

Parametric Mixer Design Methods for Acoustic Explorations of Internally Mixed Nozzles

NASA Acoustics Technical Working Group
19 October 2021

Will Banks, HX5, LLC NASA Glenn Research Center william.v.banks@nasa.gov

Supported by Commercial Supersonic Technology (CST)

Project

New Tech Challenge: Prediction Uncertainty Reduction

Uncertainty in prediction of LTO noise is primarily associated with **configuration differences** between conventional and supersonic aircraft.

- Multi-stage fans behind supersonic inlets
- Variable geometry nozzles

Empirical prediction models only work if based on relevant data.

- Noise data for supersonic configurations very limited.

Tech Challenge approach:

Use physics-based simulations (PBS) of supersonic aircraft to produce 'data'.

The approach requires high-fidelity designs of likely supersonic propulsion components

- Relevant two-stage fan design produced by GE for NASA
- Relevant nozzle system being designed in-house based on OEM input.

Design req'ts for near-term SS exhaust nozzle

Good thrust at Supersonic Cruise

Low boattail angle for low boom, low drag at cruise Variable A8/A9 (smaller than afterburning nozzle) Low noise at LTO

Low complexity desired

For cruise Mach < 2, external plug nozzle good for low boattail angle

External plug make thrust less sensitive to A8/A9 Translating plug allows for variable A8 and A9

Low boattail requires internally mixed nozzle High mixing provides benefits to exhaust performance

- Noise Damping
- Small Thrust Augmentation

Develop a parametric mixer design methodology with goals to:

- Automate geometry and grid generation, where possible
- Optimize mixing performance with respect to Thrust augmentation & Jet Noise reduction
- Limit initial design space to 5 parameters, to be expanded in the future

Mixer Design Lit Survey - Key References

- [1] Kuchar, A.P., and Chamberlin, R. "Scale Model Performance Test Investigation of Exhaust System Mixers for an E3 Propulsion System." *AIAA 18th Aerospace Sciences Mtg*, 1980. doi:10.2514/6.1980-229.
 - Examined **lobe count & penetration**, concluding the former had little effect on performance
- [2] Kuchar, A.P., and Chamberlin, R. "Scale Model Performance Test Investigation of Exhaust System Mixers for an E3 Propulsion System." *AIAA 21st Aerospace Sciences Mtg*, 1983. doi:10.2514/6.1983-541.
 - Examined more advanced mixer geometries and exhaust systems and defined **mixer effectiveness & pressure loss coefficients**
- [3] Kuchar, A.P., and Chamberlin, R. "Comparison of Full-Scale Engine and Subscale Model Performance of a Mixed Flow Exhaust System for an E3 Propulsion System." *AIAA 22nd Aerospace Sciences Mtg*, 1984. doi:10.2514/6.1984-283.
 - Tested mixer concepts on full-engine tests at GE's Peebles facility, finding increased mixer effectiveness
- [4] Mengle, V. G., Baker, V. D., and Dalton, W. N. "Lobed Mixer Design for Noise Suppression Plume, Aerodynamic and Acoustic Data." NASA/CR—2002-210823/VOL1, 2002.
 - Detailed summary of extensive, acoustics-oriented mixer testing for subsonic applications
- [5] Berton, J. "Ideal, Subsonic Mixing Analysis for Convergent or Divergent (Variable-Area) Mixers." 2016.
 - Internal document detailing theory behind thrust augmentation in mixing

Design Inputs

- 1-D STCA for a 55t engine serves as flight condition reference
 - Interested chiefly in thrust performance → SSCR mission point
 - Goal: Match BPR of 3.33 at an area-averaged NPR of 5.89
 - Freestream conditions:
- •Plot shows Extraction Ratio θ vs. Bypass Ratio BPR
 - Red dot indicates design point
 - Green dot indicates fixed BPR conditions
- •Exponential increase of BPR with θ suggests high sensitivity of dual-stream nozzles to inflow pressures
- •Reducing *AR* flattens the sensitivity
 - AR = 1 was chosen for the nozzle design
 - $\theta = 1.13$ produced the target BPR = 3.33 in the final duct design

M_{∞}	Altitude
1.4	15000m

Study Nozzle Geometry

- Common dual-stream nozzle was designed to house all mixers considered
 - All dimensions shown are kept constant
- Academic "Constant-Area" design built to isolate mixing process from expansion/contraction
 - AR = 1 enforced through inflow duct to Mixer TE
 - Extended mixing region allows detailed analysis of mixing process
 - Total duct area held constant up to C-D section
- C-D nozzle sized to ideally expand flow at SSCR conditions

