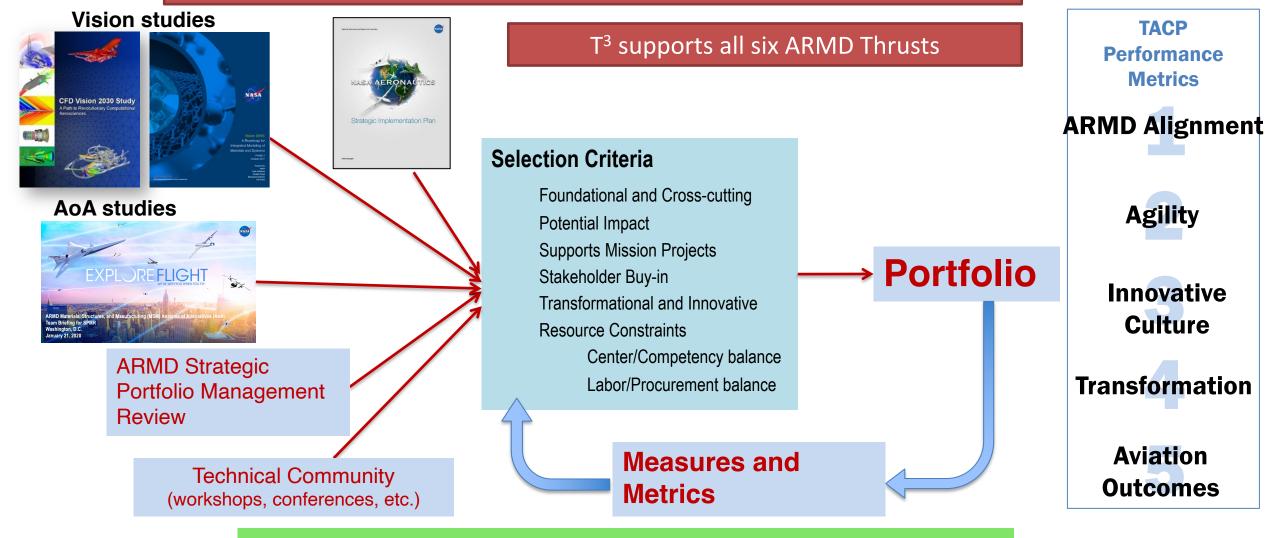
Host Center: Glenn Partner Centers: An


Partner Centers: Ames, Armstrong, Langley

Transformational Tools & Technologies (T³) Project

Enable fast, efficient design and analysis of advanced aviation systems from first principles and support exploratory research with breakthrough potential

- Perform foundational cross-cutting research for civil air vehicles across all six ARMD Thrusts
- Perform multidisciplinary system-level integration research in sub-projects focused on ARMD's stated priorities and sustain discipline-based expertise in important core capability areas
- Develop tools and technologies that support and enable the missions of other ARMD projects, U.S. industry, and other government agencies
- Develop transformational tools to promote new aircraft design and reduce development risk
- Develop and evaluate critical technologies to improve aircraft and test facility performance



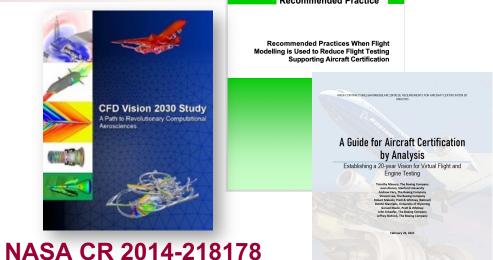
T³ investment strategy is focused on delivering value to ARMD Mission Projects, Industry, and OGAs

Continually Considering New Content & Fostering Innovation

Encourage injection of new ideas, techniques, and approaches

Community Vision Documents Informing T³ Activities

CFD2030 – CFD Vision 2030 Study


- "Provides a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations"
- Vision funded by T³, but enjoys broad community support and continued engagement (e.g. AIAA CFD Vision 2030 Integration Committee, AIAA Certification/Qualification by Analysis Community of Interest) - broad participation across industry, OGAs, and academia

TCs in RCA, MDAO, and Combustion Modeling all aligned with vision NASA CR 20 strategic areas and roadmap

A Guide for Aircraft Certification by Analysis – A 2040 Vision

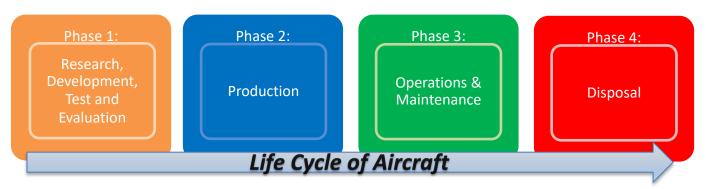
M&S 2040 - A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

