Titan Sample Return Using In Situ Propellants

NIAC Phase I Study Status

Steven Oleson, Geoffrey Landis, And the Compass Team NASA Glenn Research Center Ralph Lorenz Johns Hopkins Applied Physics Lab Sept. 22, 2021

- Compass Lead, PI : Steve Oleson
- Concept Co-I: Geoffrey Landis
- Concept Co-I, Science PI: Ralph Lorenz
- System Engineer: Betsy Turnbull
- Mission: David Smith, Jeffrey Pekosh, Zach Zoloty, Laura Burke, Steven McCarty
- Visualization: Rutvik Marathe, Maya Havens, Kerstyn Gay
- Configuration: Tom Packard, Hayden Morgan
- Propulsion: James Fittje
- Cryogenic Storage: Jason Hartwig
- Thermal, EDL, propellants manufacturing: Tony Colozza
- Power: Paul Schmitz, Lucia Tian, Steven Korn, Brandon Klefman, Nick Uguccini
- Mechanical: John Gyekenyesi
- AD&CS: Brent Faller, Christy Schmid
- C&DH: Chris Heldman, Peter Simon
- Comms: Noulie Theofylaktos, Bushara Dosa
- Cost: Natalie Weckesser, Cassandra Chang, Marissa Conway

Saturn and Titan

We would like to acknowledge and thank the members of the NASA Glenn COMPASS team for their many contributions to this mission design

Titan- a world with atmosphere and oceans

 Titan is only moon in the solar system to have a dense atmosphere (1.5 times the atmospheric pressure of Earth), and has a surface that is rich in organic molecules.

That hazy yellow orange color of the nearly opaque atmosphere is a fog of organic particle aerosols: on Earth we would call this *photochemical smog*

Titan as viewed by the Cassini orbiter, showing the orange haze of the atmosphere, as well as the forward-scattering of blue light. Image courtesy NASA/JPL

Huygens Lander: surface image

- Image from the surface of Titan by Huygens Lander
- Right: same image, with enhanced contrast and color

For a sense of scale: the rounded pebbles are a few inches across

Surface of Titan viewed from the Huygens probe. The orange color is due to organic tholins. Image courtesy ESA/NASA

Tholins: building blocks of life?

 Because of its value to understanding the organic compounds of the outer solar system which may be the primordial building-blocks of life, return of samples from Titan to laboratories on Earth will be the primary goal of this mission.

APL,

What we need: Titan Sample Return mission!

Titan Launch Vehicle

Can we fuel a rocket to launch from the surface of Titan using rocket propellant we make on Titan?

۵

7

Major Questions of the Study

- What resources does Titan have that we can use to make in-situ rocket propellants?
- 2. How do we gather and process the propellants how much equipment, power, and time does it take?
- 3. How do we deliver a launch vehicle to the surface of Titan, and deploy it for launch?
- 4. How do we get to Titan and back to Earth?
- 5. How big of a system do we need to send how much lighter is it than a mission that brings all of its propellant from Earth?

Methane/LOX Propulsion

- The Methane/liquid oxygen ("LOX") combination is very nearly the ideal rocket propellant.
- Specific impulse (Isp) of 325 seconds.
 - second only to liquid hydrogen among hydrocarbon-based rocket fuels
- Density of 0.44 kg/m³. This is dense compared to hydrogen (0.071 kg/m³), allowing for considerably smaller tanks
- The higher boiling point (111 K) eliminates need for cryogenic storage.

Top: Integrated hot-fire test of 12.5 kN (2800 lbf) LOX/methane engine at the Plum Brook ISP Thermal Vacuum Chamber

Bottom: uncooled small LOX/methane rocket engine being tested at NASA Glenn Altitude combustion stand

Citation: Robert L. Morehead, *et al.* "Vehicle-Level Oxygen/Methane Propulsion System Hotfire Demonstration at Thermal Vacuum Conditions." *53rd AIAA/SAE/ASEE Joint Propulsion Conference*. 2017.

Electrolysis stage

- Processing: ~ 3000 kg of Bipropellant production
 - Fuel: Liquid Methane distilled from atmosphere (5%)
 - Oxidizer: Water Ice collected from the surface, melted, purified, electrolyzed to oxygen, cooled by 94K atmosphere to Liquid Oxygen (LOX)
- Rechargable small rover with grinder/vacuum to gather ~ 5kg of materials /day
- Power: Three, ~300We Dynamic Radioisotope Power Systems
 - Processes ~ 2kg of LOX and LCH4 per day
 - Also provides power to control/comms and waste heat to assist in Ice processing and warming avionics
- Balance of Plant: command and x-band comms direct to earth
- About 3 years to gather and produce propellants with 1000 We power

Dynamic Radioisotope Systems

For scale Propellant Processing Plant *Ice Collecting Rover*

Titan environment:

Average surface temperature: **90.6 K** Maximum temperature: 93.6 K Atmospheric pressure: 146.7 kPa (1.45 atm) Gravity: 1.35 m/s² (0.138 g_{Earth})

Cryogenic storage is simple for both methane and oxygen:

- The maximum measured surface temperature 93.6 K is well below methane's boiling point of 111.5 K.
- At 1 bar pressure above ambient, Oxygen remains liquid up to 100 K, a comfortable margin above the highest temperature measured on Titan.

