

Space Technology Mission Directorate Game Changing Development Program

Dr. Michael Lowry| Dr. Eric Barszcz, Richard Alena | FY21 RadNeuro Annual Review Presentation

RadNeuro Overview

Technology Product Capability: Radiation-Tolerant Neuromorphic Processor Project offers Power Efficiency and Radiation Tolerance for Artificial Intelligence and Machine Learning space capabilities – both as a co-processor and standalone. Neuromorphic maps neuroscience onto silicon to achieve Teraops (trillions per second) throughput with 100x to 1000x more power efficiency than general purpose CPUs.

Technical Capabilities

- Radiation Tolerance: Leveraging processor advances in terrestrial neuromorphic computing to space radiation tolerance through new device technology, redundancy management, new system architectures, and system software.
- Technology maturation for space missions through experiments and demonstrations in increasingly relevant environments.

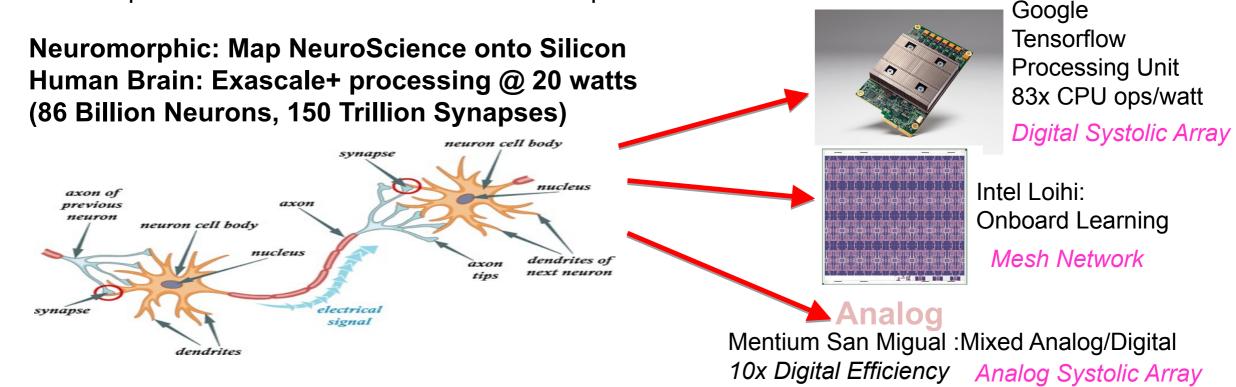
Exploration & Science Applicability

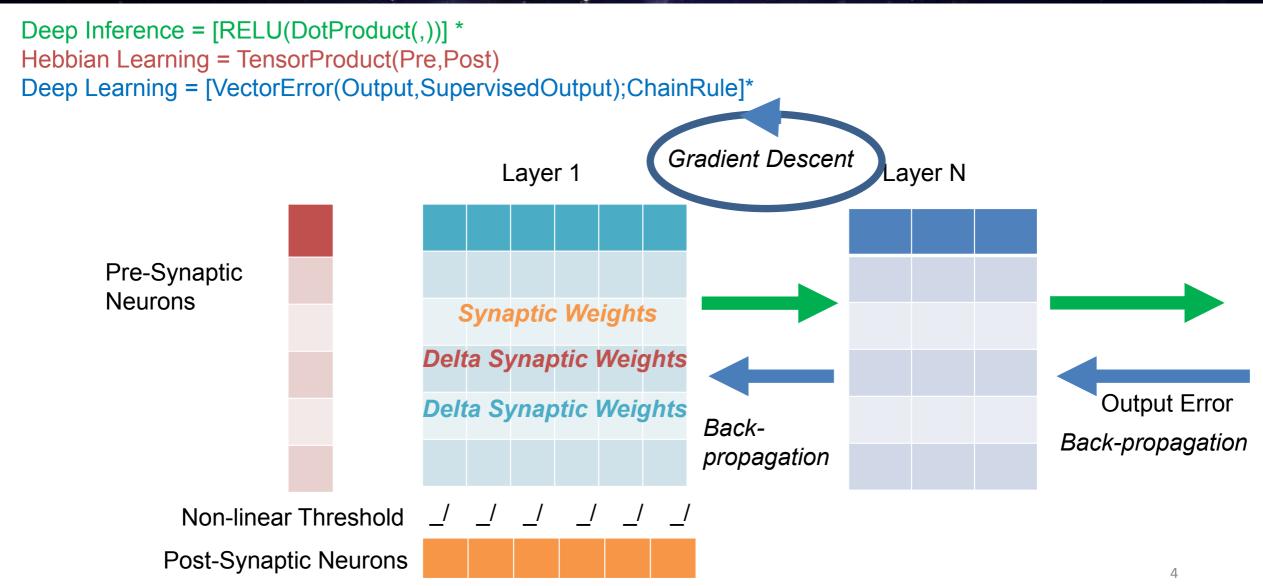
- The technology targets high-throughput and critical in-situ computing.
- Fast traverse autonomous roving, lunar and planetary.
- Perceptual processing for extreme access
- Anomaly detection, FDIR, spacecraft health
- Cognitive Radio
- In-situ adaptation and science.
- Sentient small spacecraft