Mixer Constraints

- Phase I of the design study applies the following constraints:
 - Lobe mixer has defined peak and trough radii at the Trailing Edge (TE)
 - Parameterized TE profile, connected to a single plane, perpendicular to the nozzle centerline, defined at x = 20"
 - Mixer extends a length *L* from the TE in the upstream direction
 - An axisymmetric splitter bifurcates the two streams upstream of the mixer
 - The transition from splitter to TE is defined by a parameterized cubic spline at 30+ azimuthal points
 - Slope of the spline at the junction to the splitter is 0

Approach Validation – PAW3 DMFR Nozzle

- Computational approach validated against DMFR Nozzle results from AIAA's PAW3
- NPR vs. C_{F_q} curves matched well against industry unstructured CFD codes (**Boeing & LMCO**)

^[2] Winkler, C.M. "BCFD Analysis for the 3rd AIAA Propulsion Aerodynamics Workshop: Nozzle Results." 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, doi:10.2514/6.2017-4657.

Phase I Parametric Space

Phase I mixers were fully defined through the following parameters:

Parameter	Symbol
Lobe Count	n
Penetration	φ
Lobe Bias	η
Mixer Length	L
TE Slope	∂_{TE}

- TE radius was defined in polar coordinates as a function of θ , ϕ , and η
 - Methodology maintains equal bypass & core areas
- Cubic transition spline was built from L and ∂_{TE}

Phase I Parametric Space – ϕ vs. η , TE Profiles

Phase I Parametric Space – L vs. ∂_{TE} , Spline Profiles

5.0 7.5 10.0 12.5 15.0 17.5 20.0

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Phase I Parametric Space – Sample Cases

Mixer	1	2	3
n	12	12	12
φ	50%	60%	60%
η	0.125	0	-0.125
L	10.625"	13.675"	16.875"
∂_{TE}	0.25	0	-0.25

Analysis – Performance Response

- Parameter list:
 - Thrust Coefficient: C_{F_q}
 - Mixing Effectiveness: K_4 (from Kuchar [2])
 - Pressure Loss Coefficient: $C_{\Delta P_t}$ (from Kuchar [2])
 - Temperature Variance: s_T^2
 - Variance in Temperature at the mixing duct outflow plane

			Mixer #
9	2	1	#
00/00	0.9467	0.9524	C_{F_g}
1020 0	-0.0021	0.1577	K_4
0.0019	0.0027	0.0074	$C_{\Delta P_t}$
1 0170	848.0	0.4519	s_T^2

Detailed Flowfields on Following Slides

Sample Case Results – Symmetry Plane Contours

Mach # plots illustrate general flow patterns

- Verifies typical dual-stream, choked nozzle

TKE provides window into major mixing mechanism

Predicts mixer 1 as the best-performing design

Sample Case Results – Total Temperature

 T_t provides direct, complete evidence of mixed-ness

- Supports claim that mixer 1 is the best-performing design

DoE Studies – Design Optimization

- Initial Screening: Test limits
 - Found gridding issues and senseless configurations
 - i.e. $\phi < 40\%$, n = 20, $\partial_{TE} < -0.5$ or > 0.5
- Half Factorial: Performance-based pare-down
 - Recognized patterns to further whittle down design space
 - i.e. $\phi < 50\% \ or > 70\%, \ \partial_{TE} < 0$
 - *n* is insignificant and will be held constant at 12
- Quadratic Response Surface: 30 design points to build quadratic model
 - Final bounds:

Parameter	Range
n	12
ϕ	50% - 70%
L	10.625" - 16.875"
η	-0.125 - 0.125
∂_{TE}	-0.25 - 0.25

DoE Studies – Perturbation Plots

Future Work

- •Phase II will apply advanced parameterized features to a select few Phase I design(s):
 - Cutbacks/Scarf Angle on TE
 - Scalloped Lobes
 - Lobe Vents
- •Phase III will explore low-TRL concepts, with or without parameterization
 - Vortex Generators
 - TE Chevrons

Backup Slides

Study Nozzle Geometry

- Common dual-stream nozzle was designed to house all mixers considered
- Academic "Constant-Area" design built to isolate mixing process from expansion/contraction
 - AR = 1 enforced through inflow duct to Mixer TE
 - Extended mixing region allows detailed analysis of mixing process
 - Total duct area held constant up to C-D section
- All area changes enforced with the contoured plug
 - Simplifies geometry by confining curvatures to one component
 - C-D nozzle sized to ideally expand flow at SSCR conditions