- Combines "design of the materials" (material scientist viewpoint) and "design with the materials" (structural analyst viewpoint) approaches into concurrent, model-based paradigm
- Provides for "concurrent design, development, and deployment of materials and systems throughout the product lifecycle for affordable, producible aerospace applications"
- More than 450 professionals participated in Vision development
- FY20 NRA solicitation to jumpstart foundational work in computational M&S

NASA CR 20210015404

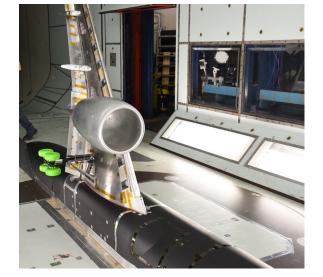
NASA CR 2018-219771

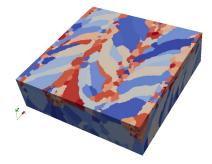
T³ FY21 Organizational Structure



Resource & Project S Business Lead: Laura Farrell (GR Center Analysts: Cecelia Town (A April Jungers (AFRC), Laura Farre Tracey Frisby (LaRC) NRA Manager: Tracey Frisby (La Scheduler: Joyce Moran (GRC) Strategic Comm Specialist: Diana Project Support Analyst: Jeanie	C) ARC), II (GRC), RC) a Fitzgerald (LaRC)	Project Mana Deputy Project	Executive Team: ager – Michael Rogers (A Manager – Dale Hopkins t Manager – Joe Morriso	s (GRC) n (LaRC)	Project Center Liaisons: ARC Andrew Meade AFRC Steve Cumming GRC Azlin Biaggi-Labiosa LaRC Melissa Rivers	
Enduring Discipline Research Areas (with Technical Leads)			Sub-projects (Aligned with ARMD Priorities)			
Dale Hopkins Discipline Strategy Management Materials and Structures (M&S) Steve Arnold (GRC)	Joe Morrison Discipline Strategy Man Revolutionary Computat Aerosciences (RCA) Mujeeb Malik (LaRC)	gy Management omputational CA)	Foundational Electrified Aircraft Propulsion	Revolutionary Aviation Mobility Vanessa Aubuchon Sub-project Manager	Cycle CostSupersonMelissa RiversTranspoSub-project ManagerAzlin Biaggi-La	Enabling Supersonic Transport Azlin Biaggi-Labiosa
Combustion Jeff Moder (GRC) Kathy Tacina (GRC)	Innovative Measurements (IM) Tom Jones (LaRC)		Azlin Biaggi-Labiosa Sub-project Manager	AS	RCA	Sub-project Manager
Controls Dennis Culley (GRC) Steve Riddick (LaRC)	Multidisciplinary Design and Optimization (MDAC Trish Glaab (LaRC)		M&S MDAO Controls	MDAO Controls Comm/Cybersecurity	y IM M&S	Combustion M&S
Communications, Navigation & Surveillance (CNS) Casey Bakula (GRC)	Autonomous Systems (/ - Human Machine Team - Other enabling disciplin Kelley Hashemi (ARC)	ing				

Reduced Life Cycle Cost (RLCC) Subproject Overview


REDUCE THE TOTAL LIFE CYCLE COSTS BY:

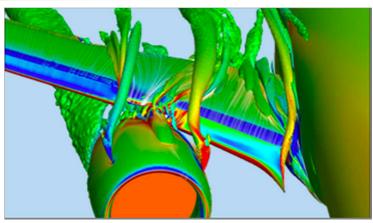

1. Enabling Certification by Analysis to reduce surprises during flight tests

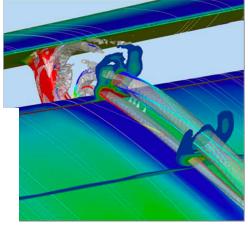
- Develop and validate eddy resolving methods for airframe and propulsion system applications
- Design and execute CFD validation experiments
- Develop pressure & temperature sensitive paints to support dynamic measurements
- Develop applicable velocimetry techniques for time-resolved unsteady flow

2. Increasing manufacturing and assembly rates during the Production Phase

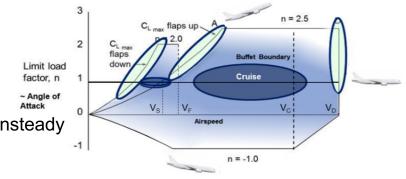
- Develop computational validation of additive and other advanced manufacturing processes
- Advance rapid manufacturing of composite unitized structures

3. FUTURE: Decreasing the amount of required maintenance during Operations and Maintenance Phase


• Enable predictive maintenance methods through advances in data fusion methods in the digital twin framework


Focus: Reduce the life cycle cost of aircraft to enable the US aircraft industry to stay competitive worldwide

How can new analytical tools reduce life cycle cost and decrease time to market for new products?