Top picture is an innovative analog neuromorphic chip from partner Mentium with extreme power efficiency.

GCD is funding radiation hardening. The middle picture

is a Tech Ed Sat nanosat mission. Tes13 passed environmental testing August 2021. Intel Loihi, bottom, is targeted to be first neuromorphic processor in space, launch early FY22.




Why Rad-Tolerant Neuromorphic?

Neuromorphic processors have outstanding *Power Efficiency (100x to 1,000x throughput per watt compared to a CPU)* for Artificial Intelligence and Machine Learning applications. Radiation tolerance brings these capabilities to space missions. Rad-tolerant neuromorphic processors, both as a co-processor to a CPU and standalone processor for smart instruments and nanosats, will bring high-throughput and critical in-situ computing for capabilities ranging from fast traverse autonomous rovers to precision extreme access to in-situ adaptation and science.

Neuromorphic Vector Operations

Mission Infusion & Partnerships

NASA Centers

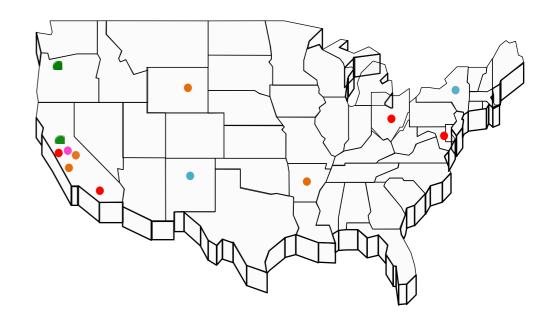
- Ames
- JPL
- Goddard (NEPP)
- Glen (Cognitive Radio)

Public/Private Partnerships

 Intel Corporation Loihi Space Act Agreement OGA Leveraging

• AFRL

SBIR/STTR


- Mentium
- Exploration Institute
- Nanomatronix
- Numem

NASA Programs

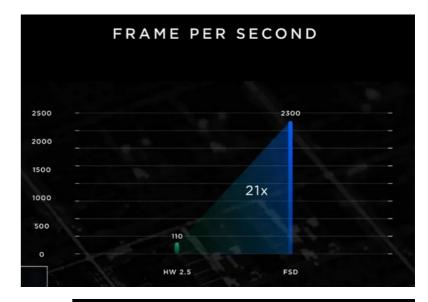
 SSTP Small Spacecraft Technology Program

Mission Infusion

- SSTP PACE4 mission with prototype rad-tolerant Neuromorphic processor(s)
- First-gen processors available for pacing missions with radiation tolerance.
- Radiation tolerant technology for Neuro conveyed to avionics community.
- Phase 2 proposal to GCD for full-scale Neuro Solicit partners, downselect Design, develop, verify, deploy

Collaborative multidisciplinary partnerships to leverage fiscal resources, ideas, knowledge & expertise.

RadNeuro Phase 1 Technology Goals & Project Objectives


	Technology Goals
Goal #1	Enable space missions to use neuromorphic processors for in-situ autonomy.
Goal #2	Augment CPU space processors with rad-tolerant neuromorphic co-processor providing 100x ops/watt for high compute AI and Machine Learning tasks.
Goal #3	Ultra low-power standalone neuromorphic processor for small space assets and standalone instruments
Goal #4	Bridge gap between commercial industry and space rad-tolerant neuromorphic processors.
	Project Objectives
Objective #1	Trade-space analysis.
Objective #2	Mature TRL for neuromorphic processing in space from 2 to 4
Objective #3	Radiation test neuromorphic devices, circuits, and chips
Objective #4	Design and fabricate prototype rad-tolerant neuromorphic circuits and processors for space
Objective #5	Engage partner for Phase 2 design and fabrication of full rad-tolerant neuromorphic processor.

