

Next Generation Astronomical X-ray Optics: High Resolution, Light Weight, & Low Cost

William W. Zhang NASA Goddard Space Flight Center

1

K.D. Allgood¹, M.P. Biskach¹, K.W. Chan², T.A. DeVita¹,M. Hlinka¹, C.D. Hovis, J.D. Kearney¹, J.R. Mazzarella¹, R.S. McClelland, A. Numata¹, R.E. Riveros², T.T. Saha, P.M. Solly¹, and W.W. Zhang *NASA Goddard Space Flight Center* ¹ also Stinger Ghaffarian Technologies, Inc. ² also University of Maryland, Baltimore County

Two Currently Operating X-ray Telescopes

Parameters	Chandra (Flagship)	NuSTAR (SMEX)
Year of Launch	1999	2012
Mirror elements	Full Shells (4 P & 4 S)	Segments (1200 P, 1200 S)
Mirror element thickness	16 mm (inner), 25 mm (outer)	0.21 mm
PSF	0.5 arcseconds	58 arcseconds
Surface area	19 m ²	45 m ²
Mass	1,500 kg (79 kg/m²)	40 kg (0.89 kg/m²)
Cost	\$580M (\$30M/m²)	\$10M (\$0.22M/m²)

Compared to that of NuSTAR, Chandra's mirror is

- ~100 times better PSF;
- ~100 times heavier; and
- ~100 times more expensive.

Objective of Next Generation X-ray Optics

Develop and Perfect an X-ray mirror technology that is far superior to those of Chandra and NuSTAR.

- Compared to Chandra's
 - Comparable PSF: 0.5" by 2025.
 Much Better PSF: 0.1" by 2030.
 - At least 10 times lighter, and
 - At least 10 times cheaper.
- Compared to NuSTAR's
 - At least 100 times better PSF, and
 - Comparable mass, and
 - Comparable cost.

Major Steps to Build the Lynx Mirror Assembly

Technology Development

Engineering Development

Mirror Module

Materials (relative mass):

- <u>Silicon: 10,000.</u>
- <u>Coatings (Ir): ~5.</u>
- <u>Epoxy: ~1.</u>

Key Characteristics:

- Athermal:
 - Easy to test on ground.
 - Easy thermal control on orbit.
- Verifiable on ground:
 - Science performance.
 - Spaceflight environment.

Mirror Fabrication Process

Mirror Segments are Better than Chandra's

- Atomic-Layer Deposition (ALD)
 - Simultaneous and uniform coating,
 - Commercially available process,
 - Low cost and high throughput.

Mirror Integration Process

Mirror Tech Days (11/02/2021)

Performance and Spaceflight Environmental Testing

Mirror Module in an X-ray Beam Line in GSFC's Area 200

Mirror Module on a Vibration Table in Bldg 11 of GSFC

Mirror Module in a **Thermal Vacuum Chamber** in Bldg 11 of GSFC

Technology Status & Prospects

• As of June 2021, Built and tested mirror modules

- Built two modules in recent weeks,
- X-ray tested them, and
- Thermal-vacuum tested one of them.
- Vibration tested one of them.

• Prospects

- Better than 2.0" PSF by December 2021,
- Better than 1.0" PSF by December 2022,
- Better than 0.5" PSF by December 2023

Full Illumination with 4.5 keV X-rays: 2.8" HPD.

Summary

- We have demonstrated the basic elements of a technology to make high-resolution, light-weight, and low-cost X-ray optics.
- We continue to advance this technology to meet all requirements of *Lynx:* performance and programmatic.
- This technology uses only commercially available equipment and materials. It piggybacks on the semiconductor industry, avoiding obsolescence and ensuring continual advance.
- This technology can be used for missions of all sizes: suborbital, SmallSats, Pioneers, SMEX, MIDEX, Probes, and Flagships (Lynx).