- Increased use of computation for certification could save \$100s millions for each aircraft development program by reducing flight test costs
 - Two-thirds of flight test points are in the high-lift envelope
 - High-lift flow field is unsteady, geometrically complex, with interacting flow features
 - Accelerates improvements to the commercial aircraft fleet by enabling insertion of new technology/design changes without new flight tests
- Improved computational tools enable novel vehicle designs for ARMDfocused missions (ultra-efficient commercial vehicles) and UAM

Technical Challenge: Develop and demonstrate computationally efficient, eddyresolving modeling tools that predict maximum lift coefficient (CL*max*) for transport aircraft with the same accuracy as certification flight tests.

Technical Areas and Approaches

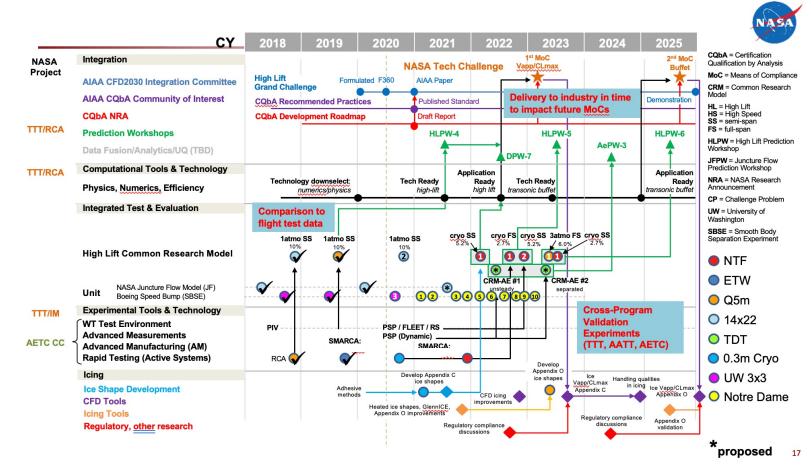
- Physical Modeling and Simulations
 - LES/WMLES, hybrid RANS/LES and Lattice-Boltzmann Method
 - Laminar-turbulent transition modeling
- HPC Tools and Methods
 - Effective utilization of emerging HPC hardware
 - Accurate, efficient, and robust computational methods
 - Reliable and effective grid generation and adaptation, including unsteady
- CFD Validation Experiments
 - Data to include flow separation and CRM high-lift

vpically best calibrate

nd most productive

erodynamic and structura design and performance

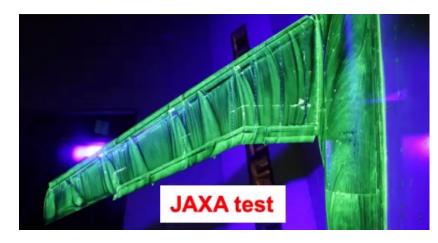
must consider the full flight


envelope

Ð

Partnering with Boeing and AETC

Series of wind tunnel tests and validation workshops



Deliver new computational tools in time to impact certification of future commercial transports

Validation Data for AIAA High-Lift Prediction Workshops

Semispan CRM-HL Test at LaRC 14'x22' Oct-Dec 2018; model and test funded by AATT

Eddy-resolving simulations (e.g. DES, WMLES)

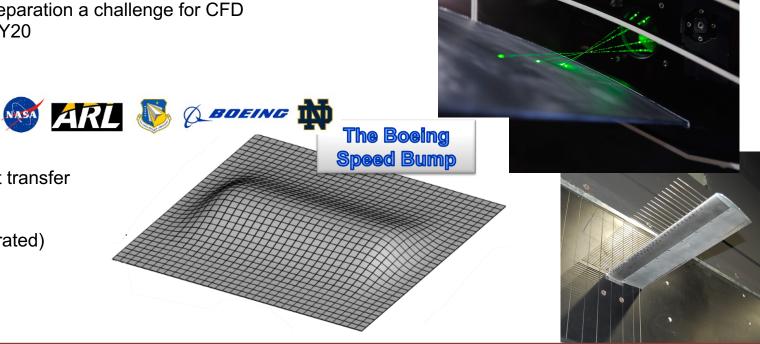
- Do not predict spurious separation
- Give better lift near CL*max*
- Do not yield non-unique solutions

Development supported by T^3 NRA Hi-Lift CRM test at Qinetiq 5m tunnel in UK Oct-Nov 2019

 Wall-Modeled LES CharLES code computations are capturing physics of flow separation (including pitching moment break) and explaining flight test results

NASA CFD Validation Experiments

CFD Vision 2030 Recommendation 4. NASA should lead efforts to develop and execute integrated experimental testing and computational validation campaigns.