Force Multiplier Co-Processor for Space Autonomy

Example from Terrestrial Autonomous Cars

<section-header> PERCEIVE Image: constraint of the start of

Tesla Full Self-Driving Chip (6B transistors 14nm FinFET)

Heavy lifting for vector processing off-loaded to Neural Net Accelerators System Level: 21x perceptual processing for 1.25x power 17x ratio Force Multiplier towards Autonomous Cars

Autonomy: Achieves SAE Level 2 (Hands-on human vigilance) Specialized NNA: 72 Terops @ 15 Watts [12x ARM + GPU @ 60 Watts]

GCD FY21 Annual Review

Sentient Small Spacecraft

Today's Small Spacecraft

- Low mass, shared launch, affordable missions.
- Typically single-point sensor, bandwidth limited to Earth with minimal on-board processing, onboard processing limited by size and power.
- Typically either single-spacecraft missions or non-coordinated constellations.
- Typically LEO minimal radiation missions.

Next-Gen Small Spacecraft

- Small mass, shared or dedicated launch, affordable missions.
- High-throughput, low-power on-board processing enables sentient actions and data processing, compressed communication to Earth with high information content, opportunistic science.
- Swarms of distributed communicating small spacecraft provide synthetic large sensors (DSA).
- Widespread solar system exploration.

Accomplishments - Technical

Hokulele: First neuromorphic AI/ML system ready for space launch

- Hokulele (meteor) system consists of Intel Loihi spiking neural net Gen 1 processor and supporting avionics
- Tes13 3U nanosat now packaged for launch on Virgin Orbit fall 2021, environmental and functional tests complete, launch Nov15 +, parallel orbit to ISS, likely months of operations.
- Tes13 is a collaboration of RadNeuro, Cognitive Radio, Small Spacecraft Technology Program, SBIR companies and AFRL contribution
- Hokulele requirements are defined as a progression of increasing success criteria
- Hokulele software consists of C&DH, scheduling and execution framework, 7 AI/ML applications, and robust reset strategy for hardware faults
- Software was designed, developed, peer-reviewed, and verified by RadNeuro in collaboration with SBIR Exploration Institute and Blaze computing.
- Loihi hardware was debugged in collaboration with Intel Neuromorphic Research Laboratory, hangs isolated to auxiliary USB circuitry with mitigation by Hokulele software
- Hokulele Incorporates in-situ learning capability: 6 baseline classes for anomaly detection already learned during test and checkout
- Hokulele deployment experiment operational policies and procedures have been defined, including nominal and extended modes, and 'war plans' for potential fault conditions
- Once success criteria have been achieved expected within first 30 days using Iridium 100-byte communications- longer mission will validate in-situ learning with S-band 'lunar radio' 10s of MBytes data downloads, and characterize Loihi hardware space performance.

GCD FY21 Annual Review

Simulation

High Precision

Energy for

64bit FP

Multiply (synapse)

Tradespace:

TOPS/Watt – efficiency **Onchip synaptic storage**

Throughput And Sizing

NASA Applications

Throughput and Quantization tradespace defined for

(Suj Fas	cision Perception per-Resolution) t Rover Traverse		me Access		600 to 800 TOP	PS Perception for Extreme Access
ency torage	Quan	Type of tization	of Neurom	norphic	200to 400 TOP	PS Fast Rover Traverse
Floa	t Integer	Analog			74 TOPS 4.5 x 10^8 ATP	Tesla FSD SAE L2 Hands On Constant
4pJ @ 14nm Finfet	0.5pJ Estimated		0.2 pJ@ 14nm Finfet	Аррх. 0.05рЈ	per spike appx. 0.045pJ per synapse	Monitoring
32bit FP Digital Signal Processing	BFloat16 Deep Learr	ning	Int8 Edge Inferenc	4-6 bit e Analog	2-4 bit Biological Synapse <i>Rolls et al</i>	
						10

Accomplishments - Technical

Analysis Estimates

750 TOPS

TOP = 10^12 operations/sec

Human Vision

Accomplishments - Technical

- Radiation Test Procedures
 - Extended TID testing defined for synaptic weight shifts
 - Engagement with Intel for radiation-testing Loihi
 - Testing procedures defined and written for Neuromorphic Devices: Analog NOR Flash, Memristors, STT-MRAM

