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Motivation

• In-situ resource utilization 

techniques required for long-

term habitation on extraterrestrial 

surfaces[1]

• Various mechanical and 

structural components needed 

from resources available in Lunar 

and Martian environments[2]

• Martian regolith is rich in metallic 

elements but are found as 

silicate minerals containing 

bound metal elements

[1] A. Owens, et. al, 2015 [2] Barker, et. al, 1998 [3] NASA JPL, 2019

Artist rendering of humans and habitats on 

Martian surface[3]
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Overview

• Ductile iron alloys cast with Bosch-sourced carbon (C) and utilizing 

ionic liquids harvested iron (IL-Fe) composition 

– Four chemistries chosen as combinations of low and high nickel (Ni) and 

manganese (Mn)

• Produced ingots evaluated to determine effects of additional alloying in 

Martian environment

– Dilatometry

– Characterized microstructure

– Mechanical properties (hardness)

• Investigation provides viability in using IL-Fe and Bosch C in casting 

multiple grades of ductile iron with minimal elemental additions
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Introduction: Martian Environment

• Martian regolith contains metallic 

elements bound in silicate 

compounds that could be used 

for tools, components, and 

infrastructure[4-9]

• Martian environment rich in 

CO2
[10]

Average Chemical Composition of Martian 

regolith[4-9]

SiO2 (n=40) 48 ± 6

MnO (n=20) 0.3 ± 0.1

FexOx (n=40) 15 ± 4

Ni (n=11) 0.02 ± 0.01

MgO (n=40) 6 ± 2

Al2O3 (n=40) 12 ± 5

CaO (n=40) 8 ± 2

Cr2O3 (n=14) 0.2 ± 0.2

(wt.%) ± st.dev.

[4] A.S. Yen,  et. al, 2013 [5] R.V. Morris, et. al, 2015 [6] M.J. Rutherford, et. al, 1999 [7] G. Peters, et. al, 2008

[8] C. Allen, et. al, 1998 [9] C. Allen, et. al, 1997 [10] P. Mahaffy, et. al, 2013
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Introduction: Ionic Liquids Iron Harvesting

• ILs currently studied at MSFC to 

extract metallic elements from 

regolith and meteorites as well as 

a life support system[11-14]

• Current production rate: 1-2 g/day

• IL is regenerated after 

harvesting[15]

Average Metallic Chemical Composition of IL-Fe 

(n=3)

Si 1.40 ± 0.3

Mn 0.47 ± 0.1

Fe 95.4 ± 0.4

Ni 0.14 ± 0.02

MgO 2.27 ± 0.3

Al 0.11 ± 0.1

Ca 0.11 ± 0.1

Co 0.08 ± 0

Na 0.04 ± 0.03

(wt.%) ± st.dev.

𝟐𝑯𝑺𝑶𝟒
− +𝑴𝑶 → 𝟐𝑺𝑶𝟒

𝟐−+ 𝑴𝟐++ 𝑯𝟐𝑶

ฮ𝑴𝟐++ 𝟐𝒆− → 𝑴 𝟐𝑺𝑶𝟒
𝟐− + 𝑯𝟐 → 𝟐𝑯𝑺𝑶𝟒

− + 𝟐𝒆−

[11] B. R. Brown, et. al, 2017 [12] B. R. Brown, et. al, 2018 [15] E. T. Fox, 2019

[13] L. J. Karr, et. al, 2018 [14] A. Asiaee, et. al, 2020
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Introduction: Bosch Carbon

• Bosch process studied at MSFC 

as an oxygen (O2) regeneration 

system producing a by-product 

C[16-18]

• Bosch C previously studied in 

alloying for low C steel, gray iron, 

and ductile iron[19-21]

• Current production rate: 8-10 g/hr

𝐶𝑂2 + 𝐻2 ↔ 𝐻2𝑂 + 𝐶𝑂

𝐶𝑂 + 𝐻2 ↔ 𝐻2𝑂 + 𝐶(𝑠)

2𝐶𝑂 ↔ 𝐶𝑂2 + 𝐶(𝑠)

𝑪𝑶𝟐+ 𝑯𝟐 ↔ 𝟐𝑯𝟐𝑶 + 𝑪(𝒔)

[16] M. B. Abney and J. M. Mansell, 2011 [17] M. B. Abney, et. al, 2013 [18] M. B. Abney, et. al, 2014

[19] B. C. Stewart, 2019 [20] B. C. Stewart, 2021 [21] B. C. Stewart, et. al, 2021

Bosch C 

morphology[20]

Series-Bosch catalyst 

test stand[16]
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Experimental Evaluations

Gleeble 

Dilatometry

Microscopy
As-heat treated

As-polished and as-etched

Mechanical 

Properties
As-heat treated

Hardness

Casting
Raw material acquisition, 

VIMF, Normalizing

Chemical 

Analysis
OES and C/S Analyzer

Microscopy
As-received or as-cast

As-polished and as-etched

Mechanical 

Properties
As-received or as-cast

Hardness
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Chemical Composition
• Composition measured with optical emission spectrometer (OES) w/ C 

verified with C/S analyzer

• Ni values targeted: Low (L-Ni): 0.14 wt.% and high (H-Ni): 4 wt.%[22]

• Mn values targeted: Low (L-Mn): 0.41 wt.% and high (H-Mn): 1 wt.%[23]

Chemical composition of Cast Ingots (n=10)