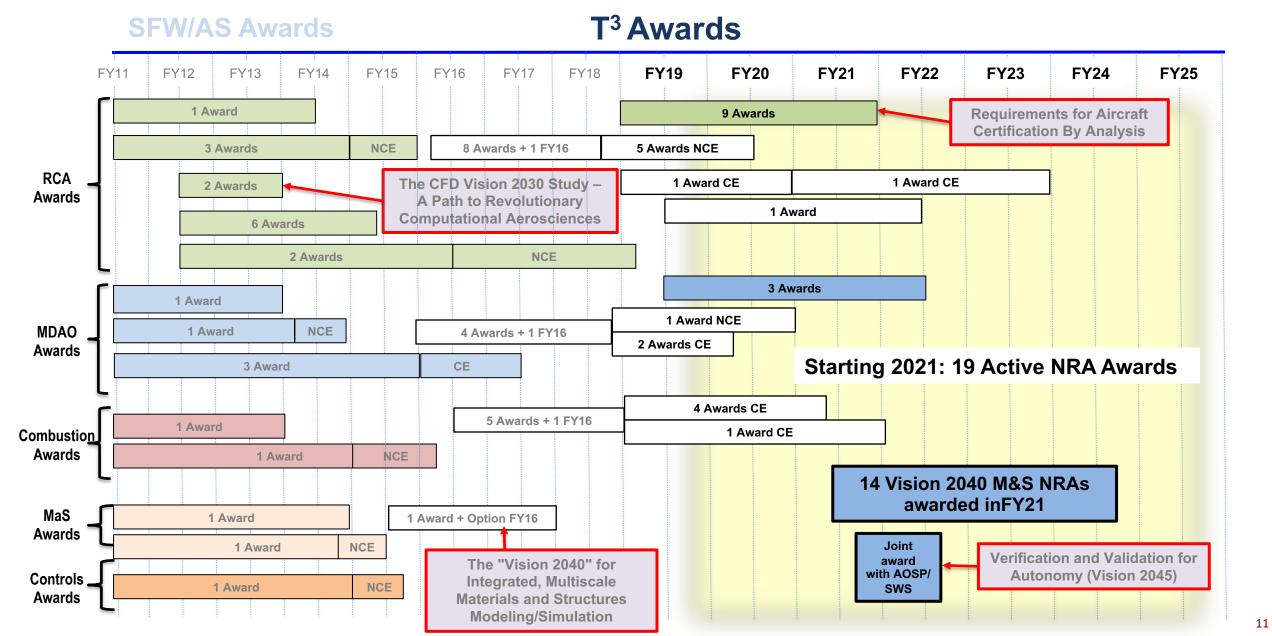

A CFD Validation Experiment should include the measurement of all information, including boundary conditions, geometry information, fluid properties, and quantification of experimental uncertainties necessary for a thorough and unambiguous comparison to CFD predictions.

Juncture Flow Experiment

- Prediction of wing trailing edge fuselage corner separation a challenge for CFD
- Third 14'x22' wind tunnel entry completed in Q1FY20

"2D" Separation

- NRA to Notre Dame (Flint and Corke)
- "Boeing Speed Bump" (\$1.8M/3 years)
- Turbulent Heat Flux (THX) Experiment
 - Need experimental data for CFD of turbulent heat transfer
- Shock Wave/Boundary Layer Interaction
 - Mach 2.5 Axisymmetric SBLI (attached and separated)
- > 2D Compressible Mixing Layer
 - NRA to U. Illinois (Dutton and Elliott)



A new generation of CFD Validation Experiments is required to support model development of new eddyresolving turbulence modeling approaches, which require a more complete description of the turbulence

NRAs: Collaboration with Universities to Assess Promising New Ideas Working with Industry/Community to Establish the Visions

A Look Ahead to FY22 and Beyond

- Current subproject structure effective, but still investigating new content
 - Considering additional new content in all subprojects and Enduring Disciplines
 - Considering possible new sub-project (e.g., "High-Speed", "Net Zero Emissions")
- 14 active new Materials & Structures NRAs supporting Vision 2040
- Winding down two Technical Challenges
 - Combustion Modeling Technical Challenge completes at end of FY21 (on track)
 - MDAO Technical Challenge completes at end of FY22 (on track)
- Formulating possible new Technical Challenges
 - "Tools and Techniques Critical for m:N Operation of Autonomous Fleets"
 - Materials & Structures
- V&V for Autonomy Vision 2045 effort underway
- Future Validation Experiments
 - HiLift Common Research Model in the NTF (3 entries)
 - Aeroelasticity in the TDT (series of test)
 - Multidisciplinary propeller design assessment in the LSAWT
- Complete definition of and assessment against new T³ Measures and Metrics