Neuromorphic Radiation Tolerance

Traditional (Digital ASIC) - redundancy leads to reduction of power and area efficiency:

ECC	Bigger Transistors	Slower Clock	TMR	Self-Checking Pairs	Warm/Cold Backups
x 1.5-2	x 3-5	x 2-4	x 3x+	x 2	x 2

Neuromorphic Rad-Tolerance: Traditional Approaches + more

Device Level Radiation Tolerance

	NOR Flash	ReRAM	STT-RAM	
SEL/SEU Immune	No	Yes	Yes	
TID tolerance	< 100k	< 10M	>1M	
Commercial Standard	Mature, Special Library	~ 2023 (Today: Special Arrangement)	~ 2023 (Today: Special Arrangement)	

Architecture Level Radiation Tolerance

Redundant NN (uncompressed) Sparing rows, columns for TID Reduce voltages, e.g., for writing Reduce capacitive reservoirs, e.g. Analog / Digital converters

Prototype Radiation Tolerant Processors

Three broad processor classes as defined by layout and architecture. RadNeuro will leverage these classes with Radiation & Fault Tolerance.

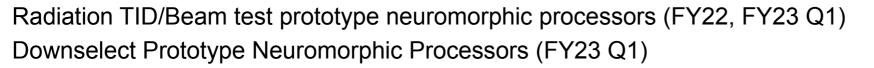
Systolic Array for Artificial Neural Net

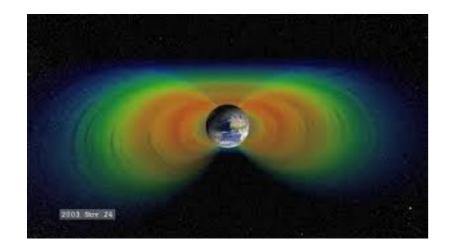
San Miguel (California mission) – FY22Q2 Radneuro-Mentium collaboration for rad-tolerance

Mesh Network for Spiking Neural Net

Hoku-pa'a (Hawiaan Northstar) – FY22Q2 Radneuro-intel collaboration rad-tolerance with Loihi baseline architecture

FPGA Neuromorphic


Freya (Norse clairvoyant shapeshifter goddess) – FY23Q1 Radneuro-Brainchip collaboration



Prototype RadNeuro Processor Validation

Agneya Baptism by Fire (Sanskrit, Hindu Goddess) Summer 2023 RadTolerant AI/ML system on PACE4 Mission

GeoTransfer Orbit with repeated exposure to Earth's Natural Synchrotron – the Van Allen Belts

2mm AL SHIELDING									
Mission	Ті	rapped Sol	ar Particle	S	S	olar Flare	S	GCR	Total Dose
	Proton Dose	Electron Dose	Brem Dose	Total Trapped	Dose/SPE	Annual SPE	Total SPE	Proton, He	Rads (Si)
LEO Zero	12	0	0	12	30	4	120	5	137
LEO 51°	200	1000	10	1210	30	4	120	5	1335
LEO Polar	150	1000	10	1160	30	4	120	5	1285
GEO	10000	100000	1000	111000	30	4	120	10	111130
GTO (max									1002013
rad)	10000	1000000	10000	10020000	30	4	120	10	002013

Objectives Status Summary

Project Objectives								
Objective #1	Trade-space analysis. 70% complete							
Objective #2	Mature TRL for neuromorphic processing in space from 2 to 4. Hokulele system checkout testing has achieved TRL 3 Hokulele space launch on Tes13 nanosat will achieve TRL 4 Agneya RadTolerant AI/ML on PACE 4 nanosat will achieve TRL 5							
Objective #3	Radiation test neuromorphic devices, circuits, and chips Test procedures defined for extended TID / Synaptic Weight radiation stability							
Objective #4	Design and fabricate prototype rad-tolerant neuromorphic circuits and processors for space San Miguel tapeout November 2021, following Santa Barbara and Santa Cruz processors							
Objective #5	Engage partner for Phase 2 design and fabrication of full rad-tolerant neuromorphic processor. OGA, 8 SBIR companies, 2 large tech companies interested							