C Si Mn Ni Al Co Ca Mg Fe

L-Ni / 

L-Mn

3.53^
± 0.02

1.43
± 0.02

0.497
± 0.003

0.150
± 0.004

0.053
± 0.002

0.081
± 0.003

0.004
± 0.003

0.046
± 0.004

bal

H-Ni / 

L-Mn

3.37^
± 0.05

1.44
± 0.01

0.51
± 0.005

4.25
± 0.02

0.07
± 0.001

0.084
± 0.002

0.002
± 0.0003

0.042
± 0.003

“

L-Ni / 

H-Mn

3.59^
± 0.02

1.36
± 0.03

1.01
± 0.01

0.156
± 0.002

0.056
± 0.001

0.062
± 0.002

0.002
± 0.001

0.044
± 0.004

“

H-Ni / 

H-Mn

3.54^
± 0.04

1.46
± 0.02

1.04
± 0.01

4.38
± 0.02

0.067
± 0.002

0.088
± 0.002

0.003
± 0.002

0.055
± 0.005

“

^n=3 from C/S analyzer (wt.%) ± st.dev.
[20] C. Hsu, 2007

[21] DIS, 2001
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Dilatometry
• 6 mm OD x 22 mm L samples heated at 5°C/s to 900°C, held for 30 min, 

and cooled at prescribed cooling rate[24]

• Contact dilatometer used to measure change throughout testing

• Cooling rates performed: 1 and 10°C/s

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

D
ila

ti
o

n
 (

m
m

)

Temperature (°C)

Dilation vs Temperature Cooling at 1°C/s

LL 1°C/s HL 1°C/s LH 1°C/s HH 1°C/s

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

D
ila

ti
o

n
 (

m
m

)

Temperature (°C)

Dilation vs Temperature Cooling at 10°C/s

LL 10°C/s HL 10°C/s LH 10°C/s HH 10°C/s

[22] Samuel and Viswanathan, 2008



12

Transformation Temperatures

• Transformation temperatures 

show similarities with H-Ni and 

L-Ni in separate “classes”

• H-Ni materials readily obtain 

martensite even at a relatively 

slow rate

• Mn does not seem to 

drastically affect material 

performance despite also 

encouraging austenite stability

Transformation Temperatures

°C/s Mat’l FS FF,PS PF,BS BF MS

1

L-Ni / L-Mn 755 627 563 - -

H-Ni / L-Mn - - 546 365 162

L-Ni / H-Mn 817 613 547 - -

H-Ni / H-Mn - - 517 335 175

10

L-Ni / L-Mn - - 580 348 162

H-Ni / L-Mn - - 542 376 138

L-Ni / H-Mn - - 553 366 186

H-Ni / H-Mn - - 513 370 142

(°C)
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1°C/s Microstructures 
L-Ni H-Ni

200 μm

200 μm

200 μm

200 μm

L
-M

n
H

-M
n

Graphite: 10.0 ± 0.8%

Ferrite: 4.7 ± 0.9%

Pearlite: 85.3%

20 ± 0.4 HRC

Graphite: 10.2 ± 0.6%

Ferrite: 0.6 ± 0.2%

Bainite: 43.9 ± 0.9%

Martensite: 45.4 ± 0.9%

49 ± 0.3 HRC

Graphite: 9.0 ± 0.3%

Ferrite: 2.7 ± 1%

Pearlite: 88.3%

26 ± 0.7 HRC

Graphite: 9.5 ± 0.6%

Austenite: 1.7 ± 1%

Bainite: 40.9 ± 2%

Martensite: 47.3 ± 2%

51 ± 0.5 HRC
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10°C/s Microstructures 
L-Ni H-Ni

200 μm

200 μm

200 μm

200 μm

L
-M

n
H

-M
n

Graphite:  9.3 ± 0.6%

Austenite: 3.9 ± 0.8%

Bainite: 68.3 ± 0.8%

Martensite: 16.5%

54 ± 0.2 HRC

Graphite: 9.8 ± 0.6%

Austenite: 9.1 ± 2%

Bainite: 58.0 ± 0.7%

Martensite: 23.1%

49 ± 0.6 HRC

Graphite: 8.7 ± 0.4%

Austenite: 8.3 ± 1%

Bainite: 66.1 ± 0.7%

Martensite: 16.4%

54 ± 0.4 HRC

Graphite: 8.6 ± 0.6%

Austenite: 22.1 ± 4%

Bainite: 53.3 ± 1%

Martensite: 16.0%

43 ± 0.3 HRC
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Ni vs Mn Additions on IL DI

Nickel

• H-Ni content promotes more 

austenite stability in IL DI with 

retained austenite easily 

attainable

– Retained austenite likely to 

transform in Martian application due 

to reduced atmospheric temperature

• Significant hardness benefits

• Readily available from 

meteorites, asteroids, etc.

Manganese

• H-Mn does not give significant 

variation in property

– Small window from L-Mn to H-Mn 

value due to Mn composition limits

• Slight hardness increases

• Little microstructural change

– Baseline L-Mn seems sufficient, but 

additions could be made depending 

on desired properties

• May be available in some areas 

for additions to IL composition 
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Summary

• Dilatometry showed similar phase transitions with significant grouping 

of H-Ni materials for property variation

– Additional Mn may not be worthwhile due to minimal effects from baseline L-Mn

• Hardness and microstructure showed IL DI responds well to heat 

treatment

– With Ni additive, increased cooling rates will result in significant retained austenite

– Likely that Martian/Lunar surface temperatures are cool enough to allow complete 

martensite transition

• The use of IL-Fe and Bosch C as casting feedstock could produce 

numerous ductile iron grades with minimal additions and some cooling 

rate control or post processing

• In summary, the use of Bosch C with IL-Fe is likely a viable option to 

manufacture ductile iron on the Lunar or Martian surfaces, with some 

limitations

il
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