By a fortunate coincidence, the temperature and pressure at the surface of Titan is ideally suited to allow cryogenic propellants to be stored in liquid form without refrigeration.

• But the **volume** of propellant is large

Inflatable Tanks

- Being Investigated at NASA JSC
- Tank Design Consists of a Thin Polymer Bladder, Longitudinal Load Carrying Tendons, and Polar Bulkheads
- Materials Currently Being Evaluated for Cryogenic Applications
- Tanks can Fold Down Flat for Transport
- Designs for Equatorial Skirt Accommodation and Cylindrical Form Factor Being Evaluated
- Tank Mass Very Competitive with Ti-Alloy for Same Volume and MOP (Potential 30-50% Mass Savings)
- Allows for Deployable Launcher Structure
- Use in Current Design Requires Flexible Propellant and Pressurant Lines

Inflatable Test Tanks

Polar Bulkhead w/ Plumbing Elements

The Titan Deployable Rocket

- Three inflatable tank/extendable stages
 - Inflatable tanks and feed lines
 - Sliding booms and cable stiffeners
 - Deployed vehicle only sees 1 g max during ascent, and only 1/7g on surface with minimal wind loads
- Each stage tanks inflated and filled with LOX/LCH4 during 3 year production
- 1st Stage to 30 km
- 2nd to insert third and return vehicle to titan orbit (1000 km)
- 3rd stage to push return S/C home (with Saturn/Titan gravity assists)

Launch Vehicle Stowed

Launch Vehicle Fully Deployed

Mission Elements Inside a Representative Lifting Body Payload Bay (1/2)

NASA Innovative Advanced Concepts

COMPAS

Launch To Titan Orbit

~1000 km, 71 mins, Insert into Titan Orbit, ~1600 m/s

- The Good news: Titan Gravity only ~ 1/7th of Earth
- The Bad news: Density of the atmosphere is >5X of earth and goes up >4X higher!
 - Causes large drag impact on rocket –
 - Need to use a skinny rocket or Fly up above thick atmosphere
- Phase 1 Solution: Skinny rocket
 - Total ΔV: ~4 km/s but includes Drag loss ~1 km/s
- Further Work for Phase 2:
 - Consider air launch (to eliminate 1stage), use lift
 - Estimates show that required ISRU propellant mass and production time halved!

Potential Rotor craft First Stage

~335 km, 23 mins, begin coast, velocity 1700 m/s

~150 km, drop fairing, 15 mins, velocity 700 m/s

~33 km, Second stage Single Engine Peak thrust, ~7.6 kN, ~342s

~33 km, drop first stage, 7 mins, velocity 120 m/s

~0 km, Launch, Two engines, Peak thrust 12 kN, Isp ~270s

Return vehicle

Return Stowed in Compressed Launcher

Deployed Return with Aeroshell Open to Cool Sample

Stardust

Configuration modeling by Tom Packard, NASA Glenn

Overall Mission Conops

Titan 2-Stage launch to 1000 km circular orbit 6/2049 Titan Atmosphere 3rd Stage assisted by ~3 year propellants Titan/Saturn flybys to gathering and escape (~12 months) loading Launcher inflated and loaded as ~ 3000 kg of propellants produced Spun return spacecraft using ~1 kW of with cryo samples radioisotope power A 17 year odyssey to return 3 kg of cryogenic Samples from Titan Nominal entry (15 km/s), Surface using Titan Insitu descent, landing 1/2056 **Propellants**

High L/D Lifting body cruise, entry (~6 *km/s), descent,* landing **12/2045**

Jupiter Flyby

Return vehicle/ISRU System/ collapsed 3 stage rocket ~1600 kg

Falcon H reusable class launch *C3* ~ 90 km²/s² **10/2038**

Earth

Advantages/Challenges of Titan ISRU Sample Return Compared to Bringing Propellants

Parameter	ISRU Propellant Approach: NIAC, Oleson, Landis, Lorenz (2021)	Bring Propellants: TITAN SAMPLE RETURN MISSION CONCEPT B. B. Donahue, JANNAF 2010
Mass (less EDL systems)	~I>DC kg	~9000 kg
Launcher	Falcon H	SLS
Time (round trip)	17 yr	13 yr
Power	~1000 We Radioisotope Power Systems	~100 We
Critical Technologies	Deployable cryogenic tanks/rocket, Gathering Ice/atmospheric methane, LOX/LCH4 processing	Orbiter Aerocapture, orbit rendezvous/docking in Titan orbit

Almost 80% reduction in mass at the expense of an additional 3-4 years of propellant gathering/production time and 900We of added radioisotope power