RadNeuro Maturation Timeline

August 2021: Neuromorphic processor successfully integrated into 3U nanosat, 9K SLOC, functional and environmental checkout – ready for launch on Virgin Orbit. 6 classes learned in-situ. TRL 3

December 2021: Intel Loihi operational in LEO. Ground command through Iridium for successive executions of 7 Loihi applications, including in-situ learning for anomaly detection. Evaluation against success criteria. Data acquisition through S-band of Loihi operational profile in orbit. TRL 4

FY22 Q1, Q2: Radiation testing of neuromorphic synaptic devices – high TID – MRAM, Memristors, Analog NOR. TRL 2

March 2022: Tape-out of San Miguel rad-tolerant Analog Systolic array. Radiation and functional testing through June 2022. TRL 3

August 2022: Rad-tolerant firmware for SNN developed with Intel for Loihi. Radiation and functional testing through November 2022. TRL 3

November 2022: Rad-tolerant FPGA neural cores developed with selected partners (e.g., Brainchip). Integration with radiation-tolerant configuration and synaptic memory. Radiation and functional testing through January 2023.

February 2023: downselect rad-tolerant prototype Neuromorphic processors for PACE Baptism by fire.

March 2023: integration onto PACE4. TRL 4 rad-tolerant prototype processors

July 2023: PACE4 nanosat mission through Van Allen belts. TRL 5.

September 2023: Publication of data and rad-tolerant technology capabilities from radiation labs and Agneya mission.

If approved, Phase 2 RadNeuro for development of full rad-tolerant neuromorphic processor.

Solicit and Downselect partners (+ 4 months)

Initial tapeout of processor (+ 18 months)

Radiation, throughput, and power efficiency verification and debugging (+24 months)

Fabrication of full-scale Rad-Tolerant Neuro Processor (+36 months)

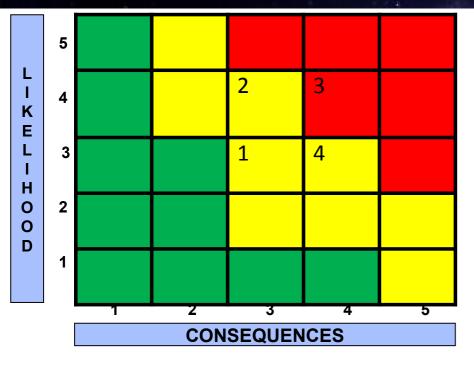
Technical Assessment

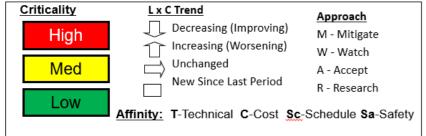
Technical Elements	TRL					
rechnical Elements	Entry	Current ¹	Exit	Verification		
Trade-Space Analysis	2	3	4	Milestone ID K1		
Radiation Tolerance	2	3	5	Milestone ID K2		
Technology Maturation	2	3	5	Milestone ID: C2		
Prototype Rad-Tolerant Neuromorphc Processors	2	2	4	Milestone ID: C3		

RadNeuro Key Performance Parameter (KPP) Status

Key Performance Parameters									
Parameter Units		State of the Units Art (SOA)		Project Goal	Current Value To Date	TBoE for the provided Current Value	Expected Exit Value	TBoE for the provided Expected Exit Value	
Compute Power Efficiency	Tera ops /sec/watt	2(1)	10	20	4	Estimate for Analog	10 to 15	Benchmarks	
Total Ionizing Dose	Kilorad	20	100	200	20	Previous TID tests ⁽²⁾	120	Preliminary data on Neuromorphic Devices	
Fault Recovery	Seconds	Latchup	10	1	Undef	N/A	2	Verified	
Machine Learning Capability	InSitu Timeliness	Pretrained	Batch Learning	Adaptive Learning	Ground Adaptive Learning	Tes13 Checkout	Adaptive Learning	Verified	

Notes:


Technical Basis of Estimate (TBoE)


(1) SOA comparison to Google Tensorflow Edge Processor

(2) Previous tests on Magnetic STT-RAM conducted by Ames at JSC

Risk Summary

Risk ID	Affinity/ Approach	Description/Status					
1	T /A	Launch failure of Nanosat Mission	Unch				
2	T/ R	Unforeseen Radiation vulnerability of Prototype Processor	New				
3	S / W	Schedule slip of Nanosat Mission	Dec				
4	S /W	Schedule slip of Prototype Processor Development	Unch				