	Dimension	Description
A	3.4"	Plug Radius @ Inflow
\mathbf{B}	5.1044"	Plug Radius @ Mixing Duct
C	13.036"	Plug Radius @ Nozzle Throat
D	14.2"	Splitter Inner Radius
E	14.7"	Splitter Outer Radius
F	21.1466"	Nacelle Inner Radius
G	22.1466"	Nacelle Outer Radius
H	10"	Inflow Duct Length
I	12.5"	Mixer Region Length
J	20"	Splitter+Mixer Length
K	57.5"	Mixing Duct Length
L	20"	Converging Duct Length
\mathbf{M}	20"	Diverging Duct Length
N	15"	Plug Exposed Length
O	0.125"	Splitter/Mixer TE Thickness
P	0.125"	Nacelle TE Thickness

Grid Generation

Geometry and grid generation is fully procedural:

- 3-D surfaces (bypass & core sides) are generated from above profiles with NURBS-Python
- .stl surface files are imported into mixer-less nozzle template with Pointwise v18.4
- Connectors are generated with the following spacings:

Description Spacing Interior Baseline 0.2"Exterior Baseline 0.5"Mixer Surface 0.13"Mixer TE 0.1"Mixer TE Thickness 0.0625" 0.13"Mixing Buffer Farfield 10" T-Rex 1st Layer 2e-5"T-Rex Growth Rate 1.3

- Domains & Blocks are built, then full grid is exported in FUN3D-readable format

Resulting grid is quarter-symmetric about the XY and XZ planes

Numerical Solution

RANS equations solved with FUN3D v13.6

SST-v model used to predict turbulent flows

Boundary conditions:

Boundary	Type	Code	λ	NTR
Core Inflow	Subsonic Inflow	7011	5.534	4.654
Bypass Inflow	Subsonic Inflow	7011	6.268	1.736
Y-Symmetry	Symmetry_y	6662	_	-
Z-Symmetry	Symmetry_z	6663	_	_
Farfield Inflow	Freestream	5050	_	-
Farfield	Farfield	5000	_	_
Farfield Outflow	Extrapolate	5026	_	_
Nozzle Surfaces	Viscous Wall	4000	<u>- 20</u>	

CFL's # ramped over 1000 iterations

- Convective: 1 to 100

- Turbulent: 0.2 to 20

Convergence typically seen in 3000 iterations, solutions run for 10000

Analysis – Performance Response

Parameter list:

- Thrust Coefficient:
$$C_{F_g} = \frac{F_g}{F_{g,i}}$$

- Mixing Effectiveness:
$$K_4 = \frac{C_{F_{g,HOT}} - C_{F_{g,COLD}}}{\frac{F_{g,i,MIXED}}{F_{g,i,SEP}} - 1}$$

- Pressure Loss Coefficient:
$$C_{\Delta P_t} = \frac{\Delta P_{t,COLD} - \Delta P_{t,CCM}}{P_{t,IN,COLD}}$$

HOT: Heated-core case

COLD: Unheated-core case

MIXED: Ideal, fully mixed flow

SEP: Ideal, fully unmixed flow

CCM: Cold, confluent mixer, aka axisymmetric splitter

- Temperature Variance: s_T^2 = Variance in Temperature at the mixing duct outflow plane (C.)

Mixer #	C_{F_g}	K_4	$C_{\Delta P_t}$	s_T^2
1	0.9524	0.1577	0.0074	0.4519
2	0.9467	-0.0021	0.0027	0.8848
3	0.9409	-0.0784	0.0012	1.2172

Jet Noise Prediction Toolchains

Bypass Ratio vs. Extraction Ratio vs. Area Ratio

- •Plot shows Extraction Ratio θ vs. Bypass Ratio BPR
 - Red dot indicates design point
 - Green dot indicates fixed BPR conditions
- •Exponential increase of BPR with θ suggests high sensitivity of dual-stream nozzles to inflow pressures
- •Reducing *AR* flattens the sensitivity
 - AR = 1 was chosen for the nozzle design
 - $\theta = 1.13$ produced the target BPR = 3.33 in the final duct design

$$BPR = rac{\dot{m}_{IN,Bypass}}{\dot{m}_{IN,Core}} \quad \theta = rac{P_{t,IN,Bypass}}{P_{t,IN,Core}} \quad AR = rac{A_{IN,Bypass}}{A_{IN,Core}}$$

