Evaluation of In-Situ Alloyed, Additively Manufactured GRCop-42

David Scannapieco¹, David L. Ellis², and John Lewandowski¹

¹Case Western Reserve University, Cleveland, OH

²Glenn Research Center, Cleveland, OH

Materials Science and Technology Conference, October 2021

Acknowledgements

Support is provided by NASA Grant NASA-80NSSC19K1736 'In-situ alloying of GRCop-42', NASA ULI: NASA-80NSSC19M0123 'Development of an Ecosystem for Qualification of AM Processes and Materials in Aviation', and CWRU's Arthur P. Armington Professorship.

Additionally, this work would not be possible without our excellent colleagues at:

NASA GRC

Dereck Johnson Aaron Thompson Wayne Jennings Joy Buehler Laura Evans Pete Bonacuse Cheryl Bowman Richard Rogers

NASA MSFC

Paul Gradl Chris Protz John Fikes

CWRU Jackson Smith Rich Tomazin

CMU Led NASA ULI

Overview

- Background
- Powder Manufacturing
- Parameter Mapping
 - Fractography for Parameter Optimization
 - Porosity Results
- Phase Extractions
 - Procedure
 - Laser Parameter Results
 - Phase/Chemical Results
 - Morphology Results
- Conclusions

Background: AM In-Situ Alloying

- Current Literature:
 - Binary or ternary intermetallic alloys.
 - All elements participate in the reaction (Ti-Al, Ti-Al-Nb, Ti-B, etc.)
 - Post-processing can be used to "fix" microstructural issues, shown right.
- Our work:
 - Dispersion-strengthened alloy
 - Cu does not participate in the alloying process
 - Reacting Cr₂Nb in melt pool
 - Heat treatment cannot necessarily be used to "fix" microstructure
 - Nb has little diffusivity in solid Cu

¹A. Grigoriev, et al. J. Alloys Compd, 2017 Vol 704, p 434-442.

Background: GRCop

- Family of Cu-Cr-Nb alloys with pure Cu matrix with Cr₂Nb dispersoid
 - GRCop-42: Cu-4 at% Cr-2 at% Nb
 - Conventionally processed by gas atomization.
- Designed for:
 - High temperature mechanical properties
 - High thermal conductivity¹
- Additive manufacturing (AM) provides increased design freedom and advanced alloying capabilities
- Challenges:

ASE SCHOOL

ESERVE

- Nb diffusivity in solid Cu is very low.
- High reflectivity of Cu makes most lasers a challenge to work with.
 - Green laser or e-beam is preferred, but not always available.
 ³D. L. Ellis,

³D. L. Ellis, NASA TM - 2005-213566, 2005.

Goals

- Facilitate GRCop component manufacturing by eliminating the gas atomization process in GRCop alloying
 - React Cr and Nb to form Cr_2Nb in Cu matrix in situ during AM
 - No excess elemental Nb
 - Nb highly susceptible to H embrittlement
 - Achieve similar mechanical characteristics to additively manufactured GRCop alloyed via gas atomization
- Identify key characteristics that influence in situ alloying
 - Can these be applied to other alloys?

Elemental Powder Preparation

 Two-step powder processing creates more contact between Cr and Nb, which should facilitate the formation of Cr₂Nb

Parameter Mapping

- High porosity detected in the printed materials.
- Cu has high reflectivity in 1064 nm wavelength used by EOS M100.
- Best density was 95%, which is too high to HIP out and retain dimensional fidelity.

Fractography to Image Porosity Details

- Fatigue provides fracture surfaces with unique lack of fusion and keyhole defects.
- These defects can provide insight on what needs to change to optimize the parameters.

Scannapieco, et al. "Fracture Surface Defect Quantification for LPBF Additively Manufactured Ti-6AI-4V" MS&T2021. Monday 10/18/2021.

Fractography to Image Porosity Details

Fractography to Image Porosity Details

- Hatch spacing (72 μ m) > Weld pool (56 μ m)
 - Creates lack of fusion at any P-V combination

Printed Components

- In-situ alloying evident on metallographic sections.
 - Chromium (green) and niobium (blue).
 - EDS shows a mixture which suggests partially reacted Cr₂Nb

⁴ D. Scannapieco, CWRU Senior Thesis, 2019.

- Presence of Cr₂Nb not detected on XRD.
 - Cu peaks dominate XRD.

CASE SCHOOL

of Engineering

ESERVE

- Cr₂Nb is below detection limit in bulk sample.

Phase Extraction of Dispersoids

- To eliminate Cu from XRD consideration, extract out the Cr₂Nb dispersoids.
- Nitric acid is nonreactive with Cr, Nb, Cr₂Nb, and associated oxides.
 - Nitric Acid does dissolve Cu.

$4HNO_3(l)+Cu(s) \rightarrow Cu(NO_3)_2(aq)+2NO_2\left(g\right)+2H_2O(l)$

⁵ L. Summerlin, et al., Amer. Chem. Soc. June 1987.

Phase Extraction of Dispersoid

- Phase extraction reveals presence of Cr₂Nb.
 - Dispersoids total 7 vol% of alloy.
- Can now identify differences in success of conversion to Cr₂Nb.