Project Assessment Summary

Project Name	Performance				Comments
	С	S	Т	Ρ	
Mid Year					Technical – Tes13 nanosat mission in development, Intel and Mentium prototypes Cost – COVID19 expense rebaseline request pending Schedule – COVID19 rebaseline request pending Programmatic – RTOW package submitted
Annual					Technical – Tes13 nanosat passed checkout and environmental testing Cost – rebaseline request accepted Schedule – rebaseline request accepted Programmatic – RadNeuro lab re-opened under COVID19 protocols

EPO Update

NASA

- Upcoming significant events
 - Tes13 nanosat launch (November or December)
 - Hokulele Machine Learning system success fullfillment (December or January)
 - San Miguel analog neuromorphic fabrication (March or April)
- Conferences
 - International Conference on Neuromorphic Systems July 2021
 - Space Computing August 2021

Plans Forward and Infusion Plan

Tes13 Launch

Hokulele Machine Learning system success criteria fullfillment on Nanosat Tes13

Prototype Rad-Tolerant Neuromorphic Processors, Radiation Lab Testing San Miguel Analog Systolic Array Hoku-pa'a - rad-tolerant mesh network for Spiking Neural Network Freya – FPGA neuromorphic

Baptism by Fire – PACE4 GTO nanosat with Agneya RadTolerant AI/ML system Infusion into STMD Small Spacecraft Technology Program Infusion of Radiation-Tolerant Technology into Neuromorphic Processor Community Data, Analysis, and Guidebook Direct Partnerships with both small companies and large companies

Phase 2 RadNeuro proposal for development of full-scale Rad-Tolerant Neuro Processor Solicit and Downselect partners (+ 4 months) Initial tapeout of processor (+ 18 months)

Radiation, throughput, and power efficiency verification and debugging (+24 months) Fabrication of full-scale Rad-Tolerant Neuro Processor (+36 months)

Summary – Accomplishments 2021

- Trade-space analysis: 70% complete
- Mature TRL for neuromorphic processing in space from 2 to 4: Hokulele system checkout testing has achieved TRL 3 Hokulele space launch on Tes13 nanosat will achieve TRL 4
- Radiation Testing:

Test procedures defined for extended TID / Synaptic Weight radiation stability

- Design and fabricate prototype rad-tolerant neuromorphic circuits and processors for space:
 San Miguel tapeout November 2021, following Santa Barbara and Santa Cruz processors
- Engage partner for Phase 2 design and fabrication of full rad-tolerant neuromorphic processor: 8 SBIR companies engaged, 2 large tech companies interested, OGA discussions
 GCD FY21 Annual Review

Technical Capability End State Phase 1

- Maturation of TRL for neuromorphic processing in space from 2 to > 4
- Individual KPPs achieved at component level on one or more prototypes (not integrated)
 - Teraops per watt
 - Synaptic circuit radiation tolerance
 - Rapid recovery after upset
 - Adaptive learning demonstrated
- Prototype Rad-Tolerant Processors verified in radiation labs and validated in GTO 'Baptism by Fire'. Prototypes potentially useful in selected missions as force-multiplier co-processors and sentient small spacecraft.
- Technical capability for leveraging terrestrial neuromorphic industry to space missions through radiation tolerant devices, circuits, and architectures.

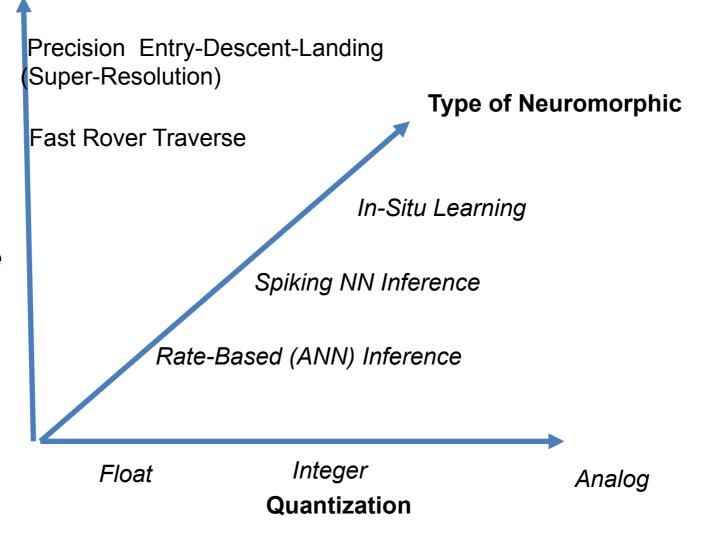
BACKUP

Pre-flight Minimum Success: successful end-to-end EDU tests with ground Irridium transfers and packets received, hangs are minimal and recovered automatically. + Exploration Institute NSFM monitored checkout and environmental testing, identified 6 classes of nominal operation.

Already achieved.

Flight Minimum Success: Verify the UP Loihi was turned on, one Loihi application succeeds and packet is received on ground via Irridium.

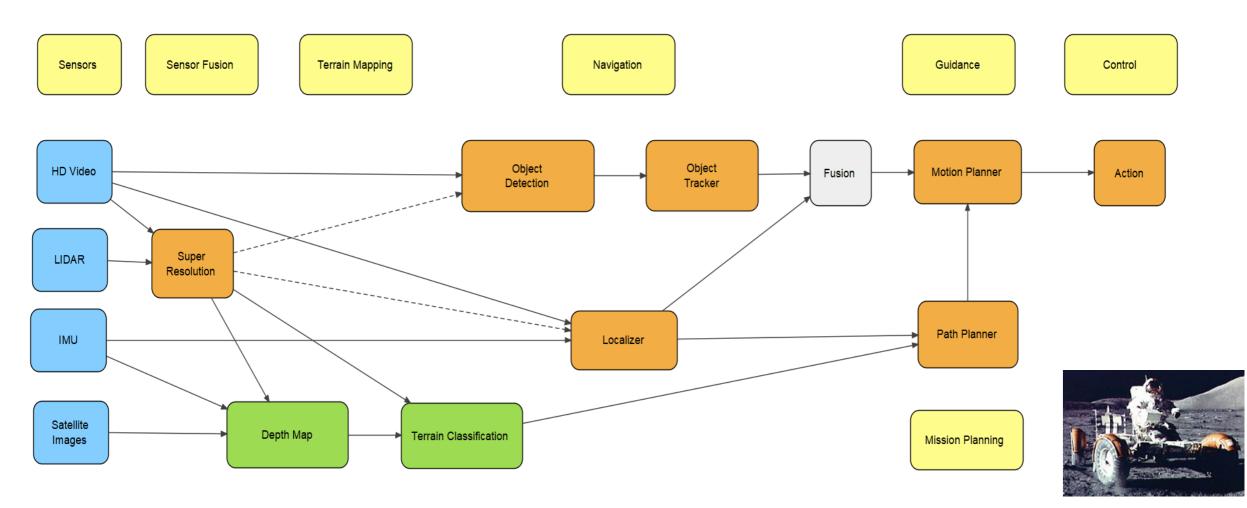
Nominal Success: Verify the UP/Loihi successfully executes at least 5 Loihi applications in Nominal mode and downlinks them to ground via Irridium.


Comprehensive success: Nominal executions routinely succeed, and SIMULATED learning in-situ is demonstrated with pre-recorded data.

Interstellar success: in-situ learning demonstrated with data from flight. Additional success: functionality of S-band/Lunar Radio

Neuromorphic Trade Space

Throughput And Sizing


TOPS/Watt – efficiency Onchip synaptic storage

Quantization of Arithmetic

0,	4pJ @ 14nm Finfet	0.5pJ Estimated	0.2 pJ@ Finfet	14nm Appx. 0.05pJ	4.5 x 10^8 ATP per spike appx. 0.045pJ per synapse
64bit FP High Precision Simulation		BFloat16 Deep Learning	Int8 Edge Infe	4-6 bit rence Analog	2-4 bit 1 bit Biological NN Synapse <i>Rolls et al</i>
Simulate Chaotic Systems AI Chip doubles as Supercomputer for CFD and other PDE	Resolve Poles Near Unit Circle Al chip doubles as DSP chip		Google Ed Tesla FSD <i>v3</i>	0	Biological Neural Circuitry is Robust despite Noisy Neurons and Synapses
Radiation CM0 Tolerance	DS RHBD and TMR SRAM	-> STT-RAM		Floating Gate TMR ReRAM	

Fast-Traverse Autonomous Rover SOS NN Architecture Extrapolated from Autonomous Car