Milling Impact on Cr₂Nb Conversion

Two-step powder increases in situ formation of Cr₂Nb.

⁶ D. Scannapieco, et al. NASA/TM-20205003857, June 2020.

Laser Power Impact on Cr₂Nb Conversion

• %Cr in Cr₂Nb trends positively with Laser power.

CASE SCHOOL

OF ENGINEERING

ESERVE

- Clear distinction in laser power benefit above and below 1.1 power.
 - Suggests a minimum of 1.1 power is needed for high Cr₂Nb conversion.
 - Addition power above that is not an efficient means of promoting the reaction.

Laser Scan Speed Impact on Cr₂Nb Conversion

• Influence of scan speed on in-situ alloying success is negligible.

CASE SCHOOL

OF ENGINEERING

ESERVE

Processing Impact on Extracted Dispersoid Chemistry

- Powder (Cr+Nb) is oxygen free and Cr-rich, 2.08:1 Cr:Nb ratio.
- Both conventional AM and ISGRCop have oxygen, and are Nb-rich.
 - AM is 1.90:1 Cr:Nb ratio.
 - ISGRCop 1.40:1 Cr:Nb ratio, after starting with the 2.08:1 powder.
- No Oxides found in starting powders.

Processing Impact on Extracted Dispersoid Phases

- Extraneous peaks on ISGRCop line are primarily Nb-based oxides.
 - Very high oxygen content in ISGRCop dispersoids has an uncertain origin.
 - EOS M100 operates at < 0.1% Oxygen in the chamber.

OF ENGINEERING

Processing Impact on Extracted Dispersoid Phases

- ISGRCop remains well below reaction completion
 - Could be due to the hatch spacing issue, if the laser misses elemental powders they cannot react.
 - High O-content is in Nb-based oxides
- Oxides will continue to be monitored to identify their source.

*AMGRCop contains two phases of Cr₂Nb

Processing Impact on Extracted Dispersoid Morphology

ISGRCop

AMGRCop

- Morphologies are similar between alloys.
- Suggesting that their mechanical strengthening effect will be similar.

Conclusions

- New in-situ alloying process during AM has been discovered for GRCop.
- Demonstrated feasibility of in-situ alloying for GRCop.
 - Possible and repeatable.
 - 80% conversion to Cr_2Nb with at least 1.1 normalized power.
- Able to react Cr and Nb to Cr₂Nb in the melt pool.
 - No alloy-related post processing needed, which may be required by other in-situ methods.
 - Extracted dispersoid morphology between gas atomized and AMed GRCop to the ISGRCop is very similar.
 - Promising for future mechanical properties.
- Only Nb-oxides were identified after print and extraction.
 - Could be fixed with better processing.
- Printing with elemental powders is not the same as with pre-alloyed powders, poses some development challenges.

Future Work

- Experiments to solve hatch spacing issue have been completed, evaluation is underway.
- Mechanical specimens have been built and will be tested to compare ISGRCop and AMGRCop.
 - Expectation is a similar mechanical performance.
 - Interest is in creep and fatigue particularly.
- This work has a US Patent Pending LEW19909-1.

Acknowledgements

Support is provided by NASA Grant NASA-80NSSC19K1736 'In-situ alloying of GRCop-42', NASA ULI: NASA-80NSSC19M0123 'Development of an Ecosystem for Qualification of AM Processes and Materials in Aviation', and CWRU's Arthur P. Armington Professorship.

Additionally, this work would not be possible without our excellent colleagues at:

NASA GRC

Richard Rogers Dereck Johnson Aaron Thompson Wayne Jennings Joy Buehler Laura Evans Pete Bonacuse Cheryl Bowman

NASA MSFC

Paul Gradl Chris Protz John Fikes

CWRU Jackson Smith Rich Tomazin

CMU Led NASA ULI

Questions?

References

- 1. A. Grigoriev, I. Polozov, V. Sufiiarov, and A. Popovich, "In-situ synthesis of Ti₂AlNb-based intermetallic alloy by selective laser melting". J. Alloys Compd, Vol 704, p 434-442, 2017.
- 2. K. G. Cooper, J. L. Lydon, M. D. LeCorre, Z. C. Jones, D. S. Scannapieco, D. L. Ellis and B. A. Lerch, "Three dimensional printing of GRCop-42," *NASA TM 2018220129,* 2018.
- 3. D. L. Ellis, "GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications," NASA TM 2005-213566, 2005.
- 4. D. S. Scannapieco, "Additive Manufacturing of GRCop-42" CWRU, Senior Thesis, April 2019.
- 5. L. R. Summerlin, C. L. Borgford, and J. B. Ealy, "Ira Remsen's Investigation of Nitric Acid," *Chemical Demonstrations: A Sourcebook for Teachers Vol. 2*, Washington D.C., American Chemical Society, 1987, pp 4-5.
- 6. D. Scannapieco, R. Rogers, D. Ellis, and J. Lewandowski, "In-Situ Alloying of GRCop-42 via Additive Manufacturing: Precipitate Analysis" NASA/TM-20205003857, June 2020.

• Hess et al. Physics Procedia (2010).

